Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ecotoxicol Environ Saf ; 201: 110777, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485493

RESUMO

Selenium (Se) is a beneficial element to higher plants. Application of Se at low concentrations enhances the antioxidant metabolism reducing the reactive oxygen species (ROS) generated by plant membrane cells. This study aimed to evaluate how the application of Se in the forms sodium selenate and sodium selenite regulates ROS scavenging in field-grown cowpea plants. Seven Se application rates (0; 2.5; 5; 10; 20; 40 and 60 g ha-1) of each of the two Se forms were applied to plants via the soil. Photosynthetic pigments concentration, gas exchange parameters, lipid peroxidation by malondialdehyde (MDA) concentration, hydrogen peroxide concentration, activity of catalase (CAT, EC:1.11.1.6), glutathione reductase (GR, EC:1.6.4.2), ascorbate peroxidase (APX, EC:1.11.1.11) and Se concentration in leaves and grains were evaluated. In general, Se application led to a decrease in chlorophyll a concentration whilst leading to an increase in chlorophyll b, indicating conservation of total chlorophyll concentration. Application of 2.5 g ha-1 of Se as selenate provided a notable increase in total chlorophyll and total carotenoids compared to the other application rates. Selenate and selenite application decreased lipid peroxidation. However, each Se source acted in a different pathway to combat ROS. While selenate showed more potential to increase activity of APX and GR, selenite showed a higher potential to increase CAT activity. The negative correlation between CAT and GR is indicative that both pathways might be activated under distinct circumstances. The more prominent activity of CAT under high rates of selenite resulted in a negative correlation of this enzyme with chlorophyll a and carotenoids. Both selenate and selenite application increased sucrose and total sugars concentration in leaves of cowpea plants. Overall, these results indicate that application of Se in cowpea under field conditions stimulates distinct pathways to scavenge ROS. This could prove beneficial to mitigate oxidative stress during plant development.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Ácido Selênico/toxicidade , Ácido Selenioso/toxicidade , Vigna/efeitos dos fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Clorofila , Clorofila A , Glutationa Redutase/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Selênio/metabolismo , Selenito de Sódio , Vigna/metabolismo , Vigna/fisiologia
2.
Ecotoxicol Environ Saf ; 189: 109955, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31759745

RESUMO

Plants can play important roles in overcoming selenium (Se) deficiency and Se toxicity in various regions of the world. Selenite (SeIV), selenate (SeVI), as well as Se nanoparticles (SeNPs) naturally formed through reduction of SeIV, are the three main Se species in the environment. The bioaccumulation and transformation of these Se species in plants still need more understanding. The aims of this study are to investigate the phytotoxicity, accumulation, and transformation of SeIV, SeVI and SeNPs in garlic, a relatively Se accumulative plant. The spatial distribution of Se in the roots were imaged using synchrotron radiation micro-focused X-ray fluorescence (SR-µXRF). The chemical forms of Se in different plant tissues were analyzed using synchrotron radiation X-ray absorption spectroscopy (SR-XAS). The results demonstrate that 1) SeNPs which has the lowest phytotoxicity is stable in water, but prone to be converted to organic Se species, such as C-Se-C (MeSeCys) upon uptake by root. 2) SeIV is prone to concentrate in the root and incorporated into C-Se-C (MeSeCys) and C-Se-R (SeCys) bonding forms; 3) SeVI with the lowest transformation probability to organic Se species has the highest phytotoxicity to plant, and is much easier to translocate from root to leaf than SeNPs and SeIV. The present work provides insights into potential impact of SeNPs, selenite and selenate on aquatic-plant ecosystems, and is beneficial for systematically understanding the Se accumulation and transformation in food chain.


Assuntos
Alho/metabolismo , Nanopartículas/metabolismo , Ácido Selênico/farmacocinética , Ácido Selenioso/farmacocinética , Selênio/farmacocinética , Selenito de Sódio/farmacocinética , Bioacumulação , Transporte Biológico , Biotransformação , Alho/efeitos dos fármacos , Hidroponia , Nanopartículas/toxicidade , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Ácido Selênico/toxicidade , Ácido Selenioso/toxicidade , Selênio/toxicidade , Selenito de Sódio/toxicidade , Espectroscopia por Absorção de Raios X
3.
Sci Total Environ ; 671: 850-865, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30947056

RESUMO

Selenium is an essential micronutrient but at high concentrations can produce severe cytotoxicity and genomic damage. We have evaluated the cytotoxicity, ultrastructural and mitochondrial alterations of the two main selenium inorganic species; selenite and selenate, in the eukaryotic microorganism Tetrahymena thermophila. In this ciliate, selenite is more toxic than selenate. Their LC50 values were calculated as 27.65 µM for Se(IV) and 56.88 mM for Se(VI). Significant levels of peroxides/hydroperoxides are induced under low-moderate selenite or selenate concentrations. Se(VI) exposures induce an immediate mitochondrial membrane depolarization. Selenium treated cells show an intense vacuolization and some of them present numerous discrete and small electrondense particles, probably selenium deposits. Mitochondrial fusion, an intense swelling in peripheral mitochondria and mitophagy are detected in selenium treated cells, especially in those exposed to Se (IV). qRT-PCR analysis of diverse genes, encoding relevant antioxidant enzymes or other proteins, like metallothioneins, involved in an environmental general stress response, have shown that they may be crucial against Se(IV) and/or Se (VI) cytotoxicity.


Assuntos
Selênio/toxicidade , Tetrahymena thermophila/efeitos dos fármacos , Ácido Selênico/toxicidade , Ácido Selenioso/toxicidade , Tetrahymena thermophila/fisiologia , Testes de Toxicidade
4.
J Microbiol ; 57(5): 362-371, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900147

RESUMO

Delftia lacustris is reported for the first time as a selenate and selenite reducing bacterium, capable of tolerating and growing in the presence of ≥ 100 mM selenate and 25 mM selenite. The selenate reduction profiles of D. lacustris were investigated by varying selenate concentration, inoculum size, concentration and source of organic electron donor in minimal salt medium. Interestingly, the bacterium was able to reduce both selenate and selenite under aerobic conditions. Although considerable removal of selenate was observed at all concentrations investigated, D. lacustris was able to completely reduce 0.1 mM selenate within 96 h using lactate as the carbon source. Around 62.2% unaccounted selenium (unidentified organo-selenium compounds), 10.9% elemental selenium and 26.9% selenite were determined in the medium after complete reduction of selenate. Studies of the enzymatic activity of the cell fractions show that the selenite/selenate reducing enzymes were intracellular and independent of NADPH availability. D. lacustris shows an unique metabolism of selenium oxyanions to form elemental selenium and possibly also selenium ester compounds, thus a potential candidate for the remediation of selenium-contaminated wastewaters in aerobic environments. This novel finding will advance the field of bioremediation of selenium-contaminated sites and selenium bio-recovery and the production of potentially beneficial organic and inorganic reactive selenium species.


Assuntos
Biodegradação Ambiental , Delftia/metabolismo , Ácido Selênico/metabolismo , Selênio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/análise , Delftia/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Oxirredução , Ácido Selênico/toxicidade , Selênio/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Environ Sci Pollut Res Int ; 25(31): 31368-31380, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30196460

RESUMO

The response of giant reed (Arundo donax L.) to selenium (Se), added as selenate, was studied. The development, stress response, uptake, translocation, and accumulation of Se were documented in three giant reed ecotypes STM (Hungary), BL (USA), and ESP (Spain), representing different climatic zones. Plantlets regenerated from sterile tissue cultures were grown under greenhouse conditions in sand supplemented with 0, 2.5, 5, and 10 mg Se kg-1 added as sodium selenate. Total Se content was measured in different plant parts using hydride generation atomic fluorescence spectroscopy. All plants developed normally in the 0-5.0 mg Se kg-1 concentration range regardless of ecotype, but no growth occurred at 10.0 mg Se kg-1. There were no signs of chlorosis or necrosis, and the photosynthetic machinery was not affected as evidenced by no marked differences in the structure of thylakoid membranes. There was no change in the maximum quantum yield of photosystem II (Fv/Fm ratio) in the three ecotypes under Se stress, except for a significant negative effect in the ESP ecotype in the 5.0 mg Se kg-1 treatment. Glutathione peroxidase (GPx) activity increased as the Se concentration increased in the growth medium. GPx activity was higher in the shoot system than the root system in all Se treatments. All ecotypes showed great capacity of take up, translocate and accumulate selenium in their stem and leaf. Relative Se accumulation is best described as leaf ˃˃ stem ˃ root. The ESP ecotype accumulated 1783 µg g-1 in leaf, followed by BL with 1769 µg g-1, and STM with 1606 µg g-1 in the 5.0 mg Se kg-1 treatment. All ecotypes showed high values of translocation and bioaccumulation factors, particularly the ESP ecotype (10.1 and 689, respectively, at the highest tolerated Se supplementation level). Based on these findings, Arundo donax has been identified as the first monocot hyperaccumulator of selenium, because Se concentration in the leaves of all three ecotypes, and also in the stem of the ESP ecotype, is higher than 0.1% (dry weight basis) under the conditions tested. Tolerance up to 5.0 mg Se kg-1 and the Se hyperaccumulation capacity make giant reed a promising tool for Se phytoremediation.


Assuntos
Biodegradação Ambiental , Poaceae/metabolismo , Ácido Selênico/toxicidade , Selênio/metabolismo , Biomassa , Ecótipo , Poaceae/efeitos dos fármacos , Ácido Selênico/metabolismo , Espectrometria de Fluorescência
6.
Ecotoxicol Environ Saf ; 160: 240-248, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29843105

RESUMO

Selenite(IV) and selenate(VI) are the major forms of Se in aquatic ecosystem. In this study, Pseudorasbora parva were exposed to 10, 200 and 1000 µg L-1 selenite and selenate for 28 days. Selenium accumulation, antioxidant enzyme levels, glutathione concentrations, lipid peroxidation and histology were evaluated in livers following exposure. Our results showed that Se(IV) and Se(VI) caused different accumulation patterns in the liver, with a more rapid accumulation of Se with Se(IV) treatment. Both Se species increased hepatic lipid peroxidation after 14 and 28 d (~ 30%). Among the antioxidants examined, the activity of SOD (except day 28) and the cellular levels of GSH were induced by 72-137% at lower concentrations, while the activity of GST was at least 24% lower than that of the control at 200 and 1000 µg L-1 for both Se species at all sampling points. Both forms of Se reduced the hepatosomatic index at 1000 µg L-1 after 28 d. In addition, marked histopathological alterations (10-31%) were observed in the liver of P. parva after exposure to both Se species, with higher frequency in the Se(IV) exposed fish. Liver local necrosis was observed only in the liver of fish exposed to 1000 µg L-1 of Se(IV) (~ 20%). Our results suggest that the ecological impacts of dissolved Se in this freshwater species may also contribute to overall toxicity.


Assuntos
Cyprinidae/metabolismo , Fígado/efeitos dos fármacos , Ácido Selênico/toxicidade , Ácido Selenioso/toxicidade , Selênio/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ácido Selênico/farmacocinética , Ácido Selenioso/farmacocinética , Poluentes Químicos da Água/farmacocinética
7.
Aquat Toxicol ; 189: 1-8, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28554051

RESUMO

Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects.


Assuntos
Clorófitas/metabolismo , Alga Marinha/metabolismo , Compostos de Selênio/metabolismo , Selênio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Clorófitas/efeitos dos fármacos , Ecossistema , Monitoramento Ambiental , Humanos , Alga Marinha/efeitos dos fármacos , Ácido Selênico/metabolismo , Ácido Selênico/toxicidade , Selênio/toxicidade , Compostos de Selênio/toxicidade , Selenocisteína/análogos & derivados , Selenocisteína/metabolismo , Selenocisteína/toxicidade , Selenometionina/metabolismo , Selenometionina/toxicidade , Poluentes Químicos da Água/toxicidade
8.
PLoS One ; 11(4): e0152081, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27116220

RESUMO

Up to 1 billion people are affected by low intakes of the essential nutrient selenium (Se) due to low concentrations in crops. Biofortification of this micronutrient in plants is an attractive way of increasing dietary Se levels. We investigated a promising method of Se biofortification of rice seedlings, as rice is the primary staple for 3 billion people, but naturally contains low Se concentrations. We studied hydroponic Se uptake for 0-2500 ppb Se, potential phyto-toxicological effects of Se and the speciation of Se along the shoots and roots as a function of added Se species, concentrations and other nutrients supplied. We found that rice germinating directly in a Se environment increased plant-Se by factor 2-16, but that nutrient supplementation is required to prevent phyto-toxicity. XANES data showed that selenite uptake mainly resulted in the accumulation of organic Se in roots, but that selenate uptake resulted in accumulation of selenate in the higher part of the shoot, which is an essential requirement for Se to be transported to the grain. The amount of organic Se in the plant was positively correlated with applied Se concentration. Our results indicate that biofortification of seedlings with selenate is a successful method to increase Se levels in rice.


Assuntos
Oryza/metabolismo , Selênio/farmacocinética , Transporte Biológico Ativo , Germinação , Humanos , Hidroponia , Micronutrientes/administração & dosagem , Micronutrientes/farmacocinética , Micronutrientes/toxicidade , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plântula/metabolismo , Ácido Selênico/administração & dosagem , Ácido Selênico/farmacocinética , Ácido Selênico/toxicidade , Selênio/administração & dosagem , Selênio/toxicidade
9.
Environ Sci Technol ; 50(6): 3256-64, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26938845

RESUMO

The relationship between mercury (Hg) and selenium (Se) toxicity is complex, with coexposure reported to reduce, increase, and have no effect on toxicity. Different interactions may be related to chemical compound, but this has not been systematically examined. Our goal was to assess the interactive effects between the two elements on growth in the nematode Caenorhabditis elegans, focusing on inorganic and organic Hg (HgCl2 and MeHgCl) and Se (selenomethionine, sodium selenite, and sodium selenate) compounds. We utilized aqueous Hg/Se dosing molar ratios that were either above, below, or equal to 1 and measured the internal nematode total Hg and Se concentrations for the highest concentrations of each Se compound. Observed interactions were complicated, differed between Se and Hg compounds, and included greater-than-additive, additive, and less-than-additive growth impacts. Biologically significant interactions were only observed when the dosing Se solution concentration was 100-25,000 times greater than the dosing Hg concentration. Mitigation of growth impacts was not predictable on the basis of internal Hg/Se molar ratio; improved growth was observed at some internal Hg/Se molar ratios both above and below 1. These findings suggest that future assessments of the Hg and Se relationship should incorporate chemical compound into the evaluation.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Mercúrio/toxicidade , Selênio/toxicidade , Animais , Interações Medicamentosas , Poluentes Ambientais/toxicidade , Cloreto de Mercúrio/toxicidade , Mercúrio/administração & dosagem , Ácido Selênico/toxicidade , Selênio/administração & dosagem , Selenometionina/toxicidade , Selenito de Sódio/toxicidade
10.
PLoS One ; 8(8): e71525, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936512

RESUMO

Thioredoxin reductase-1 (TRXR-1) is the sole selenoprotein in C. elegans, and selenite is a substrate for thioredoxin reductase, so TRXR-1 may play a role in metabolism of selenium (Se) to toxic forms. To study the role of TRXR in Se toxicity, we cultured C. elegans with deletions of trxr-1, trxr-2, and both in axenic media with increasing concentrations of inorganic Se. Wild-type C. elegans cultured for 12 days in Se-deficient axenic media grow and reproduce equivalent to Se-supplemented media. Supplementation with 0-2 mM Se as selenite results in inverse, sigmoidal response curves with an LC50 of 0.20 mM Se, due to impaired growth rather than reproduction. Deletion of trxr-1, trxr-2 or both does not modulate growth or Se toxicity in C. elegans grown axenically, and (75)Se labeling showed that TRXR-1 arises from the trxr-1 gene and not from bacterial genes. Se response curves for selenide (LC50 0.23 mM Se) were identical to selenite, but selenate was 1/4(th) as toxic (LC50 0.95 mM Se) as selenite and not modulated by TRXR deletion. These nutritional and genetic studies in axenic media show that Se and TRXR are not essential for C. elegans, and that TRXR alone is not essential for metabolism of inorganic Se to toxic species.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Técnicas de Inativação de Genes , Ácido Selênico/toxicidade , Ácido Selenioso/toxicidade , Tiorredoxina Dissulfeto Redutase/deficiência , Tiorredoxina Dissulfeto Redutase/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Masculino , Tiorredoxina Redutase 1/deficiência , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 2/deficiência , Tiorredoxina Redutase 2/genética , Tiorredoxina Redutase 2/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA