Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Bioorg Chem ; 145: 107165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367427

RESUMO

Selenium is an essential trace element for most organisms, protecting cells from oxidative damage caused by free radicals and serving as an adjunctive treatment for non-alcoholic fatty liver disease (NAFLD). In this study, We used the lactic acid bacterium Lactobacillus acidophilus HN23 to reduce tetra-valent sodium selenite into particulate matter, and analyzed it through inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), X-ray diffraction energy dispersive spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR). We found that it consisted of selenium nanoparticles (SeNPs) with a mass composition of 65.8 % zero-valent selenium and some polysaccharide and polypeptide compounds, with particle sizes ranging from 60 to 300 nm. We also detected that SeNPs were much less toxic to cells than selenite. We further used free fatty acids (FFA)-induced WRL68 fatty liver cell model to study the therapeutic effect of SeNPs on NAFLD. The results show that SeNPs are more effective than selenite in reducing lipid deposition, increasing mitochondrial membrane potential (MMP) and antioxidant capacity of WRL68 cells, which is attributed to the chemical valence state of selenium and organic composition in SeNPs. In conclusion, SeNPs produced by probiotics L. acidophilus had the potential to alleviate NAFLD by reducing hepatocyte lipid deposition and oxidative damage. This study may open a new avenue for SeNPs drug development to treat NAFLD.


Assuntos
Nanopartículas , Hepatopatia Gordurosa não Alcoólica , Selênio , Humanos , Selênio/farmacologia , Selênio/química , Lactobacillus acidophilus/metabolismo , Nanopartículas/química , Ácido Selenioso/química , Ácido Selenioso/metabolismo , Lipídeos
2.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175203

RESUMO

Selenium (Se) is in great demand as a health supplement due to its superior reactivity and excellent bioavailability, despite selenium nanoparticles (SeNPs) having signs of minor toxicity. At present, the efficiency of preparing SeNPs using lactic acid bacteria is unsatisfactory. Therefore, a probiotic bacterial strain that is highly efficient at converting selenite to elemental selenium is needed. In our work, four selenite-reducing bacteria were isolated from soil samples. Strain LAB-Se2, identified as Pediococcus acidilactici DSM20284, had a reduction rate of up to 98% at ambient temperature. This strain could reduce 100 mg L-1 of selenite to elemental Se within 48 h at pH 4.5-6.0, a temperature of 30-40 °C, and a salinity of 1.0-6.5%. The produced SeNPs were purified, freeze-dried, and subsequently systematically characterised using FTIR, DSL, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. The strain was able to form spherical SeNPs, as determined by TEM. In addition, DLS analysis confirmed that SeNPs were negatively charged (-26.9 mV) with an average particle size of 239.6 nm. FTIR analysis of the SeNPs indicated proteins and polysaccharides as capping agents on the SeNPs. The SeNPs synthesised by P. acidilactici showed remarkable antibacterial activity against E. coli, B. subtilis, S. aureus, and K. pneumoniae with inhibition zones of 17.5 mm, 13.4 mm, 27.9 mm, and 16.2 mm, respectively; they also showed varied MIC values in the range of 15-120 µg mL-1. The DPPH, ABTS, and hydroxyl, and superoxide scavenging activities of the SeNPs were 70.3%, 72.8%, 95.2%, and 85.7%, respectively. The SeNPs synthesised by the probiotic Lactococcus lactis have the potential for safe use in biomedical and nutritional applications.


Assuntos
Nanopartículas , Pediococcus acidilactici , Selênio , Selênio/química , Ácido Selenioso/química , Pediococcus acidilactici/metabolismo , Escherichia coli/metabolismo , Staphylococcus aureus/metabolismo , Nanopartículas/química
3.
Microbiol Spectr ; 11(3): e0065923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219421

RESUMO

Microorganisms capable of converting toxic selenite into elemental selenium (Se0) are considered an important and effective approach for bioremediation of Se contamination. In this study, we investigated the mechanism of reducing selenite to Se0 and forming Se nanoparticles (SeNPs) by food-grade probiotic Lactobacillus casei ATCC 393 (L. casei ATCC 393) through proteomics analysis. The results showed that selenite added during the exponential growth period of bacteria has the highest reduction efficiency, and 4.0 mM selenite decreased by nearly 95% within 72 h and formed protein-capped-SeNPs. Proteomics analysis revealed that selenite induced a significant increase in the expression of glutaredoxin, oxidoreductase, and ATP binding cassette (ABC) transporter, which can transport glutathione (GSH) and selenite. Selenite treatment significantly increased the CydC and CydD (putative cysteine and glutathione importer, ABC transporter) mRNA expression level, GSH content, and GSH reductase activity. Furthermore, supplementation with an additional GSH significantly increased the reduction rate of selenite, while GSH depletion significantly inhibited the reduction of selenite, indicating that GSH-mediated Painter-type reaction may be the main pathway of selenite reduction in L. casei ATCC 393. Moreover, nitrate reductase also participates in the reduction process of selenite, but it is not the primary factor. Overall, L. casei ATCC 393 effectively reduced selenite to SeNPs by GSH and nitrate reductase-mediated reduction pathway, and the GSH pathway played the decisive role, which provides an environmentally friendly biocatalyst for the bioremediation of Se contamination. IMPORTANCE Due to the high solubility and bioavailability of selenite, and its widespread use in industrial and agricultural production, it is easy to cause selenite to accumulate in the environment and reach toxic levels. Although the bacteria screened from special environments have high selenite tolerance, their safety has not been fully verified. It is necessary to screen out strains with selenite-reducing ability from nonpathogenic, functionally known, and widely used strains. Herein, we found food-grade probiotic L. casei ATCC 393 effectively reduced selenite to SeNPs by GSH and nitrate reductase-mediated reduction pathway, which provides an environmentally friendly biocatalyst for the bioremediation of Se contamination.


Assuntos
Lacticaseibacillus casei , Probióticos , Ácido Selenioso/química , Ácido Selenioso/metabolismo , Lacticaseibacillus casei/genética , Biodegradação Ambiental , Oxirredução , Proteômica , Bactérias/metabolismo , Glutationa/metabolismo
4.
Environ Sci Technol ; 56(20): 14817-14827, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36184803

RESUMO

The mobility of 79Se, a fission product of 235U and long-lived radioisotope, is an important parameter in the safety assessment of radioactive nuclear waste disposal systems. Nonradioactive selenium is also an important contaminant of drainage waters from black shale mountains and coal mines. Highly mobile and soluble in its high oxidation states, selenate (Se(VI)O42-) and selenite (Se(IV)O32-) oxyanions can interact with magnetite, a mineral present in anoxic natural environments and in steel corrosion products, thereby being reduced and consequently immobilized by forming low-solubility solids. Here, we investigated the sorption and reduction capacity of synthetic nanomagnetite toward Se(VI) at neutral and acidic pH, under reducing, oxygen-free conditions. The additional presence of Fe(II)aq, released during magnetite dissolution at pH 5, has an effect on the reduction kinetics. X-ray absorption spectroscopy analyses revealed that, at pH 5, trigonal gray Se(0) formed and that sorbed Se(IV) complexes remained on the nanoparticle surface during longer reaction times. The Se(0) nanowires grew during the reaction, which points to a complex transport mechanism of reduced species or to active reduction sites at the tip of the Se(0) nanowires. The concomitant uptake of aqueous Fe(II) and Se(VI) ions is interpreted as a consequence of small pH oscillations that result from the Se(VI) reduction, leading to a re-adsorption of aqueous Fe(II) onto the magnetite, renewing its reducing capacity. This effect is not observed at pH 7, where we observed only the formation of Se(0) with slow kinetics due to the formation of an oxidized maghemite layer. This indicates that the presence of aqueous Fe(II) may be an important factor to be considered when examining the environmental reactivity of magnetite.


Assuntos
Nanofios , Resíduos Radioativos , Compostos de Selênio , Selênio , Adsorção , Carvão Mineral , Óxido Ferroso-Férrico/química , Oxirredução , Ácido Selênico , Ácido Selenioso/química , Selênio/química , Aço
5.
Molecules ; 27(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889450

RESUMO

The inorganic selenium is absorbed and utilized inefficiently, and the range between toxicity and demand is narrow, so the application is strictly limited. Selenium nanoparticles have higher bioactivity and biosafety properties, including increased antioxidant and anticancer properties. Thus, producing and applying eco-friendly, non-toxic selenium nanoparticles in feed additives is crucial. Bacillus paralicheniformis Y4 was investigated for its potential ability to produce selenium nanoparticles and the activity of carboxymethyl cellulases. The selenium nanoparticles were characterized using zeta potential analyses, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Additionally, evaluations of the anti-α-glucosidase activity and the antioxidant activity of the selenium nanoparticles and the ethyl acetate extracts of Y4 were conducted. B. paralicheniformis Y4 exhibited high selenite tolerance of 400 mM and the selenium nanoparticles had an average particle size of 80 nm with a zeta potential value of -35.8 mV at a pH of 7.0, suggesting that the particles are relatively stable against aggregation. After 72 h of incubation with 5 mM selenite, B. paralicheniformis Y4 was able to reduce it by 76.4%, yielding red spherical bio-derived selenium nanoparticles and increasing the carboxymethyl cellulase activity by 1.49 times to 8.96 U/mL. For the first time, this study reports that the carboxymethyl cellulase activity of Bacillus paralicheniforis was greatly enhanced by selenite. The results also indicated that B. paralicheniformis Y4 could be capable of ecologically removing selenite from contaminated sites and has great potential for producing selenium nanoparticles as feed additives to enhance the added value of agricultural products.


Assuntos
Bacillus , Nanopartículas , Selênio , Antioxidantes/química , Celulase , Nanopartículas/química , Ácido Selenioso/química , Selênio/química , Selênio/farmacologia
6.
World J Microbiol Biotechnol ; 38(2): 33, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989895

RESUMO

The goal of this work is use a green chemistry route to synthesize selenium nanoparticles (SeNPs) that do not trigger oxidative stress, typical of metallic, oxide metallic and carbonaceous nanostructures, and supply the same beneficial effects as selenium nanostructures. SeNPs were synthesized using a radiolytic method involving irradiating a solution containing sodium selenite (Se4+) as the precursor in 1% Yeast extract, 2% Peptone, 2% Glucose (YPG) liquid medium with gamma-rays (60Cobalt). The method did not employ any hazardous reducing agents. Saccharomyces cerevisiae cells were incubated with 1 mM SeNPs for 24 h and/or then challenged with 400 Gy of ionizing radiation were assessed for viability and biomarkers of oxidative stress: lipid peroxidation, protein carbonylation, free radical generation, and total sulfhydryl content. Spherical SeNPs with variable diameters (from 100 to 200 nm) were formed after reactions of sodium selenite with hydrated electrons (eaq-) and hydrogen radicals (H·). Subsequent structural characterizations indicated an amorphous structure composed of elemental selenium (Se0). Compared to 1 mM selenite, SeNPs were considered safe and less toxic to Saccharomyces cerevisiae cells as did not elicit significant modifications in cell viability or oxidative stress parameters except for increased protein carbonylation. Furthermore, SeNPs treatment afforded some protection against ionizing radiation exposure. SeNPs produced using green chemistry attenuated the reactive oxygen species generation after in vitro ionizing radiation exposure opens up tremendous possibilities for radiosensitizer development.


Assuntos
Contenção de Riscos Biológicos , Nanopartículas/química , Radiação Ionizante , Ácido Selenioso/química , Selênio/química , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas Metálicas/química , Estresse Oxidativo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Selenito de Sódio , Compostos de Sulfidrila
7.
J Appl Microbiol ; 132(3): 1900-1913, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34586705

RESUMO

AIM: To investigate the ability of Haloferax alexandrinus GUSF-1 (KF796625) to biosynthesize non-toxic elemental selenium (Se0 ) and check their capacity in in vitro crystal structure modulation of calcium oxalate, which are implicated in the development of renal calculi. METHODS AND RESULTS: Haloferax alexandrinus GUSF-1 (KF796625) during growth in the presence of 5 mmol L-1 of selenite formed insoluble brick-red particles. Se0 formed was monitored spectrophotometrically using a combination of two assays; the ascorbic acid reduction and sodium sulphide solubilization assay. After 168 h of growth, 2.89 mmol L-1 of Se0 was formed from 4.9 mmol L-1 of selenite. Absorption bands at 1.5, 11.2 and 12.5 keV in EDX spectroscopy confirmed that the brick-red particulate matter was Se0 . Furthermore, these selenium nanoparticles (SeNPs) were pentagonal in shape in transmission electron microscopy imaging. The peak positions in X-ray diffractogram at 2θ values of 23.40°, 29.66°, 41.26°, 43.68°, 45.24°, 51.62°, 55.93° and 61.47° and the relative intensities further confirmed the formation of Se0 . In vitro addition of 50 and 100 µg ml-1 of these SeNPs to the mixture of sodium chloride, calcium chloride and sodium oxalate affected and modulated the shape and size of rectangular-shaped calcium oxalate crystals (average area of 1.23 ± 0.2 µm2 ) to smaller rectangular-shaped crystals (average area of 0.54 ± 0.2 µm2 ) and spherical-shaped crystals (average area 0.13 ± 0.005 µm2 ). CONCLUSION: Haloferax alexandrinus GUSF-1 (KF796625) transformed selenite to Se0 pentagonal nanoforms that modulated in vitro the formation of crystal shape and size of calcium oxalate. SIGNIFICANCE AND IMPACT OF STUDY: There are no reports on conversion of selenite to Se0 among the Haloferax genera, and this study involving the formation of pentagonal SeNPs with capacity to modulate the formation of calcium oxalate crystals in haloarchaea is recorded as the first report and of significance in pharmaceutical research related to formulations abetting urinary calculi.


Assuntos
Haloferax , Nanopartículas , Selênio , Oxalato de Cálcio , Nanopartículas/química , Ácido Selenioso/química
8.
Carbohydr Polym ; 246: 116545, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747234

RESUMO

Selenium oxychloride (SOC) was employed as a highly reactive selenide reagent to synthesize selenized Artemisia sphaerocephala polysaccharides (SeASP). Se content of SeASP was significantly increased (∼22,400 µg/g) as compared to HNO3/H2SeO3 selenylation method (1703 µg/g). Furthermore, selenized ASP was prepared by using microwave-assisted synthesis which obviously enhanced selenylation kinetics. FT-IR, Raman, XPS and NMR results exhibited seleno-group was substituted at C6 position in the form of selenite (Se4+). SEC-MALLS suggested SOC system could effectively avoid the degradation of polysaccharide chain. Meanwhile, MALLS calculation, MB spectrophotometric method and AFM observation showed SeASP appeared spherical and rod-shaped conformation after selenylation. Seleno-groups were more likely to affect the conformational transformation of polysaccharide chains. Moreover, SeASP could significantly enhance antiproliferative activity against three tumor cells, of which the IC50 value of HepG2 was calculated as 24.35 µg/mL. It was found that higher Se content could effectively improve the antitumor activities of Se-polysaccharides in vitro.


Assuntos
Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/química , Polissacarídeos/química , Compostos de Selênio/síntese química , Compostos de Selênio/farmacologia , Selênio/química , Células A549 , Artemisia/química , Células Hep G2 , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Micro-Ondas , Ácido Nítrico/química , Espectroscopia Fotoeletrônica , Ácido Selenioso/química , Compostos de Selênio/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier
9.
ACS Chem Biol ; 15(7): 1987-1995, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32568515

RESUMO

A selenium nanoparticle binding peptide was isolated from a phage display library and genetically fused to a metalloid reductase that reduces selenite (SeO32-) to a Se0 nanoparticle (SeNP) form. The fusion of the Se binding peptide to the metalloid reductase regulates the size of the resulting SeNP to ∼35 nm average diameter, where without the peptide, SeNPs grow to micron sized polydisperse precipitates. The SeNP product remains associated with the enzyme/peptide fusion. The Se binding peptide fusion to the enzyme increases the enzyme's SeO32- reductase activity. Size control of particles was diminished if the Se binding peptide was only added exogenously to the reaction mixture. The enzyme-peptide construct shows preference for binding smaller SeNPs. The peptide-SeNP interaction is attributed to His based ligation that results in a peptide conformational change on the basis of Raman spectroscopy.


Assuntos
Proteínas de Transporte/metabolismo , Nanopartículas/metabolismo , Oxirredutases/metabolismo , Ácido Selenioso/química , Selênio/metabolismo , Proteínas de Transporte/química , Nanopartículas/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oxirredução , Oxirredutases/química , Tamanho da Partícula , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Selênio/química
10.
Int J Biol Macromol ; 160: 1066-1077, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502610

RESUMO

In this paper, selenized Artemisia sphaerocephala polysaccharides (SePAS) were obtained through employing N-methyl-2-pyrrolidone hydrosulfate as catalyst, which showed a maximum Se content enhanced to 8744 µg/g. FT-IR, 1D/2D NMR, X-ray photoelectron spectroscopy (XPS) and size-exclusion chromatograph analysis exhibited that Se had been successfully introduced into PAS and existed in the form of selenate group (Se4+) with the substitution position at C-6. Furthermore, immunostimulating assays indicated that SePAS with high Se content exhibited stronger immunomodulatory activities by upregulated the phosphorylation level of ERK, JNK and p38, thus enhancing RAW264.7 cells proliferation, phagocytosis, levels of interleukin-6, nitric oxide, tumor necrosis factor and interleukin-1ß. The current outcome suggested that Se content might be a critical factor affecting the immunomodulatory effects of selenized PAS on macrophage RAW264.7.


Assuntos
Fatores Imunológicos/síntese química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Polissacarídeos/química , Pirrolidinonas/química , Ácido Selenioso/química , Animais , Artemisia/química , Proliferação de Células , Fatores Imunológicos/farmacologia , Interleucina-6/metabolismo , MAP Quinase Quinase 4/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Fagocitose , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
N Biotechnol ; 58: 17-24, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32184193

RESUMO

Microbial reduction of selenium oxyanions has attracted attention in recent years. In this study, an original and simple method for the synthesis of extracellular selenium nanoparticles (Se NPs) of relatively uniform size has been developed using strains Sp7 and Sp245 of the ubiquitous plant-growth promoting rhizobacterium Azospirillum brasilense, both capable of selenite (SeO32-) reduction. In addition, a reliable purification protocol for the recovery of the Se NPs has been perfected, which could be applied with minor modifications to cultures of other microbial species. Importantly, it was found that, by changing the conditions of bacterial reduction of selenite, extracellularly localised Se NPs can be obtained using bacteria which would otherwise produce intracellular Se NPs. In particular, bacterial cultures grown up to the end of the logarithmic growth phase, washed free of culture medium and then incubated with selenite, were used to obtain extracellular Se NPs. Their sizes depended on the initial selenite concentration (∼25-80 nm in diameter at 50-10 mM selenite, respectively). The Se NPs obtained were characterised by transmission electron microscopy (TEM), dynamic light scattering, as well as Raman and UV-vis spectroscopies. Their zeta potential was found to be negative (ca. minus 21-24 mV). Bacterial selenite reduction was also studied in the presence of the efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP). In this case, TEM indicated the formation only of intracellular selenium crystallites. The data show that the formation of extracellular Se NPs requires normal bacterial metabolic activity, while CCCP evidently blocks the membrane export of Se0 nuclei.


Assuntos
Azospirillum brasilense/metabolismo , Nanopartículas/metabolismo , Ácido Selenioso/metabolismo , Selênio/metabolismo , Azospirillum brasilense/citologia , Nanopartículas/química , Oxirredução , Ácido Selenioso/química , Selênio/química
12.
Environ Sci Pollut Res Int ; 27(1): 992-1003, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31820239

RESUMO

This study investigated the removal of selenite from wastewater using the fungus Asergillus niger KP isolated from a laboratory scale inverse fluidized bed bioreactor. The effect of different carbon sources and initial selenite concentration on fungal growth, pellet formation and selenite removal was first examined in a batch system. The fungal strain showed a maximum selenite removal efficiency of 86% in the batch system. Analysis of the fungal pellets by field-emission scanning electron microscopy, field-emission transmission electron microscopy and energy-dispersive X-ray spectroscopy revealed the formation of spherical-shaped elemental selenium nanoparticles of size 65-100 nm. An increase in the initial selenite concentration in the media resulted in compact pellets with smooth hyphae structure, whereas the fungal pellets contained hair like hyphae structure when grown in the absence of selenite. Besides, a high initial selenite concentration reduced biomass growth and selenite removal from solution. Using an airlift reactor with fungal pellets, operated under continuous mode, a maximum selenite removal of 94.3% was achieved at 10 mg L-1 of influent selenite concentration and 72 h HRT (hydraulic retention time). Overall, this study demonstrated very good potential of the fungal-pelleted airlift bioreactor system for removal of selenite from wastewater. Graphical abstract.


Assuntos
Ácido Selenioso/análise , Selênio/química , Biomassa , Reatores Biológicos/microbiologia , Fungos , Microscopia Eletrônica de Varredura , Ácido Selenioso/química , Águas Residuárias
13.
Ecotoxicol Environ Saf ; 190: 110082, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855791

RESUMO

Selenium (Se) and zinc (Zn) are two important trace elements for human being and animals. The interaction between Se and Zn on the bioavailability of Zn in soil is still unclear. Therefore, pot experiments exposed to different dosages of zinc sulfate (ZnSO4) (0, 20, and 50 mg/kg soil) and sodium selenite (Na2SeO3) (0, 0.5, 1.0, and 2.5 mg/kg soil) were conducted to investigate the effects of selenite application on Zn bioavailability in calcareous soil and its related mechanisms. The total Zn content of different tissues (roots and shoots) of pak choi (Brassica chinensis L.) and the changes in Zn fraction distribution in soil before planting and after harvest were determined, and the mobility factor (MF) and distribution index (DI) of Zn in soils were calculated. In addition, the Pearson correlation and path analysis were conducted to clarify the relationships between Zn fractions in soil and the Zn uptake of pak choi. Results showed that Se amendment elevated soil Zn bioavailability at appropriate levels of Se and Zn. When 1.0 and 2.5 mg/kg of Se and 20 mg/kg of Zn were applied in soil, the proportion of exchangeable Zn (Ex-Zn) and Zn weakly bound to organic matter (Wbo-Zn) to the total content of Zn was significantly increased by 28.14%-82.52% compared with that of the corresponding single Zn treatment. Therefore, the Zn concentration in the shoots of pak choi was significantly increased by 27.2%-31.1%. High Zn (50 mg/kg) and Se co-amended treatments showed no significantly beneficial effect on the bioavailability of Zn. In addition, the potential available Zn content in soil (weakly bound to organic matter and carbonate bound Zn) and MF and DI values were all positively correlated with the Zn concentrations in pak choi, indicating that these indexes can be used to predict the bioavailability of Zn in soil. This study can provide a good reference for Se and Zn biofortification of plants in calcareous soil.


Assuntos
Selênio/química , Poluentes do Solo/química , Zinco/química , Brassica/metabolismo , Raízes de Plantas/química , Ácido Selenioso/química , Selenito de Sódio/química , Solo , Poluentes do Solo/análise , Zinco/análise
14.
Oxid Med Cell Longev ; 2019: 9847650, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885828

RESUMO

Selenium (Se), an essential trace element, and hydrogen sulfide (H2S), an endogenously produced signalling molecule, affect many physiological and pathological processes. However, the biological effects of their mutual interaction have not yet been investigated. Herein, we have studied the biological and antioxidant effects of the products of the H2S (Na2S)/selenite (Na2SeO3) interaction. As detected by the UV-VIS and EPR spectroscopy, the product(s) of the H2S-Na2SeO3 and H2S-SeCl4 interaction scavenged superoxide-derived radicals and reduced ·cPTIO radical depending on the molar ratio and the preincubation time of the applied interaction mixture. The results confirmed that the transient species are formed rapidly during the interaction and exhibit a noteworthy biological activity. In contrast to H2S or selenite acting on their own, the H2S/selenite mixture cleaved DNA in a bell-shaped manner. Interestingly, selenite protected DNA from the cleavage induced by the products of H2S/H2O2 interaction. The relaxation effect of H2S on isolated thoracic aorta was eliminated when the H2S/selenite mixture was applied. The mixture inhibited the H2S biphasic effect on rat systolic and pulse blood pressure. The results point to the antioxidant properties of products of the H2S/selenite interaction and their effect to react with DNA and influence cardiovascular homeostasis. The effects of the products may contribute to explain some of the biological effects of H2S and/or selenite, and they may imply that a suitable H2S/selenite supplement might have a beneficial effect in pathological conditions arisen, e.g., from oxidative stress.


Assuntos
Pressão Arterial/fisiologia , Pressão Sanguínea/fisiologia , DNA/química , Radicais Livres/química , Sulfeto de Hidrogênio/química , Ácido Selenioso/química , Superóxidos/química , Animais , Antioxidantes/química , Pressão Arterial/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Sulfeto de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Ratos , Ratos Wistar , Ácido Selenioso/farmacologia
15.
J Environ Radioact ; 203: 210-219, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30927564

RESUMO

The sorption behavior of selenite onto the Tamusu clay from a preselected high-level radioactive waste disposal site in Inner Mongolia, China, was first investigated in simulated groundwater with high salinity by batch sorption experiments under aerobic/anaerobic conditions. The results demonstrated that the Kd values rapidly decreased and then remained steady in the pH range of 2.0-8.0. However, selenite sorption was promoted when pH exceeded 8.0, which might be attributed to the coprecipitation between Ca2+ and SeO32-. Besides, the change trend of the Kd values as functions of various parameters was not affected by oxygen. The sorption kinetics and isotherms could be well fitted by the pseudo-second-order kinetic model and the Freundlich model for both aerobic and anaerobic conditions, and the calculated thermodynamic parameters (△G and △H) suggested that the selenite sorption process was a spontaneous and endothermic process. Additionally, the XPS results revealed that Se(IV) could be reduced to Se (0) only in anaerobic conditions and that the different amounts of Fe on the clay surface led to the discrepancy of the Se(IV) Kd values under aerobic and anaerobic conditions even in high-salt simulated groundwater. Overall, our findings in this study are significant in regards to the retardation of selenite on the host rock under high salinity conditions.


Assuntos
Argila/química , Água Subterrânea/química , Modelos Químicos , Ácido Selenioso/química , Adsorção , China , Cinética , Salinidade , Ácido Selenioso/análise , Selênio/análise , Selênio/química
16.
Environ Sci Pollut Res Int ; 26(10): 10159-10173, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30746628

RESUMO

Selenate (Se(VI)) and selenite (Se(IV)) are common soluble wastewater pollutants in natural and anthropogenic systems. We evaluated the reduction efficiency and removal of low (0.02 and 2 mg/L) and high (20 and 200 mg/L) Se(IV)(aq) and Se(VI)(aq) concentrations to elemental (Se0) via the use of ascorbic acid (AA), thiourea (TH), and a 50-50% mixture. The reduction efficiency of AA with Se(IV)(aq) to nano- and micro-crystalline Se0 was ≥ 95%, but ≤ 5% of Se(VI)(aq) was reduced to Se(IV)(aq) with no Se0. Thiourea was able to reduce ≤ 75% of Se(IV)(aq) to bulk Se0 at lower concentrations but was more effective (≥ 90%) at higher concentrations. Reduction of Se(VI)(aq)→Se (IV)(aq) with TH was ≤ 75% at trace concentrations which steadily declined as the concentrations increased, and the products formed were elemental sulfur (S0) and SnSe8-n phases. The reduction efficiency of Se(IV)(aq) to bulk Se0 upon the addition of AA+TH was ≤ 81% at low concentrations and ≥ 90% at higher concentrations. An inverse relation to what was observed with Se(IV)(aq) was found upon the addition of AA+TH with Se(VI)(aq). At low Se(VI)(aq) concentrations, AA+TH was able to reduce more effectively (≤ 61%) Se(VI)(aq)→Se(IV)(aq)→Se0, while at higher concentrations, it was ineffective (≤ 11%) and Se0, S0, and SnSe8-n formed. This work helps to guide the removal, reduction effectiveness, and products formed from AA, TH, and a 50-50% mixture on Se(IV)(aq) and Se(VI)(aq) to Se0 under acidic conditions and environmentally relevant concentrations possibly found in acidic natural waters, hydrometallurgical chloride processing operations, and acid mine drainage/acid rock drainage tailings. Graphical Abstract ᅟ.


Assuntos
Ácido Ascórbico/química , Modelos Químicos , Ácido Selênico/química , Ácido Selenioso/química , Tioureia/química , Ácido Ascórbico/análise , Mineração , Oxirredução , Ácido Selênico/análise , Ácido Selenioso/análise , Selênio/análise , Compostos de Selênio , Enxofre , Tioureia/análise
17.
Drug Chem Toxicol ; 42(1): 76-83, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30032689

RESUMO

Selenium (Se) nanoparticles have been proposed as food supplements. However, the particle formulation may exert unexpected toxicity. The aim was therefore to compare toxicity of low doses of Se nanoparticles and the dissolved, ionized Se species selenite. Female rats were dosed orally for 28 d with either: 0.05, 0.5, or 4 mg Se/kg body weight (bw)/day as 20 nm Se nanoparticles or 0.05 or 0.5 mg Se/kg bw/day as sodium selenite. Male rats were dosed 4 mg Se/kg bw/day as Se nanoparticles. Body weight and clinical appearance were recorded throughout the experiment. At necropsy, blood samples were taken for hematological and clinical chemistry analyses; organ weights were recorded. At the high-dose of Se nanoparticles, overt toxicity occurred and the female animals had to be euthanized prematurely, whereas the male animals were reduced in dose. At all doses of Se nanoparticles and at 0.5 mg Se/kg bw/day as selenite, a lower body weight gain as compared to vehicle occurred. Relative liver weight was increased for both Se formulations at 0.5 mg Se/kg bw/day. Creatinine clearance and urinary pH were affected in some Se dosed groups. There were no effects among dosed groups on brain neurotransmitters or on hematological parameters compared with controls. There were no histological changes in the livers of animals exposed to Se nanoparticles or to selenite. Based on effects on body weight and liver weight, selenium nanoparticles and ionic Se exerted similar toxicity. This suggests that a nanoparticle-specific toxicity of Se did not occur.


Assuntos
Suplementos Nutricionais/toxicidade , Nanopartículas/toxicidade , Ácido Selenioso/toxicidade , Selênio/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fígado/efeitos dos fármacos , Masculino , Nanopartículas/química , Neurotransmissores/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Ácido Selenioso/química , Selênio/química , Testes de Toxicidade Subaguda
18.
Int J Mol Sci ; 19(12)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501097

RESUMO

Selenite is extremely biotoxic, and as a result of this, exploitation of microorganisms able to reduce selenite to non-toxic elemental selenium (Se°) has attracted great interest. In this study, a bacterial strain exhibiting extreme tolerance to selenite (up to 100 mM) was isolated from the gut of adult Monochamus alternatus and identified as Proteus mirabilis YC801. This strain demonstrated efficient transformation of selenite into red selenium nanoparticles (SeNPs) by reducing nearly 100% of 1.0 and 5.0 mM selenite within 42 and 48 h, respectively. Electron microscopy and energy dispersive X-ray analysis demonstrated that the SeNPs were spherical and primarily localized extracellularly, with an average hydrodynamic diameter of 178.3 ± 11.5 nm. In vitro selenite reduction activity assays and real-time PCR indicated that thioredoxin reductase and similar proteins present in the cytoplasm were likely to be involved in selenite reduction, and that NADPH or NADH served as electron donors. Finally, Fourier-transform infrared spectral analysis confirmed the presence of protein and lipid residues on the surfaces of SeNPs. This is the first report on the capability of P. mirabilis to reduce selenite to SeNPs. P. mirabilis YC801 might provide an eco-friendly approach to bioremediate selenium-contaminated soil/water, as well as a bacterial catalyst for the biogenesis of SeNPs.


Assuntos
Nanopartículas/química , Nanopartículas/metabolismo , Proteus mirabilis/metabolismo , Selênio/química , Biotransformação , Oxirredução , Tamanho da Partícula , Reação em Cadeia da Polimerase em Tempo Real , Ácido Selenioso/química , Ácido Selenioso/metabolismo , Selênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Biomater Sci ; 6(6): 1503-1516, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29633765

RESUMO

Phototheranostic technology based on photoacoustic imaging (PAI) and photothermal therapy (PTT) is emerging as a powerful tool for tumor theranostic applications. For effective tumor eradication, a novel PAI/PTT theranostic nanoagent with an excellent optical absorption and photothermal capability is highly desired. Herein, we present a new PAI/PTT nanohybrid named sMoSe2-ICG NSs by covalently conjugating aminated indocyanine green (ICG) onto a single layer of molybdenum selenide nanosheets (sMoSe2 NSs). We first validate the sMoSe2-ICG NS agent for the PAI and PTT effect in vitro and then use it for highly-sensitive PAI guided highly efficient tumor PTT in vivo. The sMoSe2-ICG NS hybrid possesses several advantages for PAI/PTT applications: (1) the sMoSe2-ICG NSs have strong absorbance in the broad near-infrared (NIR) region, enabling a highly efficient PAI/PTT theranostic effect and the selection of the most widely used excitation wavelength of 808 nm for PTT; (2) the photothermal ability of ICG in sMoSe2-ICG NSs is augmented due to ICG aggregation induced fluorescence quenching and the re-absorbance of ICG fluorescence by sMoSe2 NSs, which further enhances the PAI/PTT theranostic effect. (3) The characteristic absorption peak of sMoSe2-ICG NSs is red-shifted compared to free ICG, resulting in a higher PAI signal-to-noise ratio (SNR) in vivo. Thus, combined with the good stability, high biocompatibility and minimal toxicity properties, the obtained sMoSe2-ICG NSs hybrid has bright prospects for use in future PAI/PTT clinical applications.


Assuntos
Neoplasias da Mama/terapia , Corantes/uso terapêutico , Verde de Indocianina/uso terapêutico , Molibdênio/uso terapêutico , Nanoestruturas/uso terapêutico , Ácido Selenioso/uso terapêutico , Nanomedicina Teranóstica/métodos , Animais , Neoplasias da Mama/diagnóstico por imagem , Feminino , Hipertermia Induzida/métodos , Camundongos Endogâmicos BALB C , Camundongos Nus , Molibdênio/química , Imagem Óptica/métodos , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Ácido Selenioso/química
20.
J Sci Food Agric ; 98(12): 4700-4706, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29536552

RESUMO

BACKGROUND: Foliar spraying of selenium (Se) has increasingly been applied to improve Se concentrations in grain crops, although little information is available about the properties of Se-enriched fruits. In the present study, selenium distribution in blueberry and Se effect on blueberry quality were investigated by foliar spraying selenite or selenate (200 g ha-1 ) on two blueberry cultivars (Bluecrop and Northland) during the young fruit or coloring stage. RESULTS: Selenium concentration in blueberry was mainly affected by cultivar and spray stage relative to the Se source. Northland was 1.3- to 1.5-fold higher than Bluecrop with respect to Se enrichment. Se treatment at the young fruit stage induced a 1.5- to 2.3-fold increase compared to that at the coloring stage with respect to the Se concentration of blueberry. Additionally, selenium was mainly stored in pomace, with an accumulative distribution ratio of 89.3-94.9%. The proportion of organic Se reached up to 77.0% in blueberry. Furthermore, the foliar application of Se significantly increased the anthocyanin concentration and the intact fruit rate of blueberry. CONCLUSION: Se-enriched blueberry can be used as a 'functional food'. Because Se was mainly accumulated in the pomace, the consumption of blueberries as fresh fruit, dried fruit and jam can improve the efficiency of Se supplement. © 2018 Society of Chemical Industry.


Assuntos
Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Frutas/química , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Mirtilos Azuis (Planta)/química , Mirtilos Azuis (Planta)/metabolismo , Produção Agrícola , Fertilizantes/análise , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Ácido Selênico/química , Ácido Selenioso/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA