RESUMO
In this study, a range of oxamide ligands were synthesized by the reaction of amines with oxalyl chloride in basic medium. Spectroscopic and analytical techniques such as IR, 1H-NMR and ESI-MS techniques were used for characterization of the synthesized oxamides. The synthesized oxamides were screened for Lipoxygenase inhibition. Biological screening revealed that the oxamides possessed good lipoxygenase inhibition activities, whereas, the unsubstituted oxamide did not show any distinct lipoxygenase inhibition activity. Molecular docking studies of the oxamides were also carried out for lipoxygenase inhibition. The results obtained from molecular docking were well correlated with the empirical data.
Assuntos
Araquidonato 5-Lipoxigenase/química , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/farmacologia , Ácido Oxâmico/análogos & derivados , Aminas/química , Araquidonato 5-Lipoxigenase/metabolismo , Cloretos/química , Avaliação Pré-Clínica de Medicamentos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Oxalatos/química , Ácido Oxâmico/química , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-AtividadeRESUMO
Two new tetranuclear copper(II) complexes of the formulae [Cu4(oxbm)2(phen)2](NO3)2â 6H2O (1) and [Cu4(oxbpa)2(phen)2](ClO4)2·4H2O (2), where H3oxbm and H3oxbpa stand for N-(2-aminopropyl)-N'- (2-carboxylatophenyl)oxamide and N-hydroxypropyl-N'-(2-carboxylatophenyl)oxamide, respectively, and phen is 1,10-phenanthroline, have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR and electronic spectrum studies, and X-ray single crystal diffraction. In the two tetracopper(II) complexes, the presence of the circular tetracopper(II) cations is assembled by a pair of cis-oxamido-bridged dicopper(II) units through carboxyl bridges, in which Cu1 is located in a distorted square-planar environment, while Cu2 is in a distorted square-pyramidal geometry. Numerous hydrogen bonds link complex 1 or 2 into a 2-D infinite network. The interactions of the two tetracopper(II) complexes with DNA are investigated both theoretically and experimentally, revealing that these tetracopper(II) complexes can interact with HS-DNA in the mode of intercalation, and complex 1 possesses stronger intercalating ability. The molecular docking of the two tetranuclear copper(II) complexes with the self-complementary DNA duplex of sequence d(ACCGACGTCGGT)2 facilitates the binding events. Cytotoxicity experiments indicate that the two tetracopper(II) complexes exhibit cytotoxic effects against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549. Interestingly, the cytotoxic activities of the two tetracopper(II) complexes are consistent with their DNA-binding abilities, following the order of 1>2. The main results suggest that different bridging ligands in tetracopper(II) complexes may play an important role in the DNA-binding properties and cytotoxic activities.