Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(3): 86, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319399

RESUMO

In this study salicylic acid loaded containing selenium nanoparticles was synthesized and called SA@CS-Se NPs. the chitosan was used as a natural stabilizer during the synthesis process. Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (XRD), field emission electron microscopy (FESEM), and transmission electron microscopy (TEM) were used to describe the physicochemical characteristics of the SA@CS-Se NPs. The PXRD examination revealed that the grain size was around 31.9 nm. TEM and FESEM techniques showed the spherical shape of SA@CS-Se NPs. Additionally, the analysis of experiments showed that SA@CS-Se NPs have antibacterial properties against 4 ATCC bacteria; So that with concentrations of 75, 125, 150, and 100 µg/ml, it inhibited the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus respectively. Also, at the concentration of 300 µg/ml, it removed 22.76, 23.2, 10.62, and 18.08% biofilm caused by E. coli, P. aeruginosa, B. subtilis, and S. aureus respectively. The synthesized SA@CS-Se NPs may find an application to reduce the unsafe influence of pathogenic microbes and, hence, eliminate microbial contamination.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas , Selênio , Ácido Salicílico/farmacologia , Selênio/farmacologia , Quitosana/farmacologia , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Bacillus subtilis , Biofilmes , Pseudomonas aeruginosa
2.
Plant Sci ; 340: 111972, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176527

RESUMO

Little is known about the molecular basis of host defense in resistant wild species Zingiber zerumbet (L.) Smith against the soil-borne, necrotrophic oomycete pathogen Pythium myriotylum Drechsler, which causes the devastating soft rot disease in the spice crop ginger (Zingiber officinale Roscoe). We investigated the pattern of host defense between Z. zerumbet and ginger in response to P. myriotylum inoculation. Analysis of gene expression microarray data revealed enrichment of phenylpropanoid biosynthetic genes, particularly lignin biosynthesis genes, in pathogen-inoculated Z. zerumbet compared to ginger. RT-qPCR analysis showed the robust activation of phenylpropanoid biosynthesis genes in Z. zerumbet, including the core genes PAL, C4H, 4CL, and the monolignol biosynthesis and polymerization genes such as CCR, CAD, C3H, CCoAOMT, F5H, COMT, and LAC. Additionally, Z. zerumbet exhibited the accumulation of the phenolic acids including p-coumaric acid, sinapic acid, and ferulic acid that are characteristic of the cell walls of commelinoid monocots like Zingiberaceae and are involved in cell wall strengthening by cross linking with lignin. Z. zerumbet also had higher total lignin and total phenolics content compared to pathogen-inoculated ginger. Phloroglucinol staining revealed the enhanced fortification of cell walls in Z. zerumbet, specifically in xylem vessels and surrounding cells. The trypan blue staining indicated inhibition of pathogen growth in Z. zerumbet at the first leaf whorl, while ginger showed complete colonization of the pith within 36 h post inoculation (hpi). Accumulation of salicylic acid (SA) and induction of SA regulator NPR1 and the signaling marker PR1 were observed in Z. zerumbet. Silencing of PAL in Z. zerumbet through VIGS suppressed downstream genes, leading to reduced phenylpropanoid accumulation and SA level, resulting in the susceptibility of plants to P. myriotylum. These findings highlight the essential role of PAL-dependent mechanisms in resistance against P. myriotylum in Z. zerumbet. Moreover, our results suggest an unconventional role for SA in mediating host resistance against a necrotroph. Targeting the phenylpropanoid pathway could be a promising strategy for the effective management of P. myriotylum in ginger.


Assuntos
Pythium , Zingiber officinale , Zingiberaceae , Pythium/genética , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/farmacologia , Lignina , Ácido Salicílico/farmacologia , Zingiberaceae/genética
3.
Adv Sci (Weinh) ; 11(7): e2307051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063804

RESUMO

The plant hormone salicylic acid (SA) plays critical roles in plant innate immunity. Several SA derivatives and associated modification are identified, whereas the range and modes of action of SA-related metabolites remain elusive. Here, the study discovered 2,4-dihydroxybenzoic acid (2,4-DHBA) and its glycosylated form as native SA derivatives in plants whose accumulation is largely induced by SA application and Ps. camelliae-sinensis (Pcs) infection. CsSH1, a 4/5-hydroxylase, catalyzes the hydroxylation of SA to 2,4-DHBA, and UDP-glucosyltransferase UGT95B17 catalyzes the formation of 2,4-DHBA glucoside. Down-regulation reduced the accumulation of 2,4-DHBA glucosides and enhanced the sensitivity of tea plants to Pcs. Conversely, overexpression of UGT95B17 increased plant disease resistance. The exogenous application of 2,4-DHBA and 2,5-DHBA, as well as the accumulation of DHBA and plant resistance comparison, indicate that 2,4-DHBA functions as a potentially bioactive molecule and is stored mainly as a glucose conjugate in tea plants, differs from the mechanism described in Arabidopsis. When 2,4-DHBA is applied exogenously, UGT95B17-silenced tea plants accumulated more 2,4-DHBA than SA and showed induced resistance to Pcs infection. These results indicate that 2,4-DHBA glucosylation positively regulates disease resistance and highlight the role of 2,4-DHBA as potentially bioactive molecule in the establishment of basal resistance in tea plants.


Assuntos
Arabidopsis , Camellia sinensis , Catecóis , Hidroxibenzoatos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Camellia sinensis/metabolismo , Resistência à Doença , Arabidopsis/metabolismo , Chá/metabolismo
4.
J Econ Entomol ; 117(1): 302-310, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011902

RESUMO

Toxoptera aurantii is one of the most destructive pests, threatening the yield and quality of tea plantations. The salicylic acid (SA)-mediated signaling pathway is vital for the induction of plant defense responses; however, its role in tea plant resistance to T. aurantii remains unclear. Thus, this study used and electrical penetration graph and monitoring of population dynamics to evaluate the effects of exogenous SA application on T. aurantii feeding behavior and population growth in tea seedlings. Moreover, the effects of SA treatment on the activities of defense-related enzymes were analyzed. Probe counts and the duration of xylem sap ingestion were significantly higher in SA-treated plants than those in the control group. The total duration of passive phloem ingestion was significantly decreased in 0.5 mmol/l SA-treated plants, and the application of 0.5, 1, and 4 mmol/l SA significantly inhibited T. aurantii population growth. In addition, the activities of polyphenol oxidase, peroxidase, and superoxide dismutase were significantly increased in the 0.5 mmol/l SA-treated plants. Overall, this study demonstrates the capacity of exogenous SA to activate defense responses against T. aurantii. These results have crucial implications for understanding the mechanisms of enhanced resistance, thereby providing a sustainable approach for managing T. aurantii.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Chá
5.
J Agric Food Chem ; 71(51): 20613-20624, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100671

RESUMO

Pathogenic oomycetes infect a wide variety of organisms, including plants, animals, and humans, and cause massive economic losses in global agriculture, aquaculture, and human health. Salicylic acid (SA), an endogenous phytohormone, is regarded as an inducer of plant immunity. Here, the potato late blight pathogen Phytophthora infestans was used as a model system to uncover the inhibitory mechanisms of SA on pathogenic oomycetes. In this research, SA significantly inhibited the mycelial growth, sporulation, sporangium germination, and virulence of P. infestans. Inhibition was closely related to enhanced autophagy, suppression of translation initiation, and ribosomal biogenesis in P. infestans, as shown by multiomics analysis (transcriptomics, proteomics, and phosphorylated proteomics). Monodansylcadaverine (MDC) staining and Western blotting analysis showed that SA promoted autophagy in P. infestans by probably targeting the TOR signaling pathway. These observations suggest that SA has the potential to control late blight caused by P. infestans.


Assuntos
Phytophthora infestans , Solanum tuberosum , Humanos , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Doenças das Plantas , Solanum tuberosum/metabolismo
6.
Sci Rep ; 13(1): 18672, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907628

RESUMO

The pretreatment of seeds with cold plasma (CP) (0 and 100 w for 240 s), and salicylic acid priming (SA) (0 and 2 mM normal and nano form), and foliar spraying of SA at the six-leaf stage (0 and 2 mM normal and nano form) of Salvia leriifolia plants in field condition was studied. Compared to the control plants of S. leriifolia, the results showed that CP + both forms of SA priming + nano-SA spraying increased plant height, leaf length, plant dry weight, total phenol, and the activities of phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) enzymes. The chlorophyll a and b contents in all treated plants remained either unchanged or decreased when compared to the control. The highest PAL activity was obtained in CP-free + hydro-priming + nano-SA foliar spraying. The highest content of caffeic acid was achieved in CP + SA priming + SA foliar spraying in the leaf. The maximum contents of rosmarinic and salvianolic acid were obtained in the control plants. In conclusion, CP and nano-SA can increase PAL and TAL activity and total phenol accumulation in S. leriifolia plants, but not rosmarinic and salvianolic acid contents. Other phenolic compound enzymes and their production require further study.


Assuntos
Gases em Plasma , Salvia , Ácido Salicílico/farmacologia , Clorofila A , Fenilalanina Amônia-Liase , Sementes
7.
Braz J Biol ; 83: e274601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585933

RESUMO

An experiment was performed to investigate the effect of mycorrhizal symbiosis and foliar application of salicylic acid on quantitative and qualitative traits of maize during 2018 and 2019 in the research farm of Islamic Azad University, Chalous Branch. Split plot in a randomized complete block design with three replications was used. Experimental factors included mycorrhiza species of (G. mosseae), (G. geosporum) and (G. intraradices) at two levels (no consumption and consumption of mycorrhiza) and salicylic acid at two levels (no consumption and consumption of 1 mµ of salicylic acid). Results of interaction effects of mycorrhiza and salicylic acid on the measured traits revealed that the maximum 1000-grain weight, grain yield, biological yield, phosphorus, potassium, nitrogen percentage and yield of maize grain protein were observed in G. mosseae treatment under foliar application of salicylic acid. Foliar application of salicylic acid increases the root length and provides the necessary conditions for increasing water and nutrient uptake alongwith increase in photosynthesis and thus allocates more photosynthetic substance for development of reproductive organs. Hence, it increases maize grain weight and accordingly grain yield. In general, the results revealed that mycorrhiza and foliar application of salicylic acid increase growth indicators, yield and yield components. It also improved the quality traits of the maize plant. Based on results, the interaction effect of G. mosseae treatment and foliar application of salicylic acid yielded better results than other treatments. Mycorrhiza increases the number of grain in the ear, the number of rows in the ear, increases the plant's ability to absorb phosphorus, and the increase of mycorrhiza along with salicylic acid shows the maximum grain yield in maize. Finally, it can be concluded that the use of mycorrhiza and salicylic acid can be effective in increasing grain in the plant.


Assuntos
Micorrizas , Zea mays , Humanos , Grão Comestível , Micorrizas/metabolismo , Fósforo/metabolismo , Fotossíntese , Ácido Salicílico/farmacologia , Zea mays/genética , Zea mays/metabolismo , Locos de Características Quantitativas
8.
J Inorg Biochem ; 244: 112225, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37075542

RESUMO

The water-soluble coordination polymer of formula {[Pb(Sal)2(H2O)]n} (SaLead), was obtained from the reaction between Pb(NO3)2 and the potassium salt of salicylic acid (SalH), an anti-inflammatory drug, which is also use as food preservation, in cosmetics etc. The compound was characterized by melting point, Attenuated Total Reflectance-Fourier Transform Infra-Red (ATR-FTIR) spectroscopy and X-ray diffraction crystallography (XRD) in solid state and in solution by Ultra Violet (UV) and 1H NMR spectroscopies. The binding affinity of SalK to Pb(II) ions towards SaLead was determined in order to examine its possible implementation in lead detoxification. The in vitro non-toxic behaviour of SalK and its complex SaLead was evaluated against normal human fetal lung fibroblast cells (MRC-5). The corresponding IC50 values are 260 ± 13 and > 1600 µM respectively. The non-genotoxic in vitro activity of SaLead was confirmed with the micronucleus (MN) assay, while its in vivo non-toxicity behaviour was evaluated with Allium cepa and Artemia salina assays.


Assuntos
Chumbo , Ácido Salicílico , Humanos , Chumbo/toxicidade , Ácido Salicílico/farmacologia , Cristalografia por Raios X , Cebolas , Ânions
9.
J Biotechnol ; 368: 1-11, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37075954

RESUMO

Oplopanax elatus is a valuable medicinal plant, but its plant resource is lacking. Adventitious root (AR) culture of O. elatus is an effective way for the production of plant materials. Salicylic acid (SA) exerts enhancement effect on metabolite synthesis in some plant cell/organ culture systems. To clarify the elicitation effect of SA on fed-batch cultured O. elatus ARs, this study investigated the effects of SA concentration, and elicitation time and duration. Results showed that flavonoid and phenolic contents, and antioxidant enzyme activity obviously increased when the fed-batch cultured ARs were treated with 100 µM SA for 4 days starting on day 35. Under this elicitation condition, total flavonoid and phenolic contents reached 387 rutin mg/g DW and 128 gallic acid mg/g DW, respectively, which were significantly (p < 0.05) higher than those in the SA-untreated control. In addition, DPPH scavenging and ABTS+ scavenging rates, and Fe2+ chelating rate also greatly increased after SA treatment, and their EC50 values were 0.0117, 0.61, and 3.34 mg/L, respectively, indicating the high antioxidant activity. The findings of the present study revealed that SA could be used as an elicitor to improve the flavonoid and phenolic production in fed-batch O. elatus AR culture.


Assuntos
Flavonoides , Oplopanax , Oplopanax/química , Oplopanax/metabolismo , Ácido Salicílico/farmacologia , Antioxidantes/metabolismo , Fenóis/química
10.
Tuberculosis (Edinb) ; 140: 102346, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37119793

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is a leading cause of infectious disease mortality. The salicylic acid derived small molecule siderophores known as mycobactins are essential in vivo for iron acquisition of Mtb where iron is restricted in the host. Herein, we synthesize and explore the mechanism of action of polyfluorinated salicylic acid derivates, which were previously reported to possess potent antimycobacterial activity. We hypothesized fluorinated salicylic acid derivates may inhibit mycobactin biosynthesis through initial bioactivation and conversion to downstream metabolites that block late steps in assembly of the mycobactins. Enzymatic studies demonstrated that some of the fluorinated salicylic acid derivatives compounds were readily activated by the bifunctional adenylating enzyme MbtA, responsible for incorporation of salicylic acid into the mycobactin biosynthetic pathway; however, they did not inhibit mycobactin biosynthesis as confirmed by LS-MS/MS using an authentic synthetic mycobactin standard. Further mechanistic analysis of the most active derivative (Sal-4) using an MbtA-overexpressing Mtb strain as well as complementation studies with iron and salicylic acid revealed Sal-4 cannot be antagonized by overexpression of MbtA or through supplementation with iron or salicylic acid. Taken together, our results indicate the observed antimycobacterial activity of polyfluorinated salicylic acid derivative is independent of mycobactin biosynthesis.


Assuntos
Mycobacterium tuberculosis , Sideróforos , Sideróforos/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Espectrometria de Massas em Tandem , Ferro/metabolismo
11.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982529

RESUMO

The reproductive stage of plant development has the most critical impact on yield. Flowering is highly sensitive to abiotic stress, and increasing temperatures and drought harm crop yields. Salicylic acid is a phytohormone that regulates flowering and promotes stress resilience in plants. However, the exact molecular mechanisms and the level of protection are far from understood and seem to be species-specific. Here, the effect of salicylic acid was tested in a field experiment with Pisum sativum exposed to heat stress. Salicylic acid was administered at two different stages of flowering, and its effect on the yield and composition of the harvested seeds was followed. Plants treated with salicylic acid produced larger seed pods, and a significant increase in dry weight was found for the plants with a delayed application of salicylic acid. The analyses of the seed proteome, lipidome, and metabolome did not show any negative impact of salicylic treatment on seed composition. Identified processes that could be responsible for the observed improvement in seed yields included an increase in polyamine biosynthesis, accumulation of storage lipids and lysophosphatidylcholines, a higher abundance of components of chromatin regulation, calmodulin-like protein, and threonine synthase, and indicated a decrease in sensitivity to abscisic acid signaling.


Assuntos
Pisum sativum , Ácido Salicílico , Pisum sativum/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Sementes/metabolismo , Estresse Fisiológico , Plantas/metabolismo
12.
Microbiol Spectr ; 11(1): e0311322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36507658

RESUMO

Pleurotus ostreatus is usually cultivated in horticultural facilities that lack environmental control systems and often suffer heat stress (HS). Salicylic acid (SA) is recognized as a plant defense-related hormone. Here, SA treatment (200 µM) induced fungal resistance to HS of P. ostreatus, with decreased malondialdehyde (MDA) content and HSP expression. Further analysis showed that SA treatment in P. ostreatus increased the cytosolic trehalose content and reduced the intracellular reactive oxygen species (ROS) level. Moreover, H2O2 could restore the MDA content and HSP expression of P. ostreatus treated with SA under HS. In addition, trehalose (25 mM) or CaCl2 (5 mM) treatment induced fungal resistance to HS, and CaCl2 treatment increased the cytosolic trehalose content of P. ostreatus under HS. However, inhibiting Ca2+ levels using Ca2+ inhibitors or mutants reversed the trehalose content induced by SA in P. ostreatus under HS. In addition, inhibiting trehalose biosynthesis using Tps-silenced strains reversed the MDA content and HSP expression of P. ostreatus treated with SA under HS. Taken together, these results indicate that SA treatment alleviates the HS response of P. ostreatus by reducing the intracellular ROS level and increasing the cytosolic trehalose content. IMPORTANCE Heat stress (HS) is a crucial environmental challenge for edible fungi. Salicylic acid (SA), a plant defense-related hormone, plays key roles in plant responses to biotic and abiotic stresses. In this study, we found that SA treatment increased the cytosolic trehalose content and induced fungal resistance to HS in P. ostreatus. Further analysis showed that SA can alleviate the HS of P. ostreatus by reducing the intracellular ROS level and increasing the cytosolic trehalose content. Our results help to understand the mechanism underlying the responses of P. ostreatus to HS. In addition, this research provides new insights for the cultivation of P. ostreatus.


Assuntos
Pleurotus , Espécies Reativas de Oxigênio/metabolismo , Pleurotus/metabolismo , Trealose , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Peróxido de Hidrogênio/metabolismo , Cloreto de Cálcio/metabolismo , Resposta ao Choque Térmico/fisiologia , Hormônios/metabolismo
13.
Nat Prod Res ; 37(5): 734-742, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35727142

RESUMO

Bakusylan (bakuchiol salicylate) is a bipartite compound obtained by merging two skin-active entities with complementary bioactivities-bakuchiol and salicylic acid-for the purpose of generating a new class of functional retinoids with enhanced skin benefits. Here, we describe its preparation process and report that pure bakusylan exhibits potential for an improved permeation through the stratum corneum, enhances type IV collagen gene expression in organotypic skin substitutes containing both epidermal and dermal layers, and upregulates this protein in adult human dermal fibroblast cultures. The mechanism of action underlying these effects appears to involve the components of the IP3K/Akt signaling pathway selectively implicated in the maintenance of skin integrity, further underlying the suitability of this ester for skin care applications requiring enhanced cutaneous permeation targeting the dermal-epidermal junction.


Assuntos
Fenóis , Pele , Adulto , Humanos , Pele/metabolismo , Fenóis/farmacologia , Ácido Salicílico/farmacologia , Ésteres/metabolismo
14.
Phytopathology ; 113(3): 528-538, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36173283

RESUMO

Hormones play an important role in plant disease resistance and defense. Transcriptome data of late blight-resistant potato genotype SD20 treated by ethylene (ET), jasmonate (JA), salicylic acid (SA), and Phytophthora infestans CN152 was analyzed to assess the role of the ET/JA/SA regulatory network in plant disease resistance and defense and predict key resistant genes. The results show that there was significant crossover of differentially expressed genes among all treatments, and common and specific plant disease interaction genes for the ET, JA, and SA treatments were differentially expressed in the CN152 treatment. The resistance and defense genes of the potato genotype SD20 could be induced to regulate metabolic and hormone signaling pathways by alternative splicing in all treatments. Further analysis found that JA and ET pathways can work together synergistically. JA/ET and SA pathways antagonize each other to initiate the expression of calmodulin-domain protein kinases and calmodulin/calmodulin-like and RPM1-interacting protein 4 genes, and they activate HSP-mediated hypersensitive response and defense-related genes. Meanwhile, nine defense genes, including wound-responsive AP2-like factor, glutathione-s-transferase, serine/threonine-protein kinase BRI1, and Avr9/Cf-9 rapidly elicited protein genes, were obtained using weighted gene coexpression network analysis, which provided reliable targets for functional verification. This study provides a theoretical reference for the comprehensive application of plant hormones to improve resistance to potato late blight disease.


Assuntos
Phytophthora infestans , Solanum tuberosum , Reguladores de Crescimento de Plantas/farmacologia , Solanum tuberosum/genética , Resistência à Doença/genética , Calmodulina/genética , Calmodulina/metabolismo , Doenças das Plantas/genética , Genótipo , Phytophthora infestans/genética , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo
15.
Nat Prod Res ; 37(11): 1767-1773, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36059233

RESUMO

Hemidesmus indicus (L.) R. Br. ex Schult. and Tylophora indica (Burm. F.) Merrill shoot cultures were treated with different concentrations of yeast extract (YE; 25-200 mg/L) and salicylic acid (SA; 50-200 µM), and their effect on lupeol production was assessed. The maximum dry weight (DW) biomass was recorded when H. indicus shoots were treated with SA (50 µM) and T. indica shoots with YE (200 mg/L). Highest lupeol yield (335.40 ± 0.04 µg/g DW) was obtained in H. indicus shoots after treatment with 50 µM of SA for 3 weeks. Whereas in T. indica, maximum lupeol content (584.26 ± 8.14 µg/g DW) was recorded by giving treatment with 25 µM of SA for 6 weeks.


Assuntos
Hemidesmus , Tylophora , Ácido Salicílico/farmacologia , Biomassa , Triterpenos Pentacíclicos/farmacologia
16.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499075

RESUMO

Soil cadmium (Cd) contamination seriously reduces the production and product quality of Tartary buckwheat (Fagopyrum tataricum), and strategies are urgently needed to mitigate these adverse influences. Herein, we investigated the effect of salicylic acid (SA) on Tartary buckwheat seedlings grown in Cd-contaminated soil in terms of Cd tolerance and accumulation. The results showed that 75-100 µmol L-1 SA treatment enhanced the Cd tolerance of Tartary buckwheat, as reflected by the significant increase in plant height and root and shoot biomass, as well as largely mitigated oxidative stress. Moreover, 100 µmol L-1 SA considerably reduced the stem and leaf Cd concentration by 60% and 47%, respectively, which is a consequence of increased root biomass and root Cd retention with promoted Cd partitioning into cell wall and immobile chemical forms. Transcriptome analysis also revealed the upregulation of the genes responsible for cell wall biosynthesis and antioxidative activities in roots, especially secondary cell wall synthesis. The present study determines that 100 µmol L-1 is the best SA concentration for reducing Cd accumulation and toxicity in Tartary buckwheat and indicates the important role of root in Cd stress in this species.


Assuntos
Fagopyrum , Fagopyrum/genética , Cádmio/toxicidade , Plântula , Ácido Salicílico/farmacologia , Estresse Oxidativo
17.
BMC Plant Biol ; 22(1): 529, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376794

RESUMO

BACKGROUND: Dendrobium officinale Kimura et Migo, which contains rich polysaccharides, flavonoids and alkaloids, is a Traditional Chinese Medicine (TCM) with important economic benefits, while various pathogens have brought huge losses to its industrialization. NBS gene family is the largest class of plant disease resistance (R) genes, proteins of which are widely distributed in the upstream and downstream of the plant immune systems and are responsible for receiving infection signals and regulating gene expression respectively. It is of great significance for the subsequent disease resistance breeding of D. officinale to identify NBS genes by using the newly published high-quality chromosome-level D. officinale genome. RESULTS: In this study, a total of 655 NBS genes were uncovered from the genomes of D. officinale, D. nobile, D. chrysotoxum, V. planifolia, A. shenzhenica, P. equestris and A. thaliana. The phylogenetic results of CNL-type protein sequences showed that orchid NBS-LRR genes have significantly degenerated on branches a and b. The Dendrobium NBS gene homology analysis showed that the Dendrobium NBS genes have two obvious characteristics: type changing and NB-ARC domain degeneration. Because the NBS-LRR genes have both NB-ARC and LRR domains, 22 D. officinale NBS-LRR genes were used for subsequent analyses, such as gene structures, conserved motifs, cis-elements and functional annotation analyses. All these results suggested that D. officinale NBS-LRR genes take part in the ETI system, plant hormone signal transduction pathway and Ras signaling pathway. Finally, there were 1,677 DEGs identified from the salicylic acid (SA) treatment transcriptome data of D. officinale. Among them, six NBS-LRR genes (Dof013264, Dof020566, Dof019188, Dof019191, Dof020138 and Dof020707) were significantly up-regulated. However, only Dof020138 was closely related to other pathways from the results of WGCNA, such as pathogen identification pathways, MAPK signaling pathways, plant hormone signal transduction pathways, biosynthetic pathways and energy metabolism pathways. CONCLUSION: Our results revealed that the NBS gene degenerations are common in the genus Dendrobium, which is the main reason for the diversity of NBS genes, and the NBS-LRR genes generally take part in D. officinale ETI system and signal transduction pathways. In addition, the D. officinale NBS-LRR gene Dof020138, which may have an important breeding value, is indirectly activated by SA in the ETI system.


Assuntos
Dendrobium , Ácido Salicílico , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Dendrobium/genética , Dendrobium/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Melhoramento Vegetal , Transcriptoma
18.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296509

RESUMO

Salicylic acid (SA) plays a critical role in allergic reactions of plants to pathogens and acquired systemic resistance. Thus far, although some research has been conducted on the direct effects of different concentrations of SA on the chemical defense response of treated plant parts (leaves) after at multiple post-treatments times, few research has reported on the systematic effects of non-treated parts (roots). Therefore, we examined direct and systemic effects of SA concentration and time following foliar application on chemical defense responses in maize variety 5422 with two fully expanded leaves. In the experiments, maize leaves were treated with different SA concentrations of 0.1, 0.5, 1.0, 2.5, 5.0 mM, and then, the presence of defense chemicals and enzymes in treated leaves and non-treated roots was measured at different time points of 3, 12, 24, 48, 72 h following SA foliar application. The results showed that direct and systemic effects of SA treatment to the leaf on chemical defense responses were related to SA concentration and time of measurement after spraying SA. In treated leaves, total phenolics content increased directly by 28.65% at the time point of 12 h following foliar application of 0.5 mM SA. DIMBOA (2,4-dihydroxy-7-methoxy-2H, 1, 4-benzoxazin-3 (4H)-one) content was directly enhanced by 80.56~551.05% after 3~72 h following 0.5~5.0 mM SA treatments. Polyphenol oxidase and superoxide dismutase activities were directly enhanced after 12~72 h following 0.5~5.0 mM SA treatments, whereas peroxidase and catalase activities were increased after 3~24 h following application of 1.0~5.0 mM SA. In non-treated roots, DIMBOA content and polyphenol oxidase activity were enhanced systematically after 3~48 h following 1.0~5.0 mM SA foliar treatments. Superoxide dismutase activities were enhanced after 3~24 h following 0.5~2.5 mM SA applications, but total phenolics content, peroxidase and catalase activity decreased in some particular concentrations or at the different times of measurement in the SA treatment. It can be concluded that SA foliar application at 1.0 and 2.5 mM produces strong chemical defense responses in maize, with the optimal induction time being 24 h following the foliar application.


Assuntos
Ácido Salicílico , Zea mays , Ácido Salicílico/farmacologia , Catalase/farmacologia , Folhas de Planta , Antioxidantes/farmacologia , Superóxido Dismutase/farmacologia , Catecol Oxidase
19.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296558

RESUMO

Salix pseudolasiogyne (Salicaceae), the "weeping willow," has been used in traditional Korean medicine to treat pain and fever due to its high concentrations of salicylic acid and salicin. The present study investigated bioactive compounds from S. pseudolasiogyne twigs to discover bioactive natural products. Phytochemical investigation of the ethanol (EtOH) extract of S. pseudolasiogyne twigs followed by liquid chromatography-mass spectrometry (LC/MS)-based analysis led to the isolation of two salicin derivatives, salicortinol and salicortin, the structures of which were determined by interpretation of their NMR spectra and data from the LC/MS analysis. To the best of our knowledge, this is the first report of salicortinol isolated from S. pseudolasiogyne. The isolated compounds were evaluated for their anti-adipogenic effects in 3T3-L1 cells. Both salicortinol and salicortin were found to significantly inhibit adipocyte differentiation in 3T3-L1 cells. In particular, salicortin exhibited a strong inhibitory effect on lipid accumulation. Furthermore, salicortin inhibited the expression of lipogenic and adipogenic transcription factors, including FASN, FABP4, C/EBPα, C/EBPß, and PPARγ, without inducing cytotoxicity. These results suggest that salicortin could be a potential therapeutic compound for the prevention or treatment of metabolic disorders such as obesity.


Assuntos
Salix , Camundongos , Animais , Células 3T3-L1 , Salix/química , PPAR gama/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Adipogenia , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Ácido Salicílico/farmacologia , Etanol/farmacologia , Lipídeos/farmacologia
20.
Eur J Med Chem ; 243: 114772, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36191406

RESUMO

In this work we present the synthesis and characterization of six new ruthenium compounds with general formulae [Ru(L)(dppb)(bipy)]PF6 and [Ru(L)(dppe)2]PF6 where L = salicylic acid (Sal), 4-aminosalicylic acid (AmSal) or 2,4-dihydroxybenzoic acid (DiSal), dppb = 1,4-bis(diphenylphosphino)butane, dppe = 1,2-bis(diphenylphosphino)ethane and bipy = 2,2'-bipyridine. The complexes were characterized by elemental analysis, molar conductivity, cyclic voltammetry, NMR, UV-vis and IR spectroscopies, and two by X-ray crystallography. The 31P{1H} NMR spectra of the complexes with the general formula [Ru(L)(dppe)2]PF6 showed that the phosphorus signals are solvent-dependent. Aprotic solvents, which form strong hydrogen bonds with the complexes, inhibit the free rotation of the salicylic acid-based, modifying the diphosphine cone angles, leading to distortion of the phosphorus signals in the NMR spectra. The cytotoxicity of the complexes was evaluated in MCF-7, MDA-MB-231, SKBR3 human breast tumor cells, and MCF-10 non-tumor cell lines. The complexes with the structural formula [Ru(L)(dppe)2]PF6 were the most cytotoxic, and the complex [Ru(AmSal)(dppe)2]PF6 with L = 4-aminosalicylic acid ligand was the most selective for the MDA-MB-231 cell line. This complex interacts with the transferrin and induces apoptosis through the intrinsic pathway, as demonstrated by increased levels of proteins involved in apoptotic cell death.


Assuntos
Ácido Aminossalicílico , Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Humanos , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/química , Ácido Salicílico/farmacologia , Ácido Aminossalicílico/farmacologia , Amobarbital/farmacologia , Apoptose , Antineoplásicos/química , Fósforo/farmacologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA