Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 185: 108488, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359550

RESUMO

Inorganic trivalent arsenic (iAsⅢ) at environmentally relevant levels has been found to cause developmental toxicity. Maternal exposure to iAsⅢ leads to enduring hepatic lipid deposition in later adult life. However, the exact mechanism in iAsⅢ induced hepatic developmental hazards is still unclear. In this study, we initially found that gestational exposure to iAsⅢ at an environmentally relevant concentration disturbs lipid metabolism and reduces levels of alpha-ketoglutaric acid (α-KG), an important mitochondrial metabolite during the citric acid cycle, in fetal livers. Further, gestational supplementation of α-KG alleviated hepatic lipid deposition caused by early-life exposure to iAsⅢ. This beneficial effect was particularly pronounced in female offspring. α-KG partially restored the ß-oxidation process in hepatic tissues by hydroxymethylation modifications of carnitine palmitoyltransferase 1a (Cpt1a) gene during fetal development. Insufficient ß-oxidation capacities probably play a crucial role in hepatic lipid deposition in adulthood following in utero arsenite exposure, which can be efficiently counterbalanced by replenishing α-KG. These results suggest that gestational administration of α-KG can ameliorate hepatic lipid deposition caused by iAsⅢ in female adult offspring partially through epigenetic reprogramming of the ß-oxidation pathway. Furthermore, α-KG shows potential as an interventive target to mitigate the harmful effects of arsenic-induced hepatic developmental toxicity.


Assuntos
Intoxicação por Arsênico , Arsênio , Arsenicais , Humanos , Adulto , Feminino , Arsênio/toxicidade , Arsênio/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Arsenicais/metabolismo , Intoxicação por Arsênico/metabolismo , Fígado , Suplementos Nutricionais , Epigênese Genética , Lipídeos
2.
Acta Biomater ; 173: 442-456, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984632

RESUMO

Osteoporosis (OP), which largely increases the risk of fractures, is the most common chronic degenerative orthopedic disease in the elderly due to the imbalance of bone homeostasis. Alpha-ketoglutaric acid (AKG), an endogenous metabolic intermediate involved in osteogenesis, plays critical roles in osteogenic differentiation and mineralization and the inhibition of osteoclastogenic differentiation. However, the low bioavailability and poor bone-targeting efficiency of AKG seriously limit its efficacy in OP treatment. In this work, a bone-targeting, near-infrared emissive lanthanide luminescence nanocarrier loaded with AKG (ß-NaYF4:7%Yb, 60%Nd@NaLuF4@mSiO2-EDTA-AKG, abbreviated as LMEK) is developed for the enhancement of AKG efficacy in OP therapy. By utilizing the NIR-II luminescence (>1000 nm) of LMEK, whole-body bone imaging with high spatial resolution is achieved to confirm the bone enrichment of AKG noninvasively in vivo. The results reveal that LMEK exhibits a remarkable OP therapeutic effect in improving the osseointegration of the surrounding bone in the ovariectomized OP mice models, which is validated by the enhanced inhibition of osteoclast through hypoxia-inducible factor-1α suppression and promotion of osteogenic differentiation in osteoblast. Notably, the dose of AKG in LMEK can be reduced to only 0.2 % of the dose when pure AKG is used in therapy, which dramatically improves the bioavailability of AKG and mitigates the metabolism burden. This work provides a strategy to conquer the low utilization of AKG in OP therapy, which not only overcomes the challenges in AKG efficacy for OP treatment but also offers insights into the development and application of other potential drugs for skeletal diseases. STATEMENT OF SIGNIFICANCE: Alpha-ketoglutarate (AKG) is an intermediate within the Krebs cycle, participating in diverse metabolic and cellular processes, showing potential for osteoporosis (OP) therapy. However, AKG's limited bioavailability and inefficient bone-targeting hinder its effectiveness in treating OP. Herein, a near-infrared emissive nanocarrier is developed that precisely targets bones and delivers AKG, bolstering its effectiveness in OP therapy. Thanks to this efficient bone-targeting delivery, the AKG dosage is reduced to 0.2 % of the conventional treatment level. This marks the first utilization of a bone-targeting nanocarrier to amplify AKG's bioavailability and OP therapy efficacy. Furthermore, the mechanism of AKG-loaded nanocarrier regulating the biological behavior of osteoclasts and osteoblasts mediated is tentatively explored.


Assuntos
Ácidos Cetoglutáricos , Osteoporose , Humanos , Camundongos , Animais , Idoso , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/uso terapêutico , Osteogênese , Luminescência , Osteoporose/tratamento farmacológico , Osteoblastos/metabolismo
3.
Nat Immunol ; 24(11): 1921-1932, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813964

RESUMO

The malate shuttle is traditionally understood to maintain NAD+/NADH balance between the cytosol and mitochondria. Whether the malate shuttle has additional functions is unclear. Here we show that chronic viral infections induce CD8+ T cell expression of GOT1, a central enzyme in the malate shuttle. Got1 deficiency decreased the NAD+/NADH ratio and limited antiviral CD8+ T cell responses to chronic infection; however, increasing the NAD+/NADH ratio did not restore T cell responses. Got1 deficiency reduced the production of the ammonia scavenger 2-ketoglutarate (2-KG) from glutaminolysis and led to a toxic accumulation of ammonia in CD8+ T cells. Supplementation with 2-KG assimilated and detoxified ammonia in Got1-deficient T cells and restored antiviral responses. These data indicate that the major function of the malate shuttle in CD8+ T cells is not to maintain the NAD+/NADH balance but rather to detoxify ammonia and enable sustainable ammonia-neutral glutamine catabolism in CD8+ T cells during chronic infection.


Assuntos
Ácidos Cetoglutáricos , NAD , Humanos , Oxirredução , NAD/metabolismo , Ácidos Cetoglutáricos/metabolismo , Amônia , Malatos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Infecção Persistente , Antivirais
4.
Cell Rep ; 42(7): 112770, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37422761

RESUMO

Increased metabolic activity usually provides energy and nutrients for biomass synthesis and is indispensable for the progression of the cell cycle. Here, we find a role for α-ketoglutarate (αKG) generation in regulating cell-cycle gene transcription. A reduction in cellular αKG levels triggered by malic enzyme 2 (ME2) or isocitrate dehydrogenase 1 (IDH1) depletion leads to a pronounced arrest in G1 phase, while αKG supplementation promotes cell-cycle progression. Mechanistically, αKG directly binds to RNA polymerase II (RNAPII) and increases the level of RNAPII binding to the cyclin D1 gene promoter via promoting pre-initiation complex (PIC) assembly, consequently enhancing cyclin D1 transcription. Notably, αKG addition is sufficient to restore cyclin D1 expression in ME2- or IDH1-depleted cells, facilitating cell-cycle progression and proliferation in these cells. Therefore, our findings indicate a function of αKG in gene transcriptional regulation and cell-cycle control.


Assuntos
Ciclina D1 , Ácidos Cetoglutáricos , Ciclina D1/genética , Ciclina D1/metabolismo , Ácidos Cetoglutáricos/metabolismo , RNA Polimerase II , Ciclo Celular , Fase G1
5.
Clin Exp Immunol ; 214(2): 197-208, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37498307

RESUMO

The interplay between platelets and leukocytes contributes to the pathogenesis of inflammation, thrombosis, and cardiovascular diseases (CVDs) in type 2 diabetes (T2D). Our recent studies described alpha-ketoglutarate (αKG), a Krebs cycle intermediate metabolite as an inhibitor to platelets and leukocytes activation by suppressing phosphorylated-Akt (pAkt) through augmentation of prolyl hydroxylase-2 (PHD2). Dietary supplementation with a pharmacological concentration of αKG significantly inhibited lung inflammation in mice with either SARS-CoV-2 infection or exposed to hypoxia treatment. We therefore investigated if αKG supplementation could suppress hyperactivation of these blood cells and reduce thromboinflammatory complications in T2D. Our study describes that dietary supplementation with αKG (8 mg/100 g body wt. daily) for 7 days significantly reduced the activation of platelets and leukocytes (neutrophils and monocytes), and accumulation of IL1ß, TNFα, and IL6 in peripheral blood of T2D mice. αKG also reduced the infiltration of platelets and leukocytes, and accumulation of inflammatory cytokines in lungs by suppressing pAkt and pP65 signaling. In a cross-sectional investigation, our study also described the elevated platelet-leukocyte aggregates and pro-inflammatory cytokines in circulation of T2D patients. T2D platelets and leukocytes showed an increased aggregation and thrombus formation in vitro. Interestingly, a pre-incubation of T2D blood samples with octyl αKG significantly suppressed the activation of these blood cells and ameliorated aggregate/thrombus formation in vitro. Thus, suggesting a potential therapeutic role of αKG against inflammation, thrombosis, and CVDs in T2D.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Trombose , Humanos , Camundongos , Animais , Ácidos Cetoglutáricos/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ativação Plaquetária , Inflamação/metabolismo , Leucócitos/patologia , Plaquetas/patologia , Trombose/tratamento farmacológico , Trombose/etiologia , Doenças Cardiovasculares/patologia , Citocinas/metabolismo , Suplementos Nutricionais
6.
Nat Struct Mol Biol ; 30(11): 1786-1793, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37482561

RESUMO

In mammals, the kidney plays an essential role in maintaining blood homeostasis through the selective uptake, retention or elimination of toxins, drugs and metabolites. Organic anion transporters (OATs) are responsible for the recognition of metabolites and toxins in the nephron and their eventual urinary excretion. Inhibition of OATs is used therapeutically to improve drug efficacy and reduce nephrotoxicity. The founding member of the renal organic anion transporter family, OAT1 (also known as SLC22A6), uses the export of α-ketoglutarate (α-KG), a key intermediate in the Krebs cycle, to drive selective transport and is allosterically regulated by intracellular chloride. However, the mechanisms linking metabolite cycling, drug transport and intracellular chloride remain obscure. Here, we present cryogenic-electron microscopy structures of OAT1 bound to α-KG, the antiviral tenofovir and clinical inhibitor probenecid, used in the treatment of Gout. Complementary in vivo cellular assays explain the molecular basis for α-KG driven drug elimination and the allosteric regulation of organic anion transport in the kidney by chloride.


Assuntos
Cloretos , Proteína 1 Transportadora de Ânions Orgânicos , Animais , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Cloretos/metabolismo , Rim/metabolismo , Transporte Biológico , Ânions/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mamíferos/metabolismo
7.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175250

RESUMO

Skeletal muscle is closely linked to energy metabolism, but it is inevitably deprived of energy. Cellular differentiation is an essential and energy-demanding process in skeletal muscle development. Much attention has been paid to identifying beneficial factors that promote skeletal muscle satellite cell differentiation and further understanding the underlying regulatory mechanisms. As a critical metabolic substrate or regulator, α-ketoglutarate (AKG) has been recognized as a potential nutritional supplement or therapeutic target for skeletal muscle. We have previously found beneficial effects of AKG supplementation on the proliferation of C2C12 myoblasts cultured under both normal and energy-deficient conditions and have further elucidated the underlying metabolic mechanisms. However, it remains unclear what role AKG plays in myotube formation in different energy states. In the present study, we investigated the effects of AKG supplementation on the differentiation of C2C12 myoblasts cultured in normal medium (Nor myotubes) and low glucose medium (Low myotubes) and performed NMR-based metabonomic profiling to address AKG-induced metabolic changes in both Nor and Low myotubes. Significantly, AKG supplementation promoted myotube formation and induced metabolic remodeling in myotubes under normal medium and low glucose medium, including improved energy metabolism and enhanced antioxidant capacity. Specifically, AKG mainly altered amino acid metabolism and antioxidant metabolism and upregulated glycine levels and antioxidase expression. Our results are typical for the mechanistic understanding of the effects of AKG supplementation on myotube formation in the two energy states. This study may be beneficial for further exploring the applications of AKG supplementation in sports, exercise, and therapy.


Assuntos
Antioxidantes , Ácidos Cetoglutáricos , Antioxidantes/metabolismo , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Suplementos Nutricionais , Glucose
8.
Cell Rep Med ; 4(5): 101026, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37137303

RESUMO

Recurrent spontaneous miscarriage (RSM) affects 1%-2% of fertile women worldwide and poses a risk of future pregnancy complications. Increasing evidence has indicated that defective endometrial stromal decidualization is a potential cause of RSM. Here, we perform liquid chromatography with mass spectrometry (LC-MS)-based metabolite profiling in human endometrial stromal cells (ESCs) and differentiated ESCs (DESCs) and find that accumulated α-ketoglutarate (αKG) derived from activated glutaminolysis contributes to maternal decidualization. Contrarily, ESCs obtained from patients with RSM show glutaminolysis blockade and aberrant decidualization. We further find that enhanced Gln-Glu-αKG flux decreases histone methylation and supports ATP production during decidualization. In vivo, feeding mice a Glu-free diet leads to a reduction of αKG, impaired decidualization, and an increase of fetal loss rate. Isotopic tracing approaches demonstrate Gln-dependent oxidative metabolism as a prevalent direction during decidualization. Our results demonstrate an essential prerequisite of Gln-Glu-αKG flux to regulate maternal decidualization, suggesting αKG supplementation as a putative strategy to rectify deficient decidualization in patients with RSM.


Assuntos
Aborto Espontâneo , Decídua , Gravidez , Humanos , Feminino , Camundongos , Animais , Decídua/metabolismo , Ácidos Cetoglutáricos/metabolismo , Aborto Espontâneo/metabolismo , Células Cultivadas , Endométrio/metabolismo
9.
Mol Cell Endocrinol ; 571: 111935, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37098377

RESUMO

Assisted reproductive technology is widely accepted as an effective treatment to improve female fertility, but the decline of aging oocyte quality remains an important factor in the decrease of female fecundity. However, the effective strategies for improving oocyte aging are still not well understood. In the study, we demonstrated that ROS content and abnormal spindle proportion were increased and mitochondrial membrane potential was decreased in aging oocytes. However, supplementation of α-ketoglutarate (α-KG), an immediate metabolite in the tricarboxylic acid cycle (TCA), for 4 months to aging mice, significantly increased the ovarian reserve showed by more follicle numbers observed. In addition, the oocyte quality was significantly improved, as demonstrated by reduced fragmentation rate and decreased reactive oxygen species (ROS) levels, in addition to a lower rate of abnormal spindle assembly, thereby improving the mitochondrial membrane potential. Consistent with the in vivo data, α-KG administration also improved the post-ovulated aging oocyte quality and early embryonic development by improving mitochondrial functions and reducing ROS accumulation and abnormal spindle assembly. Our data revealed that α-KG supplementation might be an effective strategy to improve the quality of aging oocytes in vivo or in vitro.


Assuntos
Reserva Ovariana , Gravidez , Camundongos , Feminino , Animais , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oócitos/metabolismo , Suplementos Nutricionais
10.
Redox Biol ; 62: 102663, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36924682

RESUMO

Osteoarthritis (OA) is an age-related metabolic disease. Low-grade inflammation and oxidative stress are the last common pathway of OA. α-ketoglutarate (α-KG) is an essential physiological metabolite from the mitochondrial tricarboxylic acid (TCA) cycle, with multiple functions, including anti-inflammation and antioxidation, and exhibits decreased serum levels with age. Herein, we aimed to investigate the effect and mechanism of α-KG on OA. We first quantified the α-KG levels in human cartilage tissue and osteoarthritic chondrocytes induced by IL-1ß. Besides, IL-1ß-induced osteoarthritic chondrocytes were treated with different concentrations of α-KG. Chondrocyte proliferation and apoptosis, synthesis and degradation of extracellular matrix, and inflammation mediators were analyzed. RNA sequencing was used to explore the mechanism of α-KG, and mitophagy and oxidative stress levels were further detected. These results were verified in an anterior cruciate ligament transection (ACLT) induced age-related OA rat model. We found that α-KG content decreased by 31.32% in damaged medial cartilage than in normal lateral cartilage and by 36.85% in IL-1ß-induced human osteoarthritic chondrocytes compared to control. α-KG supplementation reversed IL-1ß-induced chondrocyte proliferation inhibition and apoptosis, increased the transcriptomic and proteinic expression of ACAN and COL2A1 in vivo and in vitro, but inhibited the expression of MMP13, ADAMTS5, IL-6, and TNF-α. In mechanism, α-KG promoted mitophagy and inhibited ROS generation, and these effects could be prevented by Mdivi-1 (a mitophagy inhibitor). Overall, α-KG content decreased in human OA cartilage and IL-1ß-induced osteoarthritic chondrocytes. Moreover, α-KG supplementation could alleviate osteoarthritic phenotype by regulating mitophagy and oxidative stress, suggesting its potential as a therapeutic target to ameliorate OA.


Assuntos
Ácidos Cetoglutáricos , Osteoartrite , Humanos , Ratos , Animais , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/uso terapêutico , Mitofagia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Condrócitos/metabolismo , Estresse Oxidativo , Interleucina-1beta/metabolismo , Células Cultivadas
11.
Nutrients ; 15(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36771407

RESUMO

Age-related osteoporosis, a high-prevalence disease in the aged population, is generally attributed to the excessive activity of osteoclasts. Most approved drugs treat osteoporosis by inhibition of osteoclasts. Although in vivo studies have shown that alpha-ketoglutarate (AKG), an intermediate in the TCA cycle, can ameliorate age-related osteoporosis, the effects of AKG on osteoclastogenesis and the underlying mechanism of its action have not been studied yet. Here, we showed that the elevation of intracellular AKG levels by supplementing dimethyl AKG (DM-AKG, a cell-permeable derivative of AKG) inhibits the receptor activator of NF-κB ligand (RANKL)-induced osteoclasts differentiation from primary bone marrow-derived macrophages (BMMs) and RAW264.7 cells in vitro. We further found that DM-AKG treatment suppresses NF-κB signaling and oxidative phosphorylation (OXPHOS) during RANKL-induced osteoclastogenesis in RAW264.7 cells. Interestingly, dimethyl oxalylglycine (DMOG), an AKG competitive inhibitor of AKG-dependent prolyl hydroxylases (PHDs), antagonizes the suppression of the RANKL-activated NF-κB signaling pathway caused by DM-AKG treatment. Furthermore, blocked PHD1 expression (also known as EglN2), instead of PHD2 or PHD3, was confirmed to reverse the DM-AKG treatment-induced suppression of the RANKL-activated NF-κB signaling pathway. Accordingly, blocked PHD1 expression antagonized the inhibitory effects of DM-AKG on osteoclastogenesis. Together, our finding suggests that the elevation of intracellular AKG levels inhibits osteoclastogenesis by suppressing RANKL-activated NF-κB signaling in a PHD1-dependent manner, which may provide a novel nutritional strategy for osteoporosis treatment.


Assuntos
Reabsorção Óssea , Osteoporose , Humanos , Idoso , NF-kappa B/metabolismo , Osteogênese , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/metabolismo , Transdução de Sinais , Osteoclastos , Diferenciação Celular , Osteoporose/metabolismo , Ligante RANK/farmacologia , Ligante RANK/metabolismo , Reabsorção Óssea/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/farmacologia
12.
J Alzheimers Dis ; 89(4): 1413-1425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36057824

RESUMO

BACKGROUND: We previously reported the effects of a probiotic strain, Bifidobacterium breve MCC1274, in improving cognitive function in preclinical and clinical studies. Recently, we demonstrated that supplementation of this strain led to decreased amyloid-ß production, attenuated microglial activation, and suppressed inflammation reaction in the brain of APP knock-in (AppNL - G - F) mice. OBJECTIVE: In this study, we investigated the plasma metabolites to reveal the mechanism of action of this probiotic strain in this Alzheimer's disease (AD)-like model. METHODS: Three-month-old mice were orally supplemented with B. breve MCC1274 or saline for four months and their plasma metabolites were comprehensively analyzed using CE-FTMS and LC-TOFMS. RESULTS: Principal component analysis showed a significant difference in the plasma metabolites between the probiotic and control groups (PERMANOVA, p = 0.03). The levels of soy isoflavones (e.g., genistein) and indole derivatives of tryptophan (e.g., 5-methoxyindoleacetic acid), metabolites with potent anti-oxidative activities were significantly increased in the probiotic group. Moreover, there were increased levels of glutathione-related metabolites (e.g., glutathione (GSSG)_divalent, ophthalmic acid) and TCA cycle-related metabolites (e.g., 2-Oxoglutaric acid, succinic acid levels) in the probiotic group. Similar alternations were observed in the wild-type mice by the probiotic supplementation. CONCLUSION: These results suggest that the supplementation of B. breve MCC1274 enhanced the bioavailability of potential anti-oxidative metabolites from the gut and addressed critical gaps in our understanding of the gut-brain axis underlying the mechanisms of the probiotic action of this strain in the improvement of cognitive function.


Assuntos
Bifidobacterium breve , Animais , Bifidobacterium breve/metabolismo , Suplementos Nutricionais , Genisteína/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Indóis , Ácidos Cetoglutáricos/metabolismo , Camundongos , Ácido Succínico/metabolismo , Triptofano
13.
Biochim Biophys Acta Gen Subj ; 1866(12): 130226, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35987369

RESUMO

BACKGROUND: Diets rich in fats and/or carbohydrates are used to study obesity and related metabolic complications. We studied the effects of a high fat high fructose diet (HFFD) on intermediary metabolism and the development of oxidative stress in mouse liver and tested the ability of alpha-ketoglutarate to prevent HFFD-induced changes. METHODS: Male mice were fed a standard diet (10% kcal fat) or HFFD (45% kcal fat, 15% kcal fructose) with or without addition of 1% alpha-ketoglutarate (AKG) in drinking water for 8 weeks. RESULTS: The HFFD had no effect on body mass but activated fructolysis and glycolysis and induced inflammation and oxidative stress with a concomitant increase in activity of antioxidant enzymes in the mouse liver. HFFD-fed mice also showed lower mRNA levels of pyruvate dehydrogenase kinase 4 (PDK4) and slightly increased intensity of mitochondrial respiration in liver compared to mice on the standard diet. No significant effects of HFFD on transcription of PDK2 and PGC1α, a peroxisome proliferator-activated receptor co-activator-1α, or protein levels of p-AMPK, an active form of AMP-activated protein kinase, were found. The addition of AKG to HFFD decreased oxidized glutathione levels, did not affect levels of lipid peroxides and PDK4 transcripts but increased activities of hexokinase and phosphofructokinase in mouse liver. CONCLUSIONS: Supplementation with AKG had weak modulating effects on HFFD-induced oxidative stress and changes in energetics in mouse liver. GENERAL SIGNIFICANCE: Our research expands the understanding of diet-induced metabolic switching and elucidates further roles of alpha-ketoglutarate as a metabolic regulator.


Assuntos
Frutose , Ácidos Cetoglutáricos , Masculino , Camundongos , Animais , Frutose/efeitos adversos , Frutose/metabolismo , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo , Fígado/metabolismo
14.
Naunyn Schmiedebergs Arch Pharmacol ; 395(11): 1373-1385, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904584

RESUMO

Numerous studies reveal that metabolism dysfunction contributes to the development of pathological cardiac hypertrophy. While the abnormal lipid and glucose utilization in cardiomyocytes responding to hypertrophic stimuli have been extensively studied, the alteration and implication of glutaminolysis are rarely discussed. In the present work, we provide the first evidence that glutamate dehydrogenase (GDH), an enzyme that catalyzes conversion of glutamate into ɑ-ketoglutarate (AKG), participates in isoprenaline (ISO)-induced cardiac hypertrophy through activating mammalian target of rapamycin (mTOR) signaling. The expression and activity of GDH were enhanced in cultured cardiomyocytes and rat hearts following ISO treatment. Overexpression of GDH, but not its enzymatically inactive mutant, provoked cardiac hypertrophy. In contrast, GDH knockdown could relieve ISO-triggered hypertrophic responses. The intracellular AKG level was elevated by ISO or GDH overexpression, which led to increased phosphorylation of mTOR and downstream effector ribosomal protein S6 kinase (S6K). Exogenous supplement of AKG also resulted in mTOR activation and cardiomyocyte hypertrophy. However, incubation with rapamycin, an mTOR inhibitor, attenuated hypertrophic responses in cardiomyocytes. Furthermore, GDH silencing protected rats from ISO-induced cardiac hypertrophy. These findings give a further insight into the role of GDH in cardiac hypertrophy and suggest it as a potential target for hypertrophy-related cardiomyopathy.


Assuntos
Glutamato Desidrogenase , Ácidos Cetoglutáricos , Animais , Cardiomegalia/metabolismo , Glucose/metabolismo , Glutamato Desidrogenase/metabolismo , Glutamatos/metabolismo , Isoproterenol/farmacologia , Ácidos Cetoglutáricos/metabolismo , Lipídeos , Miócitos Cardíacos/metabolismo , Ratos , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/farmacologia , Desidrogenase do Álcool de Açúcar , Serina-Treonina Quinases TOR/metabolismo
15.
Sci Immunol ; 7(70): eabm8161, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486677

RESUMO

Effective T cell-mediated immune responses require the proper allocation of metabolic resources to sustain growth, proliferation, and cytokine production. Epigenetic control of the genome also governs T cell transcriptome and T cell lineage commitment and maintenance. Cellular metabolic programs interact with epigenetic regulation by providing substrates for covalent modifications of chromatin. By using complementary genetic, epigenetic, and metabolic approaches, we revealed that tricarboxylic acid (TCA) cycle flux fueled biosynthetic processes while controlling the ratio of succinate/α-ketoglutarate (α-KG) to modulate the activities of dioxygenases that are critical for driving T cell inflammation. In contrast to cancer cells, where succinate dehydrogenase (SDH)/complex II inactivation drives cell transformation and growth, SDH/complex II deficiency in T cells caused proliferation and survival defects when the TCA cycle was truncated, blocking carbon flux to support nucleoside biosynthesis. Replenishing the intracellular nucleoside pool partially relieved the dependence of T cells on SDH/complex II for proliferation and survival. SDH deficiency induced a proinflammatory gene signature in T cells and promoted T helper 1 and T helper 17 lineage differentiation. An increasing succinate/α-KG ratio in SDH-deficient T cells promoted inflammation by changing the pattern of the transcriptional and chromatin accessibility signatures and consequentially increasing the expression of the transcription factor, PR domain zinc finger protein 1. Collectively, our studies revealed a role of SDH/complex II in allocating carbon resources for anabolic processes and epigenetic regulation in T cell proliferation and inflammation.


Assuntos
Epigênese Genética , Succinato Desidrogenase , Proliferação de Células , Cromatina , Complexo II de Transporte de Elétrons/deficiência , Humanos , Inflamação/genética , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Erros Inatos do Metabolismo , Doenças Mitocondriais , Nucleosídeos , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Succinatos
16.
Cell Rep ; 39(3): 110719, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443173

RESUMO

Metabolic adaptations can directly influence the scope and scale of macrophage activation and polarization. Here we explore the impact of type I interferon (IFNß) on macrophage metabolism and its broader impact on cytokine signaling pathways. We find that IFNß simultaneously increased the expression of immune-responsive gene 1 and itaconate production while inhibiting isocitrate dehydrogenase activity and restricting α-ketoglutarate accumulation. IFNß also increased the flux of glutamine-derived carbon into the tricarboxylic acid cycle to boost succinate levels. Combined, we identify that IFNß controls the cellular α-ketoglutarate/succinate ratio. We show that by lowering the α-ketoglutarate/succinate ratio, IFNß potently blocks the JMJD3-IRF4-dependent pathway in GM-CSF and IL-4 activated macrophages. The suppressive effects of IFNß on JMJD3-IRF4-dependent responses, including M2 polarization and GM-CSF-induced inflammatory pain, were reversed by supplementation with α-ketoglutarate. These results reveal that IFNß modulates macrophage activation and polarization through control of the cellular α-ketoglutarate/succinate ratio.


Assuntos
Interferon Tipo I , Ativação de Macrófagos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Ácido Succínico
17.
New Phytol ; 234(4): 1394-1410, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35238413

RESUMO

Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.


Assuntos
Alcaloides , Dioxigenases , Solanum lycopersicum , Solanum tuberosum , Solanum , Alcaloides/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Solanum lycopersicum/genética , Solanum/genética , Solanum/metabolismo , Solanum tuberosum/genética
18.
Nutrients ; 14(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35334805

RESUMO

The metabolite, alpha-ketoglutarate (aKG), shows promise as an approach for ameliorating colitis, but much remains unknown about the full extent of its effects on the metabolome and mucosal barrier. To further elucidate this matter, C57BL/6 male mice received drinking water with or without 1% aKG for three weeks, then were subjected to 2.5% dextran sulfate sodium (DSS) induction for 7 days followed by 7 days of recovery. Cecal content and intestinal tissue samples were analyzed for changes in metabolite profile and signaling pathways. Gas chromatography-mass spectrometry (GC-MS) metabolomics revealed a separation between the metabolome of mice treated with or without aKG; putrescine and glycine were significantly increased; and ornithine and amide products, oleamide and urea were significantly decreased. Based on a pathway analysis, aKG treatment induced metabolite changes and enriched glutathione metabolism and the urea cycle. Additionally, signaling pathways committing epithelial cells to the secretory lineage were elevated in aKG-treated mice. Consistently, aKG supplementation increased goblet cells staining, mRNA expression of mucin 2, and, trefoil factor 3 and Krüppel-like factor 4, markers of goblet cell differentiation. These data suggest the ameliorating the effects of aKG against chemically induced colitis involves a reduction in harmful metabolites and the promotion of goblet cell differentiation, resulting in a more-fortified mucus layer.


Assuntos
Colite , Células Caliciformes , Animais , Diferenciação Celular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Células Caliciformes/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ureia/metabolismo
19.
Mol Nutr Food Res ; 66(10): e2100955, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35220672

RESUMO

SCOPE: Inflammatory bowel disease is an inflammatory gastrointestinal disorder associated with intestinal barrier damage, cell proliferation disorder, and dysbiosis of the intestinal microbiota. It remains unknown whether alpha-ketoglutarate (α-KG) can alleviate colitis in mice. METHODS AND RESULTS: Six-week-old male C57BL/6 mice supplemented with or without 0.5% α-KG (delivered in the form of sodium salt) are subjected to drinking water or 2.5% DSS to induce colitis. The results show that α-KG administration is attenuated the severity of colitis, as is indicated by reduced body-weight loss, colon shortening and colonic hyperplasia, and repressed proinflammatory cytokine secretion in DSS-challenged mice. Additionally, DSS-induced increases in malondialdehyde (MDA) and hydrogen peroxide (H2 O2 ), and decreases in glutathione (GSH) levels are attenuated by α-KG administration. Further study shows that the protective effect of α-KG is associated with restoring gut barrier integrity by enhancing the expression of tight junction proteins, increasing Lactobacillus levels, and regulating gut hyperplasia by the Wnt-Hippo signaling pathway in DSS-induced colitis. CONCLUSION: Collectively, the data provided herein demonstrate that α-KG administration is attenuated mucosal inflammation, barrier dysfunction, and gut microflora dysbiosis. This beneficial effect is associated with increased Lactobacillus levels and regulated colon hyperplasia by the Wnt-Hippo signaling pathway.


Assuntos
Colite , Disbiose , Animais , Proliferação de Células , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose/metabolismo , Via de Sinalização Hippo , Hiperplasia/patologia , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Lactobacillus , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt
20.
Trends Endocrinol Metab ; 33(2): 136-146, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952764

RESUMO

Alpha-ketoglutarate (AKG) is an intermediate in the Krebs cycle involved in various metabolic and cellular pathways. As an antioxidant, AKG interferes in nitrogen and ammonia balance, and affects epigenetic and immune regulation. These pleiotropic functions of AKG suggest it may also extend human healthspan. Recent studies in worms and mice support this concept. A few studies published in the 1980s and 1990s in humans suggested the potential benefits of AKG in muscle growth, wound healing, and in promoting faster recovery after surgery. So far there are no recently published studies demonstrating the role of AKG in treating aging and age-related diseases; hence, further clinical studies are required to better understand the role of AKG in humans. This review will discuss the regulatory role of AKG in aging, as well as its potential therapeutic use in humans to treat age-related diseases.


Assuntos
Antioxidantes , Ácidos Cetoglutáricos , Animais , Antioxidantes/metabolismo , Ciclo do Ácido Cítrico , Suplementos Nutricionais , Humanos , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/uso terapêutico , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA