Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 479
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 145: 109302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128680

RESUMO

Feeding high-fat (HF) diets has been shown to cause hepatic and intestinal impairment in fish species, but the mode of action, especially the pathways involved in the intestine, has not been determined yet. In this study, the effects of resveratrol (RES) supplementation on the intestinal structure, microbial flora, and fat metabolism in red tilapia (Oreochromis niloticus) were determined. The results showed RES maintained the structural integrity of the intestine and significantly increased the number of goblet cells in the midgut. RES significantly induced interferon (IL)-1ß, IL-6, IL-10, and tumor necrosis factor (TNF)-α, serumal and fecal trimetlylamine oxide (TMAO) and lipopolysaccharides (LPS), intestinal acetic acid levels. However, the concentrations of bound bile acids increased in HF-fed red tilapia. Atp5fa1 and Pafah1b3 significantly increased, Pmt and Acss2 significantly decreased, respectively, with RES supplementation, which was alleviated and retained at the same level in the selisistat (EX527) group. While for transcriptome and proteomics results, RES was found to promote fatty acid ß-oxidation and arachidonic acid metabolism associated with the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The next validation experiment showed some genes related to apoptosis and fatty acid metabolism pathways were altered by RES supplementation. Namely, sn6, loc100702698, new_14481, and prkaa1 were upregulated, while ffrs1, ap3s1, and loc100705861 were downregulated. RES significantly increased Planctomycetes and Verrucomicrobia while decreased Moonvirus, Citrobacter, and Pseudomonas. Akkermansia and Fusobacterium significantly increased and Aeromonas significantly decreased. Thus, unsaturated fatty acid biosynthesis significantly increased and carbohydrate/energy metabolism decreased. To conclude, RES enabled the body to complete fatty acid ß-oxidation and arachidonic acid metabolism, whereas the addition of inhibitors increased the expression of the phagosome transcriptome and reduced fatty acid ß-oxidative metabolism.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/metabolismo , Ciclídeos/metabolismo , Dieta Hiperlipídica , Resveratrol/metabolismo , Metabolismo dos Lipídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Intestinos , Transdução de Sinais , Ácidos Graxos/metabolismo , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Dieta , Suplementos Nutricionais , Ração Animal/análise
2.
Biol Open ; 12(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37566396

RESUMO

Low colostrum intake relates to poorer health and infertility in swine. We previously connected vaginal lipid profiles at weaning to fertility of sows. We hypothesized vaginal lipidome varied with colostrum intake. Our objective was to determine whether indicators of colostrum intake, immunocrit (IM) and weight gain 24 h postnatal (PN), related to vaginal lipids at d21 PN. Gilts (n=60) were weighed and blood sampled to measure IM. On d21 PN vaginal swabs were taken and lipids measured using multiple reaction monitoring. Abundance of multiple lipids differed (P<0.05) between gilts categorized as high versus low IM and high versus low 24 h gain. The abundance of multiple lipids correlated with IM and 24 h gain. Phosphatidylcholine PC(36:3), PC(36:2), and arachidonic acid (C20:4) positively (P<0.05) correlated with IM. The ether lipid PCo(38:6) and multiple cholesteryl esters negatively (P<0.05) correlated with IM. ROC analysis indicated arachidonic acid and docosanoic acid (C22:0) may serve as excellent biomarkers that distinguish between high and low IM. Similar to gilts found to be infertile, lipid profiles of low colostrum intake animals had greater abundance of very long chain fatty acids, lipids with high levels of unsaturation, and cholesteryl esters, which are metabolized in peroxisomes indicating their potential dysfunction.


Assuntos
Ésteres do Colesterol , Colostro , Gravidez , Suínos , Animais , Feminino , Colostro/metabolismo , Ésteres do Colesterol/metabolismo , Peroxissomos , Dieta/veterinária , Ácidos Araquidônicos/metabolismo
3.
Gene ; 846: 146856, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067864

RESUMO

Dysregulation of lipid metabolism and diabetes are risk factors for nonalcoholic fatty liver disease (NAFLD), and the gut-liver axis and intestinal microbiome are known to be highly associated with the pathogenesis of this disease. In Japan, the traditional medicine daisaikoto (DST) is prescribed for individuals affected by hepatic dysfunction. Herein, we evaluated the therapeutic potential of DST for treating NAFLD through modification of the liver and stool metabolome and microbiome by using STAM mice as a model of NAFLD. STAM mice were fed a high-fat diet with or without 3 % DST for 3 weeks. Plasma and liver of STAM, STAM with DST, and C57BL/6J ("Normal") mice were collected at 9 weeks, and stools at 4, 6, and 9 weeks of age. The liver pathology, metabolome and stool microbiome were analyzed. DST ameliorated the NAFLD activity score of STAM mice and decreased the levels of several liver lipid mediators such as arachidonic acid and its derivatives. In normal mice, nine kinds of family accounted for 94.1 % of microbiome composition; the total percentage of these family was significantly decreased in STAM mice (45.6 %), and DST administration improved this imbalance in microbiome composition (65.2 %). In stool samples, DST increased ursodeoxycholic acid content and altered several amino acids, which were correlated with changes in the gut microbiome and liver metabolites. In summary, DST ameliorates NAFLD by decreasing arachidonic acid metabolism in the liver; this amelioration seems to be associated with crosstalk among components of the liver, intestinal environment, and microbiome.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Aminoácidos/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal/fisiologia , Japão , Lipídeos/farmacologia , Fígado/metabolismo , Medicina Tradicional , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Ursodesoxicólico/farmacologia
4.
Sci Rep ; 12(1): 822, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039558

RESUMO

Scoparone (6,7-dimethoxycoumarin) is a simple coumarin from botanical drugs of Artemisia species used in Traditional Chinese Medicine and Génépi liquor. However, its bioavailability to the brain and potential central effects remain unexplored. We profiled the neuropharmacological effects of scoparone upon acute and subchronic intraperitoneal administration (2.5-25 mg/kg) in Swiss mice and determined its brain concentrations and its effects on the endocannabinoid system (ECS) and related lipids using LC-ESI-MS/MS. Scoparone showed no effect in the forced swimming test (FST) but, administered acutely, led to a bell-shaped anxiogenic-like behavior in the elevated plus-maze test and bell-shaped procognitive effects in the passive avoidance test when given subchronically and acutely. Scoparone rapidly but moderately accumulated in the brain (Cmax < 15 min) with an apparent first-order elimination (95% eliminated at 1 h). Acute scoparone administration (5 mg/kg) significantly increased brain arachidonic acid, prostaglandins, and N-acylethanolamines (NAEs) in the FST. Conversely, subchronic scoparone treatment (2.5 mg/kg) decreased NAEs and increased 2-arachidonoylglycerol. Scoparone differentially impacted ECS lipid remodeling in the brain independent of serine hydrolase modulation. Overall, the unexpectedly potent central effects of scoparone observed in mice could have toxicopharmacological implications for humans.


Assuntos
Encéfalo/metabolismo , Cumarínicos/farmacologia , Animais , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Disponibilidade Biológica , Cognição/efeitos dos fármacos , Cumarínicos/administração & dosagem , Cumarínicos/farmacocinética , Endocanabinoides/metabolismo , Etanolaminas/metabolismo , Glicerídeos/metabolismo , Infusões Parenterais , Metabolismo dos Lipídeos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Prostaglandinas/metabolismo
5.
Nutrients ; 13(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684588

RESUMO

The endocannabinoid system (ECS) plays a pivotal role in the complex control and regulation of food intake. Pharmacological ECS activation could improve health in energy-deficient stages by increasing food intake, at least in intermittent feeders. However, knowledge of the mechanism regulating appetite in species with continued nutrient delivery is incomplete. The objectives of this pilot study were to investigate the effect of the intraperitoneal (i.p.) administration of the endocannabinoids (ECs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on food intake, plasma EC concentrations and hypothalamic orexigenic signaling, and to study how the circulatory EC tone changes in response to short-term food deprivation in dairy cows, a species with continuous nutrient delivery. The administration of EC resulted in higher food intake during the first hour after treatment. Plasma AEA concentrations were significantly increased 2.5 h after AEA injection, whereas plasma 2-AG concentrations remained unchanged 2.5 h after 2-AG injection. The hypothalamic immunoreactivity of cannabinoid receptor 1, agouti-related protein, and orexin-A was not affected by either treatment; however, neuropeptide Y and agouti-related protein mRNA abundances were downregulated in the arcuate nucleus of AEA-treated animals. Short-term food deprivation increased plasma 2-AG, while plasma AEA remained unchanged. In conclusion, i.p.-administered 2-AG and AEA increase food intake in the short term, but only AEA accumulates in the circulation. However, plasma 2-AG concentrations are more responsive to food deprivation than AEA.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Comportamento Alimentar , Glicerídeos/metabolismo , Hipotálamo/metabolismo , Nutrientes , Orexinas/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Animais , Ácidos Araquidônicos/sangue , Peso Corporal , Bovinos , Endocanabinoides/sangue , Ácidos Graxos/metabolismo , Privação de Alimentos , Regulação da Expressão Gênica , Glucose/metabolismo , Glicerídeos/sangue , Leite , Alcamidas Poli-Insaturadas/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
6.
Eur J Endocrinol ; 185(2): 231-239, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061772

RESUMO

OBJECTIVE: Patients with craniopharyngioma (CP) frequently suffer from morbid obesity. Endocannabinoids (ECs) are involved in weight gain and rewarding behavior but have not been investigated in this context. DESIGN: Cross-sectional single-center study. METHODS: Eighteen patients with CP and 16 age- and sex-matched controls were included. Differences in endocannabinoids (2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)) and endocannabinoid-like molecules (oleoyl ethanolamide (OEA), palmitoylethanolamide (PEA), and arachidonic acid (AA) were measured at baseline and following endurance exercise. We further explored ECs-dynamics in relation to markers of HPA-axis activity (ACTH, cortisol, copeptin) and hypothalamic damage. RESULTS: Under resting conditions, independent of differences in BMI, 2-AG levels were more than twice as high in CP patients compared to controls. In contrast, 2-AG and OEA level increased in response to exercise in controls but not in CP patients, while AEA levels decreased in controls. As expected, exercise increased ACTH and copeptin levels in controls only. In a mixed model analysis across time and group, HPA measures did not provide additional information for explaining differences in 2-AG levels. However, AEA levels were negatively influenced by ACTH and copeptin levels, while OEA levels were negatively predicted by copeptin levels only. There were no significant differences in endocannabinoids depending on hypothalamic involvement. CONCLUSION: Patients with CP show signs of a dysregulated endocannabinoid system under resting conditions as well as following exercise in comparison to healthy controls. Increased 2-AG levels under resting conditions and the missing response to physical activity could contribute to the metabolic phenotype of CP patients.


Assuntos
Craniofaringioma , Endocanabinoides/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Neoplasias Hipofisárias , Hormônio Adrenocorticotrópico/metabolismo , Adulto , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Estudos de Casos e Controles , Craniofaringioma/metabolismo , Craniofaringioma/fisiopatologia , Estudos Transversais , Treino Aeróbico , Exercício Físico/fisiologia , Feminino , Glicerídeos/metabolismo , Glicopeptídeos/metabolismo , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Ácidos Oleicos/metabolismo , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/fisiopatologia , Alcamidas Poli-Insaturadas/metabolismo , Adulto Jovem
7.
Clin Sci (Lond) ; 135(1): 185-200, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33393630

RESUMO

Obesity is believed to be associated with a dysregulated endocannabinoid system which may reflect enhanced inflammation. However, reports of this in human white adipose tissue (WAT) are limited and inconclusive. Marine long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have anti-inflammatory actions and therefore may improve obesity-associated adipose tissue inflammation. Therefore, fatty acid (FA) concentrations, endocannabinoid concentrations, and gene expression were assessed in subcutaneous WAT (scWAT) biopsies from healthy normal weight individuals (BMI 18.5-25 kg/m2) and individuals living with metabolically healthy obesity (BMI 30-40 kg/m2) prior to and following a 12-week intervention with 3 g fish oil/day (1.1 g eicosapentaenoic acid (EPA) + 0.8 g DHA) or 3 g corn oil/day (placebo). WAT from individuals living with metabolically healthy obesity had higher n-6 PUFAs and EPA, higher concentrations of two endocannabinoids (anandamide (AEA) and eicosapentaenoyl ethanolamide (EPEA)), higher expression of phospholipase A2 Group IID (PLA2G2D) and phospholipase A2 Group IVA (PLA2G4A), and lower expression of CNR1. In response to fish oil intervention, WAT EPA increased to a similar extent in both BMI groups, and WAT DHA increased by a greater extent in normal weight individuals. WAT EPEA and docosahexaenoyl ethanolamide (DHEA) increased in normal weight individuals only and WAT 2-arachidonyl glycerol (2-AG) decreased in individuals living with metabolically healthy obesity only. Altered WAT fatty acid, endocannabinoid, and gene expression profiles in metabolically healthy obesity at baseline may be linked. WAT incorporates n-3 PUFAs when their intake is increased which affects the endocannabinoid system; however, effects appear greater in normal weight individuals than in those living with metabolically healthy obesity.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Endocanabinoides/metabolismo , Obesidade Metabolicamente Benigna/tratamento farmacológico , Gordura Subcutânea/efeitos dos fármacos , Adolescente , Adulto , Ácidos Araquidônicos/metabolismo , Método Duplo-Cego , Combinação de Medicamentos , Inglaterra , Feminino , Fosfolipases A2 do Grupo II/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Metabolicamente Benigna/diagnóstico , Obesidade Metabolicamente Benigna/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Gordura Subcutânea/metabolismo , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
8.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379212

RESUMO

The endocannabinoid/CB1R system as well as the central ghrelin signalling with its growth hormone secretagogoue receptors (GHS-R1A) are importantly involved in food intake and reward/reinforcement processing and show distinct overlaps in distribution within the relevant brain regions including the hypothalamus (food intake), the ventral tegmental area (VTA) and the nucleus accumbens (NAC) (reward/reinforcement). The significant mutual interaction between these systems in food intake has been documented; however, the possible role of ghrelin/GHS-R1A in the cannabinoid reinforcement effects and addiction remain unclear. Therefore, the principal aim of the present study was to investigate whether pretreatment with GHS-R1A antagonist/JMV2959 could reduce the CB1R agonist/WIN55,212-2-induced dopamine efflux in the nucleus accumbens shell (NACSh), which is considered a crucial trigger impulse of the addiction process. The synthetic aminoalklylindol cannabinoid WIN55,212-2 administration into the posterior VTA induced significant accumbens dopamine release, which was significantly reduced by the 3 mg/kg i.p. JMV2959 pretreatment. Simultaneously, the cannabinoid-increased accumbens dopamine metabolic turnover was significantly augmented by the JMV2959 pretreament. The intracerebral WIN55,212-2 administration also increased the endocannabinoid arachidonoylethanolamide/anandamide and the 2-arachidonoylglycerol/2-AG extracellular levels in the NACSh, which was moderately but significantly attenuated by the JMV2959 pretreatment. Moreover, the cannabinoid-induced decrease in accumbens γ-aminobutyric acid/gamma-aminobutyric acid levels was reversed by the JMV2959 pretreatment. The behavioural study in the LABORAS cage showed that 3 mg/kg JMV2959 pretreatment also significantly reduced the systemic WIN55,212-2-induced behavioural stimulation. Our results demonstrate that the ghrelin/GHS-R1A system significantly participates in the rewarding/reinforcing effects of the cannabinoid/CB1 agonist that are involved in cannabinoid addiction processing.


Assuntos
Benzoxazinas/administração & dosagem , Dopamina/metabolismo , Grelina/metabolismo , Glicina/análogos & derivados , Morfolinas/administração & dosagem , Naftalenos/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Triazóis/administração & dosagem , Animais , Ácidos Araquidônicos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Glicina/administração & dosagem , Masculino , Núcleo Accumbens/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo
9.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883025

RESUMO

Acetylcholine-induced vasorelaxation (AChIR) and responses to reduced pO2 (hypoxia-induced relaxation (HIR), 0% O2) were assessed in vitro in aortic rings of healthy male Sprague-Dawley rats (N = 252) under hyperbaric (HBO2) protocols. The studied groups consisted of the CTRL group (untreated); the A-HBO2 group (single HBO2; 120 min of 100% O2 at 2.0 bars); the 24H-HBO2 group (examined 24 h after single exposure) and the 4D-HBO2 group (four consecutive days of single HBO2). AChIR, sensitivity to ACh and iNOS expression were decreased in the A-HBO2 group. HIR was prostanoid- and epoxyeicosatrienoic acid (EET)-mediated. HIF-1α expression was increased in the 24H-HBO2 and 4D-HBO2 groups. LW6 (HIF-1α inhibitor) decreased HIR in the 24H-HBO2 group. HBO2 affected the expression of COX-1 and COX-2. CYP2c11 expression was elevated in the 24H-HBO2 and 4D-HBO2 groups. Concentrations of arachidonic acid (AA) metabolites 14(15)-DiHET, 11(12)-DiHET and 8(9)-DiHET were increased in A-HBO2 and 24H-HBO2. An increased concentration of 8(9)-EET was observed in the A-HBO2 and 24h-HBO2 groups vs. the CTRL and 4D-HBO2 groups, and an increased concentration of 5(6)-DiHET was observed in the 24H-HBO2 group vs. the 4D-HBO2 group. The 20-HETE concentration was increased in the A-HBO2 group. All were determined by LC-MS/MS of the aorta. The results show that AChIR in all groups is mostly NO-dependent. HIR is undoubtedly mediated by the CYP450 enzymes' metabolites of AA, whereas HIF-1α contributes to restored HIR. Vasoconstrictor metabolites of CYP450 enzymes contribute to attenuated AChIR and HIR in A-HBO2.


Assuntos
Aorta/efeitos dos fármacos , Ácidos Araquidônicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Endotélio/efeitos dos fármacos , Oxigenoterapia Hiperbárica/métodos , Estresse Oxidativo/efeitos dos fármacos , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Animais , Aorta/metabolismo , Endotélio/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos
10.
Sci Rep ; 10(1): 12849, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732956

RESUMO

There is limited information available regarding the association of plasma free fatty acids (FFA) and inflammation mediators with ischemic stroke. At the same time, new treatment strategies are being pursued. The aim of this study was to carry out a thorough analysis of inflammation with multiple FFA-derivative mediators after and ischemic stroke and standard treatment. HPLC separations of 17 eicosanoids were performed using an Agilent Technologies 1,260 liquid chromatograph. The profiles of the esters of fatty acids were labelled by means of gas chromatography. FFA, and eicosanoid profiles in the group of patients after ischemic stroke significantly differed from the profile of the control group. Studies confirmed the involvement of derivative synthesis pathways responsible for the inflammation, especially palmitic acid (9 and 13 HODE), arachidonic acid, EPA and DHA. Arachidonic acid derivatives were synthesised on 5LOX, 15 LOX and COX pathways with the participation of prostaglandins while omega 3 derivatives strengthened the synthesis of resolvins, RevD1 in particular. The ability to accelerate the quenching of inflammation after ischemic stroke seems to be a promising strategy of stroke treatment in its early stage. In this context, our study points to lipoxins, RevD1, and 9, 13 HODE as the most important derivatives.


Assuntos
Ácidos Araquidônicos/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , AVC Isquêmico/etiologia , AVC Isquêmico/metabolismo , Lipoxinas/metabolismo , Ácidos Palmíticos/metabolismo , Transdução de Sinais/fisiologia , Ácidos Docosa-Hexaenoicos/análogos & derivados , Ácido Eicosapentaenoico/análogos & derivados , Ácidos Graxos Ômega-3 , Humanos , Inflamação , AVC Isquêmico/terapia , Prostaglandinas/metabolismo
11.
Essays Biochem ; 64(3): 485-499, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32648908

RESUMO

Thirty years ago, the discovery of a cannabinoid (CB) receptor that interacts with the psychoactive compound in Cannabis led to the identification of anandamide, an endogenous receptor ligand or endocannabinoid. Research on endocannabinoids has since exploded, and additional receptors along with their lipid mediators and signaling pathways continue to be revealed. Specifically, in humans, the release of endocannabinoids from membrane lipids occurs on demand and the signaling process is rapidly attenuated by the breakdown of the ligand suggesting a tight regulation of the endocannabinoid system (ECS). Additionally, the varying distribution of CB receptors between the central nervous system and other tissues allows for the ECS to participate in a wide range of cognitive and physiological processes. Select plant-derived 'phyto'cannabinoids such as Δ-9-tetrahydrocannabinol (Δ9-THC) bind to the CB receptors and trigger the ECS, and in the case of Δ9-THC, while it has therapeutic value, can also produce detrimental effects. Current research is aimed at the identification of additional phytocannabinoids with minimal psychotropic effects with potential for therapeutic development. Although decades of research on the ECS and its components have expanded our understanding of the mechanisms and implications of endocannabinoid signaling in mammals, it continues to evolve. Here, we provide a brief overview of the ECS and its overlap with other related lipid-mediated signaling pathways.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Cannabis/química , Sistema Nervoso Central/metabolismo , Dronabinol/metabolismo , Humanos , Ligantes , Extratos Vegetais/metabolismo , Transdução de Sinais
12.
Cell Rep ; 31(9): 107710, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492422

RESUMO

Endocannabinoids protect against seizures, but their mechanism of action is still unclear, as they can have effects independent of known cannabinoid receptors. Using Drosophila melanogaster, which lacks canonical cannabinoid receptors, we report that the endocannabinoids anandamide and 2-arachidonoylglycerol protect against seizures in multiple fly seizure models. Surprisingly, inhibition of anandamide catabolism renders flies insensitive to protection by anandamide, indicating that anandamide metabolites are responsible for seizure protection. Consistent with this finding, arachidonic acid, a direct metabolite of anandamide, protects against seizures. To identify downstream effectors, we test for a role of transient receptor potential (TRP) channels and find that the TRPV1 antagonist capsazepine blocks the protective effect of anandamide. Also, a targeted genetic screen of TRP channels identifies water witch as a mediator of protection by anandamide. Using a Drosophila model, we reveal the role of arachidonic acid in seizure protection and identify a cannabinoid-receptor-1/2-independent mechanism of endocannabinoid seizure protection.


Assuntos
Anticonvulsivantes/uso terapêutico , Ácidos Araquidônicos/uso terapêutico , Proteínas de Drosophila/metabolismo , Endocanabinoides/uso terapêutico , Glicerídeos/uso terapêutico , Convulsões/prevenção & controle , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Endocanabinoides/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Alcamidas Poli-Insaturadas/uso terapêutico , RNA Guia de Cinetoplastídeos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Convulsões/patologia , Canais de Potencial de Receptor Transitório/genética
13.
JPEN J Parenter Enteral Nutr ; 44(1): 69-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31441521

RESUMO

BACKGROUND: Preterm delivery and current nutrition strategies result in deficiencies of critical long-chain fatty acids (FAs) and lipophilic nutrients, increasing the risk of preterm morbidities. We sought to determine the efficacy of preventing postnatal deficits in FAs and lipophilic nutrients using an enteral concentrated lipid supplement in preterm piglets. METHODS: Preterm piglets were fed a baseline diet devoid of arachidonic acid (AA) and docosahexaenoic acid (DHA) and randomized to enteral supplementation as follows: (1) Intralipid (IL), (2) complex lipid supplement 1 (CLS1) with an AA:DHA ratio of 0.25, or (3) CLS2 with an AA:DHA ratio of 1.2. On day 8, plasma and tissue levels of FAs and lipophilic nutrients were measured and ileum histology performed. RESULTS: Plasma DHA levels decreased in the IL group by day 2. In contrast, DHA increased by day 2 compared with birth levels in both CLS1 and CLS2 groups. The IL and CLS1 groups demonstrated a continued decline in AA levels during the 8-day protocol, whereas AA levels in the CLS2 group on day 8 were comparable to birth levels. Preserving AA levels in the CLS2 group was associated with greater ileal villus height and muscular layer thickness. Lipophilic nutrients were effectively absorbed in plasma and tissues. CONCLUSIONS: Enteral administration of CLS1 and CLS2 demonstrated similar increases in DHA levels compared with birth levels. Only CLS2 maintained AA birth levels. Providing a concentrated complex lipid emulsion with an AA:DHA ratio > 1 is important in preventing postnatal AA deficits.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Ácidos Araquidônicos/metabolismo , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Nutrição Enteral/veterinária , Ração Animal , Animais , Animais Recém-Nascidos , Ácidos Araquidônicos/deficiência , Ácidos Docosa-Hexaenoicos/deficiência , Emulsões/administração & dosagem , Nutrientes , Distribuição Aleatória , Suínos
14.
Artigo em Inglês | MEDLINE | ID: mdl-31442553

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease and its characteristic is the progressive degeneration of dopaminergic neurons within the substantia nigra (SN) of the midbrain. There is hardly any clinically proven efficient therapeutics for its cure in several recent preclinical advances proposed to treat PD. Recent studies have found that the endocannabinoid signaling system in particular the comprised two receptors, CB1 and CB2 receptors, has a significant regulatory function in basal ganglia and is involved in the pathogenesis of PD. Therefore, adding new insights into the biochemical interactions between cannabinoids and other signaling pathways may help develop new pharmacological strategies. Factors of the endocannabinoid system (ECS) are abundantly expressed in the neural circuits of basal ganglia, where they interact interactively with glutamatergic, γ-aminobutyric acid-ergic (GABAergic), and dopaminergic signaling systems. Although preclinical studies on PD are promising, the use of cannabinoids at the clinical level has not been thoroughly studied. In this review, we evaluated the available evidence and reviewed the involvement of ECS in etiologies, symptoms and treatments related to PD. Since CB1 and CB2 receptors are the two main receptors of endocannabinoids, we primarily put the focus on the therapeutic role of CB1 and CB2 receptors in PD. We will try to determine future research clues that will help understand the potential therapeutic benefits of the ECS in the treatment of PD, aiming to open up new strategies and ideas for the treatment of PD.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Moduladores de Receptores de Canabinoides/metabolismo , Moduladores de Receptores de Canabinoides/uso terapêutico , Canabinoides/metabolismo , Canabinoides/uso terapêutico , Capsaicina/análogos & derivados , Capsaicina/metabolismo , Capsaicina/uso terapêutico , Endocanabinoides/metabolismo , Endocanabinoides/uso terapêutico , Humanos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores
15.
Anticancer Agents Med Chem ; 19(15): 1899-1909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31566138

RESUMO

BACKGROUND: Vitamin C (Vit C) is an important physiological antioxidant with growing applications in cancer. Somatostatin (SST) is a natural peptide with growth inhibitory effect in several mammary cancer models. OBJECTIVE: The combined effects of SST and Vit C supplementation have never been studied in breast cancer cells so far. METHODS: We used MCF-7 and MDA-MB231 breast cancer cells incubated with SST for 24h, in the absence and presence of Vit C, at their EC50 concentrations, to evaluate membrane fatty acid-profiles together with the follow-up of EGFR and MAPK signaling pathways. RESULTS: The two cell lines gave different membrane reorganization: in MCF-7 cells, decrease of omega-6 linoleic acid and increase of omega-3 fatty acids (Fas) occurred after SST and SST+Vit C incubations, the latter also showing significant increases in MUFA, docosapentaenoic acid and mono-trans arachidonic acid levels. In MDA-MB231 cells, SST+Vit C incubation induced significant membrane remodeling with an increase of stearic acid and mono-trans-linoleic acid isomer, diminution of omega-6 linoleic, arachidonic acid and omega-3 (docosapentaenoic and docosadienoic acids). Distinct signaling pathways in these cell lines were studied: in MCF-7 cells, incubations with SST and Vit C, alone or in combination significantly decreased EGFR and MAPK signaling, whereas in MDA-MB231 cells, SST and Vit C incubations, alone or combined, decreased p- P44/42 MAPK levels, and increased EGFR levels. CONCLUSION: Our results showed that SST and Vit C can be combined to induce membrane fatty acid changes, including lipid isomerization through a specific free radical-driven process, influencing signaling pathways.


Assuntos
Ácido Ascórbico/metabolismo , Neoplasias da Mama/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Somatostatina/metabolismo , Ácidos Araquidônicos/metabolismo , Extratos Celulares/química , Linhagem Celular Tumoral , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lipídeos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfolipídeos/química , Transdução de Sinais , Ácidos Esteáricos/metabolismo
16.
J Lipid Res ; 60(7): 1260-1269, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31138606

RESUMO

The endocannabinoid (eCB) system regulates energy homeostasis and is linked to obesity development. However, the exact dynamic and regulation of eCBs in the hypothalamus during obesity progression remain incompletely described and understood. Our study examined the time course of responses in two hypothalamic eCBs, 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamine (AEA), in male and female mice during diet-induced obesity and explored the association of eCB levels with changes in brown adipose tissue (BAT) thermogenesis and body weight. We fed mice a high-fat diet (HFD), which induced a transient increase (substantial at 7 days) in hypothalamic eCBs, followed by a progressive decrease to basal levels with a long-term HFD. This transient rise at early stages of obesity is considered a physiologic compensatory response to BAT thermogenesis, which is activated by diet surplus. The eCB dynamic was sexually dimorphic: hypothalamic eCBs levels were higher in female mice, who became obese at later time points than males. The hypothalamic eCBs time course positively correlated with thermogenesis activation, but negatively matched body weight, leptinemia, and circulating eCB levels. Increased expression of eCB-synthetizing enzymes accompanied the transient hypothalamic eCB elevation. Icv injection of eCB did not promote BAT thermogenesis; however, administration of thermogenic molecules, such as central leptin or a peripheral ß3-adrenoreceptor agonist, induced a significant increase in hypothalamic eCBs, suggesting a directional link from BAT thermogenesis to hypothalamic eCBs. This study contributes to the understanding of hypothalamic regulation of obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Endocanabinoides/metabolismo , Hipotálamo/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Feminino , Glicerídeos/metabolismo , Masculino , Camundongos , Alcamidas Poli-Insaturadas/metabolismo , Caracteres Sexuais
17.
Behav Brain Res ; 364: 296-302, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30797851

RESUMO

Depression and anxiety disorders are among the most common illnesses and a close relationship between them has been found. Because the psychotropic effects and abuse liability of cannabis prevent its therapeutic application in depression and anxiety states, we decided to investigate the effects of the combination of ineffective doses of cannabinoid CB1 receptor agonist arachidonylcyclopropylamide (ACPA) and ß-carbolines on anxiety- and depression-related behaviors in male NMRI mice. Anxiety- and depression-related behaviors were assesses using elevated plus maze (EPM) and forced swim test (FST), respectively. Intraperitoneal administration of ACPA (1 mg/kg) decreased the percentage of time spent in the open-arms (%OAT) and the number of entries to the open-arms (OAE) in the EPM, indicating an anxiogenic-like effect. ACPA also decreased immobility time in the FST compared to the control group, suggesting an antidepressant-like effect. ß-carbolines including harmane (5 and 10 mg/kg), norharmane (5 mg/kg) and harmaline (2.5 and 5 mg/kg) produced an anxiogenic-like response, while the highest dose of harmane or harmaline and the middle dose of norharmane induced an antidepressant-like behavior. Furthermore, co-administration of a subthreshold dose of ACPA (0.5 mg/kg) and harmaline (1.25 mg/kg), but not harmane or norharmane (both at the dose of 2.5 mg/kg), caused anxiolytic- and antidepressant-like behaviors and decreased locomotor activity. Our findings suggest a therapeutic potential for combined ineffective doses of ACPA and harmaline on anxiety- and depression-related processes.


Assuntos
Ansiedade/tratamento farmacológico , Ácidos Araquidônicos/farmacologia , Depressão/tratamento farmacológico , Harmalina/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Ansiedade/metabolismo , Transtornos de Ansiedade/tratamento farmacológico , Ácidos Araquidônicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Carbolinas/farmacologia , Depressão/fisiopatologia , Modelos Animais de Doenças , Harmalina/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Receptor CB1 de Canabinoide/agonistas
18.
Proc Natl Acad Sci U S A ; 115(29): 7605-7610, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967158

RESUMO

Endocannabinoid signaling regulates feeding and metabolic processes and has been linked to obesity development. Several hormonal signals, such as glucocorticoids and ghrelin, regulate feeding and metabolism by engaging the endocannabinoid system. Similarly, studies have suggested that leptin interacts with the endocannabinoid system, yet the mechanism and functional relevance of this interaction remain elusive. Therefore, we explored the interaction between leptin and endocannabinoid signaling with a focus on fatty acid amide hydrolase (FAAH), the primary degradative enzyme for the endocannabinoid N-arachidonoylethanolamine (anandamide; AEA). Mice deficient in leptin exhibited elevated hypothalamic AEA levels and reductions in FAAH activity while leptin administration to WT mice reduced AEA content and increased FAAH activity. Following high fat diet exposure, mice developed resistance to the effects of leptin administration on hypothalamic AEA content and FAAH activity. At a functional level, pharmacological inhibition of FAAH was sufficient to prevent leptin-mediated effects on body weight and food intake. Using a novel knock-in mouse model recapitulating a common human polymorphism (FAAH C385A; rs324420), which reduces FAAH activity, we investigated whether human genetic variance in FAAH affects leptin sensitivity. While WT (CC) mice were sensitive to leptin-induced reductions in food intake and body weight gain, low-expressing FAAH (AA) mice were unresponsive. These data demonstrate that FAAH activity is required for leptin's hypophagic effects and, at a translational level, suggest that a genetic variant in the FAAH gene contributes to differences in leptin sensitivity in human populations.


Assuntos
Amidoidrolases/metabolismo , Ácidos Araquidônicos/metabolismo , Ingestão de Alimentos , Endocanabinoides/metabolismo , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/metabolismo , Leptina/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/genética , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Gorduras na Dieta/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Técnicas de Introdução de Genes , Leptina/deficiência , Masculino , Camundongos , Camundongos Knockout , Polimorfismo Genético
19.
Pharmacol Ther ; 192: 1-19, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29964123

RESUMO

Therapeutics for arachidonic acid pathways began with the development of non-steroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX). The enzymatic pathways and arachidonic acid metabolites and respective receptors have been successfully targeted and therapeutics developed for pain, inflammation, pulmonary and cardiovascular diseases. These drugs target the COX and lipoxygenase pathways but not the third branch for arachidonic acid metabolism, the cytochrome P450 (CYP) pathway. Small molecule compounds targeting enzymes and CYP epoxy-fatty acid metabolites have evolved rapidly over the last two decades. These therapeutics have primarily focused on inhibiting soluble epoxide hydrolase (sEH) or agonist mimetics for epoxyeicosatrienoic acids (EET). Based on preclinical animal model studies and human studies, major therapeutic indications for these sEH inhibitors and EET mimics/analogs are renal and cardiovascular diseases. Novel small molecules that inhibit sEH have advanced to human clinical trials and demonstrate promise for cardiovascular diseases. Challenges remain for sEH inhibitor and EET analog drug development; however, there is a high likelihood that a drug that acts on this third branch of arachidonic acid metabolism will be utilized to treat a cardiovascular or kidney disease in the next decade.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Ácidos Araquidônicos/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Sistema Enzimático do Citocromo P-450/metabolismo , Descoberta de Drogas/tendências , Nefropatias/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/química , Doenças Cardiovasculares/enzimologia , Ensaios Clínicos como Assunto , Citocromo P-450 CYP2J2 , Inibidores das Enzimas do Citocromo P-450/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Nefropatias/enzimologia
20.
Sci Rep ; 8(1): 9585, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941919

RESUMO

Accumulation of ubiquitinated protein aggregates is a common pathology associated with a number of neurodegenerative diseases and selective autophagy plays a critical role in their elimination. Although aging-related decreases in protein degradation properties may enhance protein aggregation, it remains unclear whether proteasome dysfunction is indispensable for ubiquitinated-protein aggregation in neurodegenerative diseases. Here, we show that N-oleoyl-dopamine and N-arachidonyl-dopamine, which are endogenous brain substances and belong to the N-acyldopamine (AcylDA) family, generate cellular inclusions through aggresome formation without proteasome inhibition. Although AcylDA itself does not inhibit proteasome activity in vitro, it activates the rearrangement of vimentin distribution to form a vimentin cage surrounding aggresomes and sequesters ubiquitinated proteins in aggresomes. The gene transcription of p62/SQSTM1 was significantly increased by AcylDAs, whereas the transcription of other ubiquitin-dependent autophagy receptors was unaffected. Genetic depletion of p62 resulted in the loss of ubiquitinated-protein sequestration in aggresomes, indicating that p62 is a critical component of aggresomes. Furthermore, AcylDAs accelerate the aggregation of mutant huntingtin exon 1 proteins. These results suggest that aggresome formation does not require proteasome dysfunction and AcylDA-induced aggresome formation may participate in forming cytoplasmic protein inclusions.


Assuntos
Ácidos Araquidônicos/metabolismo , Dopamina/análogos & derivados , Regulação da Expressão Gênica/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Ácidos Araquidônicos/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular , Dopamina/metabolismo , Dopamina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Leupeptinas/farmacologia , Mutação , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA