Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7665, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561398

RESUMO

The integrity of the intestinal mucus barrier is crucial for human health, as it serves as the body's first line of defense against pathogens. However, postnatal development of the mucus barrier and interactions between maturity and its ability to adapt to external challenges in neonatal infants remain unclear. In this study, we unveil a distinct developmental trajectory of the mucus barrier in preterm piglets, leading to enhanced mucus microstructure and reduced mucus diffusivity compared to term piglets. Notably, we found that necrotizing enterocolitis (NEC) is associated with increased mucus diffusivity of our large pathogen model compound, establishing a direct link between the NEC condition and the mucus barrier. Furthermore, we observed that addition of sodium decanoate had varying effects on mucus diffusivity depending on maturity and health state of the piglets. These findings demonstrate that regulatory mechanisms governing the neonatal mucosal barrier are highly complex and are influenced by age, maturity, and health conditions. Therefore, our results highlight the need for specific therapeutic strategies tailored to each neonatal period to ensure optimal gut health.


Assuntos
Ácidos Decanoicos , Enterocolite Necrosante , Muco , Recém-Nascido , Animais , Humanos , Suínos , Inflamação , Suplementos Nutricionais , Enterocolite Necrosante/tratamento farmacológico , Mucosa Intestinal
2.
Int J Biol Macromol ; 257(Pt 2): 128641, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061520

RESUMO

The present work reports an optimization of the synthesis of MLM-type (medium, long, medium) structured lipids (SL) through an acidolysis reaction of grape seed oil with capric acid catalyzed by Rhizopus oryzae lipase immobilized. At first, tests were carried out by preparing the biocatalysts using enzyme loadings (0.15 to 1 g of enzymatic powder) for each gram of support. Enzyme loading was used 0.3 g of enzymatic powder, and hydrolytic activity of 1860 ± 23.4 IU/g was reached. Optimized conditions determined by the Central Composite Rotatable Design (CCRD) revealed that the acidolysis reaction reached approximately 59 % incorporation degree (%ID) after 24 h, in addition to the fact that the biocatalyst could maintain the incorporation degree in five consecutive cycles. From this high incorporation degree, cell viability assays were performed with murine fibroblast cell lines and human cervical adenocarcinoma cell lines. Concerning the cytotoxicity assays, the concentration of MLM-SL to 1.75 and 2 % v/v were able to induce cell death in 56 % and 64 % of adenocarcinoma cells, respectively. Human cervical adenocarcinoma cells showed greater sensitivity to the induction of cell death when using emulsions with MLM-SL > 1.75 % v/v compared to emulsions with lower content indicating a potential for combating carcinogenic cells.


Assuntos
Adenocarcinoma , Ácidos Decanoicos , Humanos , Animais , Camundongos , Pós , Ácidos Decanoicos/metabolismo , Lipase/metabolismo , Enzimas Imobilizadas/metabolismo
3.
Molecules ; 27(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235161

RESUMO

Inflammation prompts cancer development and promotes all stages of tumorigenesis. Calcitriol is a nutraceutical essential regulator for host health benefits. However, the influence of calcitriol on inflammatory mediators involved in cancer cells is not clear. This study aimed to assess the sensitivity of calcitriol alone and combined with capric acid, and identify the possible influence of calcitriol on inflammatory mediators. The colorectal cancer cell line (HCT116) was induced by LPS/TNF-α and the inflammation and metastatic mediators (IL-1ß, IL-6, IL-17) were quantified in calcitriol and capric acid supplemented colon cancer cells. The mRNA and protein expression of MMP-2, NF-κB and COX-2 were quantified. The significant reduction in MMP-2 expression was confirmed at combination treatment by zymogram analysis. Our findings demonstrated the anti-inflammatory and anti-metastatic potentials of capric acid and calcitriol in individual exposure in a combination of human colon cancer cell lines (HCT116). These abilities may be due to the inhibition of COX-2 mediators and NF-κB transcription factor and reciprocally regulated MMP-2 and MMP-9 signaling pathways. These findings elucidate the activation of COX-2 and NF-κB via disruption of the cellular outer matrix could be considered a novel molecular target suitable for colorectal cancer therapy. This study confirmed that capric acid activates calcitriol sensitization in colon cancer cells and could be used as a successful supplement for intestinal diseases and colon aberrations.


Assuntos
Neoplasias do Colo , Mediadores da Inflamação , Anti-Inflamatórios/uso terapêutico , Calcitriol/farmacologia , Neoplasias do Colo/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ácidos Decanoicos , Humanos , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Interleucina-17 , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , NF-kappa B/metabolismo , RNA Mensageiro , Fator de Necrose Tumoral alfa/metabolismo
4.
Neuropsychopharmacol Rep ; 42(1): 59-69, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994529

RESUMO

AIM: Capric acid (also known as decanoic acid or C10) is one of the fatty acids in the medium-chain triglycerides (MCTs) commonly found in dietary fats. Although dietary treatment with MCTs is recently of great interest for the potential therapeutic effects on neuropsychiatric disorders, the effects of oral administration of C10 on behavior remain to be examined. This study investigated acute and chronic effects of oral administration of C10 on locomotor activity and anxiety-like and depression-related behaviors in adult male C57BL/6J mice. METHODS: To explore the acute effects of C10 administration, mice were subjected to a series of behavioral tests in the following order: light/dark transition, open field, elevated plus maze, Porsolt forced swim, and tail suspension tests, 30 minutes after oral gavage of either vehicle or C10 solution (30 mmol/kg dose in Experiment 1; 0.1, 0.3, 1.0, 3.0 mmol/kg doses in Experiment 2). Next, to examine chronic effects of C10, mice repeatedly administered with either vehicle or C10 solution (0.3, 3.0 mmol/kg doses per day, for 21 days, in Experiment 3) were subjected to behavioral tests without oral administration immediately before each test. RESULTS: The mice administrated with the high dose of C10 (30 mmol/kg) showed lower body weights, shorter distance traveled, and more anxiety-like behavior than vehicle-treated mice, and the results reached study-wide statistical significance. The C10 administration at a lower dose of 0.3 mmol/kg had no significant effects on body weights and induced nominally significantly longer distance traveled than vehicle administration. Repeated administration of C10 at a dose of 3.0 mmol/kg for more than 21 days caused lower body weights and decreased depression-related behavior, although the behavioral differences did not reach study-wide significance. CONCLUSIONS: Although these results suggest dose-dependent effects of oral administration of capric acid on locomotor activity and anxiety-like and depression-related behaviors, further study will be needed to replicate the findings and explore the underlying brain mechanisms.


Assuntos
Comportamento Animal , Depressão , Administração Oral , Animais , Ansiedade/tratamento farmacológico , Ácidos Decanoicos/farmacologia , Depressão/tratamento farmacológico , Ácidos Graxos/farmacologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Mol Brain ; 14(1): 132, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479615

RESUMO

The medium-chain fatty acids octanoic acid (C8) and decanoic acid (C10) are gaining attention as beneficial brain fuels in several neurological disorders. The protective effects of C8 and C10 have been proposed to be driven by hepatic production of ketone bodies. However, plasma ketone levels correlates poorly with the cerebral effects of C8 and C10, suggesting that additional mechanism are in place. Here we investigated cellular C8 and C10 metabolism in the brain and explored how the protective effects of C8 and C10 may be linked to cellular metabolism. Using dynamic isotope labeling, with [U-13C]C8 and [U-13C]C10 as metabolic substrates, we show that both C8 and C10 are oxidatively metabolized in mouse brain slices. The 13C enrichment from metabolism of [U-13C]C8 and [U-13C]C10 was particularly prominent in glutamine, suggesting that C8 and C10 metabolism primarily occurs in astrocytes. This finding was corroborated in cultured astrocytes in which C8 increased the respiration linked to ATP production, whereas C10 elevated the mitochondrial proton leak. When C8 and C10 were provided together as metabolic substrates in brain slices, metabolism of C10 was predominant over that of C8. Furthermore, metabolism of both [U-13C]C8 and [U-13C]C10 was unaffected by etomoxir indicating that it is independent of carnitine palmitoyltransferase I (CPT-1). Finally, we show that inhibition of glutamine synthesis selectively reduced 13C accumulation in GABA from [U-13C]C8 and [U-13C]C10 metabolism in brain slices, demonstrating that the glutamine generated from astrocyte C8 and C10 metabolism is utilized for neuronal GABA synthesis. Collectively, the results show that cerebral C8 and C10 metabolism is linked to the metabolic coupling of neurons and astrocytes, which may serve as a protective metabolic mechanism of C8 and C10 supplementation in neurological disorders.


Assuntos
Astrócitos/metabolismo , Caprilatos/metabolismo , Córtex Cerebral/metabolismo , Ácidos Decanoicos/metabolismo , Glutamina/metabolismo , Neurônios/metabolismo , Ácido gama-Aminobutírico/biossíntese , Animais , Animais não Endogâmicos , Carnitina O-Palmitoiltransferase/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Compostos de Epóxi/farmacologia , Glucose/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Consumo de Oxigênio , Organismos Livres de Patógenos Específicos
6.
Nutrients ; 13(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34444696

RESUMO

Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Our previous studies have shown that royal jelly (RJ) has restored the capacity for tear secretion by modulating muscarinic calcium signaling. RJ contains acetylcholine, which is a major cholinergic neurotransmitter, and a unique set of fatty acids with C 8 to 12 chains, which are expected to be associated with health benefits. The purpose of the present study was to investigate the active components involved in tear secretion capacity, focusing on acetylcholine and fatty acids in RJ. Using the stress-induced dry-eye model mice, it was confirmed that acetylcholine with three fatty acids (10-hydroxydecanoic acid, 8-hydroxyoctanoic acid, and (R)-3,10-dihydroxydecanoic acid) was essential for tear secretion. In ex vivo Ca2+ imaging, these three fatty acids suppressed the decrease in intracellular modulation of Ca2+ in the lacrimal gland by acetylcholine when treated with acetylcholinesterase, indicating that the specific type of RJ fatty acids contributed to the stability of acetylcholine. To our knowledge, this study is the first to confirm that a specific compound combination is important for the pharmacological activities of RJ. Our results elucidate the active molecules and efficacy mechanisms of RJ.


Assuntos
Acetilcolina/administração & dosagem , Síndromes do Olho Seco/tratamento farmacológico , Ácidos Graxos/administração & dosagem , Animais , Caprilatos/administração & dosagem , Ácidos Decanoicos/administração & dosagem , Modelos Animais de Doenças , Quimioterapia Combinada , Camundongos , Lágrimas/efeitos dos fármacos
7.
J Sep Sci ; 44(20): 3870-3882, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418890

RESUMO

An ecofriendly and efficient ultrasound-assisted deep eutectic solvents dispersive liquid-phase microextraction by solidifying the deep eutectic solvents-rich phase was developed to determine azoxystrobin, fludioxonil, epoxiconazole, cyprodinil, and prochloraz in fruit juices and tea drinks by high-performance liquid chromatography. A varieties of environmental hydrophobic deep eutectic solvents serving as extraction agents were prepared using L-menthol and decanoic acid as hydrogen-bond acceptor and hydrogen-bond donor, respectively. The deep eutectic solvents were ultrasonically dispersed in sample solutions, solidified in a freezer and easily harvested. The main variables were optimized by one-factor-at-a-time and response surface test. The new method performs well with relative recovery of 71.75-109.40%, linear range of 2.5-5000 µg/L (r ≥ 0.9968), detection limit of 0.75-8.45 µg/L, quantification limit of 2.5-25 µg/L,, and inter- and intraday relative standard deviations below 13.53 and 14.84%, respectively. As for the extraction mechanism, deep eutectic solvents were disposed into many fine particles in the solution and captured the analytes based on the changes of particle size and quantity in deep eutectic solvents droplets after extraction. The environmental method can successfully detect fungicide residues in real fruit juices and tea drinks.


Assuntos
Ácidos Decanoicos/química , Sucos de Frutas e Vegetais/análise , Fungicidas Industriais/análise , Microextração em Fase Líquida , Mentol/química , Chá/química , Ondas Ultrassônicas , Interações Hidrofóbicas e Hidrofílicas , Solventes/química
8.
Eur J Pharmacol ; 901: 174095, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33862063

RESUMO

Previous clinical studies have shown that anisodamine could improve no-reflow phenomenon and prevent reperfusion arrhythmias, but whether this protective effect is related to the antagonism of the M-type cholinergic receptor or other potential mechanisms is uncertain. The aim of the present study was to investigate the role of the mitochondrial ATP-sensitive potassium channel (mitoK ATP ) in cardioprotective effect of anisodamine against ischemia/reperfusion injury. Anisodamine and 5- hydroxydecanoic acid were used to explore the relationship between anisodamine and mitoK ATP . Using a Langendorff isolated heart ischemia/reperfusion injury model, hemodynamic parameters and reperfusion ventricular arrhythmia were evaluated; in addition, changes in myocardial infarct size, cTnI from coronary effluent and myocardial ultrastructure, as well as ATP, MDA and SOD in myocardial tissues, were detected. In the hypoxia/reoxygenation injury model of neonatal rat cardiomyocyte, cTnI release in the culture medium and levels of ATP, MDA and SOD in cardiomyocytes and mitochondrial membrane potential, were analyzed. Overall, anisodamine could significantly improve the hemodynamic indexes of isolated rat heart injured by ischemia/reperfusion, reduce the occurrence of ventricular reperfusion arrhythmia and myocardial infarction area, and improve the ultrastructural damage of myocardium and mitochondria. The in vitro results demonstrated that anisodamine could improve mitochondrial energy metabolism, reduce oxidative stress and stabilize mitochondrial membrane potential. The cardioprotective effects were significantly inhibited by 5-hydroxydecanoic acid. In conclusion, this study suggests that the opening of mitoK ATP could play an important role in the protective effect of anisodamine against myocardial ischemia/reperfusion injury.


Assuntos
Cardiotônicos/uso terapêutico , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Canais de Potássio/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Alcaloides de Solanáceas/uso terapêutico , Trifosfato de Adenosina/metabolismo , Animais , Arritmias Cardíacas/prevenção & controle , Ácidos Decanoicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Hidroxiácidos/farmacologia , Técnicas In Vitro , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Sprague-Dawley , Alcaloides de Solanáceas/antagonistas & inibidores , Superóxido Dismutase/metabolismo
9.
Sci Rep ; 11(1): 7003, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772066

RESUMO

Octanoic acid is a medium-chained saturated fatty acid found abundantly in the ketogenic dietary supplements containing medium chained triglycerides (MCT) along with decanoic acid. The MCT ketogenic diet is commonly consumed for weight loss but has also showcased neuroprotective potential against neurodegenerative disorders. However, recent clinical findings have reported a critical disadvantage with the long-term consumption of ketogenic diet i.e. bone loss. The following study was employed to investigate whether the two major components of MCT diet also possess bone loss potential as observed with classical ketogenic diet. Swiss albino mice aged between 10 and 12 weeks, were divided into 3 treatment groups that were administered with oral suspensions of octanoic acid, decanoic acid and a combination of both for 4 weeks. Bone specific markers, microarchitectural parameters, using micro computed tomography, and biomechanical strength were analyzed. Remarkably deleterious alterations in the trabecular bone microarchitecture, and on bone markers were observed in the octanoic acid treated groups. Our results suggest significant negative effects on bone health by octanoic acid. These findings require further investigation and validation in order to provide significant clinically relevant data to possibly modify dietary composition of the MCT ketogenic diet.


Assuntos
Reabsorção Óssea/induzido quimicamente , Osso Esponjoso/fisiopatologia , Caprilatos/efeitos adversos , Ácidos Decanoicos/farmacologia , Dieta Cetogênica/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Dieta Rica em Proteínas e Pobre em Carboidratos/efeitos adversos , Fêmur/fisiopatologia , Corpos Cetônicos/urina , Masculino , Camundongos , Fármacos Neuroprotetores/efeitos adversos , Osteoclastos/efeitos dos fármacos , Distribuição Aleatória , Tíbia/fisiopatologia , Triglicerídeos/administração & dosagem
10.
Nutrients ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352829

RESUMO

BACKGROUND: The mechanism of action of the ketogenic diet (KD), an effective treatment for pharmacotherapy refractory epilepsy, is not fully elucidated. The present study examined the effects of two metabolites accumulating under KD-beta-hydroxybutyrate (ßHB) and decanoic acid (C10) in hippocampal murine (HT22) neurons. METHODS: A mouse HT22 hippocampal neuronal cell line was used in the present study. Cellular lipids were analyzed in cell cultures incubated with high (standard) versus low glucose supplemented with ßHB or C10. Cellular cholesterol was analyzed using HPLC, while phospholipids and sphingomyelin (SM) were analyzed using HPTLC. RESULTS: HT22 cells showed higher cholesterol, but lower SM levels in the low glucose group without supplements as compared to the high glucose groups. While cellular cholesterol was reduced in both ßHB- and C10-incubated cells, phospholipids were significantly higher in C10-incubated neurons. Ratios of individual phospholipids to cholesterol were significantly higher in ßHB- and C10-incubated neurons as compared to controls. CONCLUSION: Changes in the ratios of individual phospholipids to cholesterol in HT22 neurons suggest a possible alteration in the composition of the plasma membrane and organelle membranes, which may provide insight into the working mechanism of KD metabolites ßHB and C10.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Colesterol/metabolismo , Ácidos Decanoicos/metabolismo , Dieta Cetogênica , Hipocampo/metabolismo , Neurônios/metabolismo , Fosfolipídeos/metabolismo , Ácido 3-Hidroxibutírico/análise , Animais , Restrição Calórica , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/análise , Ácidos Decanoicos/análise , Glucose/metabolismo , Hipocampo/química , Hipocampo/citologia , Camundongos , Neurônios/química , Fosfatidilserinas/análise , Fosfatidilserinas/metabolismo , Fosfolipídeos/análise , Esfingomielinas/análise , Esfingomielinas/metabolismo
11.
Biomed Res Int ; 2020: 3039184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134375

RESUMO

Inflammatory response during myocardial ischemia reperfusion injury (MIRI) is essential for cardiac healing, while excessive inflammation extends the infarction and promotes adverse cardiac remodeling. Understanding the mechanism of these uncontrolled inflammatory processes has a significant impact during the MIRI therapy. Here, we found a critical role of ATP-sensitive potassium channels (KATP) in the inflammatory response of MIRI and its potential mechanism and explored the effects of Panax Notoginseng Saponins (PNS) during this possess. Rats underwent 40 min ischemia by occlusion of the left anterior descending (LAD) coronary artery and 60 min of reperfusion. PNS was treated at the corresponding time point before operation; 5-hydroxydecanoate (5-HD) and glybenclamide (Gly) (or Nicorandil (Nic)) were used as pharmacological blocker (or nonselective opener) of KATP. Cardiac function and pathomorphology were evaluated and a set of molecular signaling experiments was tested. KATP current density was measured by patch-clamp. Results revealed that in MIRI, PNS pretreatment restored cardiac function, reduced infarct size, and ameliorated inflammation through KATP. However, inhibiting KATP by 5-HD and Gly significantly reversed the effects, including NLRP3 inflammasome and inflammatory mediators IL-6, MPO, TNF-α, and MCP-1. Moreover, PNS inhibited the phosphorylation and nuclear translocation of NF-κB in I/R myocardium when the KATP was activated. Importantly, PNS promoted the expression of subunits and activation of KATP. The study uncovered KATP served as a new potential mechanism during PNS modulating MIRI-induced inflammation and promoting injured heart recovery. The manipulation of KATP could be a potential therapeutic approach for MIRI and other inflammatory diseases.


Assuntos
Cardiotônicos/farmacologia , Medicamentos de Ervas Chinesas/química , Canais KATP/genética , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Saponinas/farmacologia , Animais , Cardiotônicos/isolamento & purificação , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ácidos Decanoicos/farmacologia , Regulação da Expressão Gênica , Glibureto/farmacologia , Hidroxiácidos/farmacologia , Inflamação , Interleucina-6/genética , Interleucina-6/metabolismo , Canais KATP/agonistas , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Masculino , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Nicorandil/farmacologia , Técnicas de Patch-Clamp , Peroxidase/genética , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley , Saponinas/isolamento & purificação , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Int J Biol Macromol ; 164: 1600-1607, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768477

RESUMO

The acyl-CoA dehydrogenase (FadE) and (R)-specific enoyl-CoA hydratase (PhaJ) are functionally related to the degradation of fatty acids and the synthesis of polyhydroxyalkanoates (PHAs). To verify this, a recombinant Cupriavidus necator H16 harboring the plasmid -pMPJAS03- with fadE from Escherichia coli strain K12 and phaJ1 from Pseudomonas putida strain KT2440 under the arabinose promoter (araC-PBAD) was constructed. The impact of co-expressing fadE and phaJ genes on C. necator H16/pMPJAS03 maintaining the wild-type synthase on short-chain-length/medium-chain-length PHA formation from canola or avocado oil at different arabinose concentrations was investigated. The functional activity of fadEE.c led to obtaining higher biomass and PHA concentrations compared to the cultures without expressing the gene. While high transcriptional levels of phaJ1P.p, at 0.1% of arabinose, aid the wild-type synthase to polymerize larger-side chain monomers, such as 3-Hydroxyoctanoate (3HO) and 3-Hydroxydecanoate (3HD). The presence of even small amounts of 3HO and 3HD in the co-polymers significantly depresses the melting temperature of the polymers, compared to those composed of pure 3-hydroxybutyrate (3HB). Our data presents supporting evidence that the synthesis of larger-side chain monomers by the recombinant strain relies not only upon the affinity of the wild-type synthase but also on the functionality of the intermediate supplying enzymes.


Assuntos
Acil-CoA Desidrogenase/genética , Cupriavidus necator/genética , Enoil-CoA Hidratase/genética , Óleos de Plantas/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/genética , Acil-CoA Desidrogenase/metabolismo , Arabinose/genética , Arabinose/metabolismo , Caprilatos/metabolismo , Cupriavidus necator/metabolismo , Ácidos Decanoicos/metabolismo , Enoil-CoA Hidratase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Hidroxibutiratos/metabolismo , Plasmídeos/genética , Poli-Hidroxialcanoatos/metabolismo , Regiões Promotoras Genéticas/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Transcrição Gênica/genética
13.
Assay Drug Dev Technol ; 18(4): 195-201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32392426

RESUMO

Due to the increasing resistance of various Candida species to azole drugs, particularly fluconazole, it would be of significant importance to look for alternative therapies. The aim of this study was to investigate the antifungal activity of capric acid and its in vitro interactions with nystatin and fluconazole against Candida isolates. A total of 40 Candida isolates (C. albicans, 36; C. kefyr, 2; C. tropicalis, 1; C. glabrata, 1) collected from the oral cavity of neonates with oropharyngeal candidiasis and a reference strain of C. albicans (ATCC 10231) were used in this study. Antifungal activity of capric acid and two comparator antifungal drugs, namely fluconazole and nystatin, was tested according to CLSI M27-A3/M60 method. The in vitro interaction between capric acid with fluconazole and nystatin was determined following a checkerboard method and results were interpreted using fractional inhibitory concentration index. Nystatin had the lowest minimum inhibitory concentrations (range, 0.125-8 µg/mL; geometric mean [GM], 0.6229 µg/mL) followed by fluconazole (range, 0.5-16 µg/mL; GM, 1.9011 µg/mL) and capric acid (range, 128-2,048 µg/mL; GM, 835.9756 µg/mL). When tested in combination, capric acid with fluconazole demonstrated synergistic, indifferent, and antagonistic interactions in 3 (7.317%), 24 (58.536%), and 14 (34.146%) cases, respectively. For combination of capric acid with nystatin, synergistic, indifferent, and antagonistic interactions were observed in 1 (2.439%), 19 (46.341%), and 21 (51.219%) cases, respectively. All cases of synergistic interactions were against resistant or susceptible dose-dependent isolates. Fluconazole, nystatin, and capric acid seem to be more effective when they are used alone compared with their combination. However, their combination might be effective on resistant isolates.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase Bucal/tratamento farmacológico , Ácidos Decanoicos/farmacologia , Fluconazol/farmacologia , Nistatina/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Candida/isolamento & purificação , Candidíase Bucal/microbiologia , Ácidos Decanoicos/química , Ácidos Decanoicos/isolamento & purificação , Relação Dose-Resposta a Droga , Fluconazol/química , Fluconazol/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Nistatina/química , Nistatina/isolamento & purificação
14.
BMC Mol Cell Biol ; 21(1): 31, 2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32306897

RESUMO

BACKGROUND: Cytoprotection afforded by mitochondrial ATP-sensitive K+-channel (mKATP-channel) opener diazoxide (DZ) largely depends on the activation of potassium cycle with eventual modulation of mitochondrial functions and ROS production. However, generally these effects were studied in the presence of Mg∙ATP known to block K+ transport. Thus, the purpose of our work was the estimation of DZ effects on K+ transport, K+ cycle and ROS production in rat liver mitochondria in the absence of Mg∙ATP. RESULTS: Without Mg·ATP, full activation of native mKATP-channel, accompanied by the increase in ATP-insensitive K+ uptake, activation of K+-cycle and respiratory uncoupling, was reached at ≤0.5 µM of DZ,. Higher diazoxide concentrations augmented ATP-insensitive K+ uptake, but not mKATP-channel activity. mKATP-channel was blocked by Mg·ATP, reactivated by DZ, and repeatedly blocked by mKATP-channel blockers glibenclamide and 5-hydroxydecanoate, whereas ATP-insensitive potassium transport was blocked by Mg2+ and was not restored by DZ. High sensitivity of potassium transport to DZ in native mitochondria resulted in suppression of mitochondrial ROS production caused by the activation of K+-cycle on sub-micromolar scale. Based on the oxygen consumption study, the share of mKATP-channel in respiratory uncoupling by DZ was found. CONCLUSIONS: The study of mKATP-channel activation by diazoxide in the absence of MgATP discloses novel, not described earlier, aspects of mKATP-channel interaction with this drug. High sensitivity of mKATP-channel to DZ results in the modulation of mitochondrial functions and ROS production by DZ on sub-micromolar concentration scale. Our experiments led us to the hypothesis that under the conditions marked by ATP deficiency affinity of mKATP-channel to DZ can increase, which might contribute to the high effectiveness of this drug in cardio- and neuroprotection.


Assuntos
Trifosfato de Adenosina/metabolismo , Diazóxido/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Canais de Potássio/metabolismo , Potássio/metabolismo , Animais , Ácidos Decanoicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Glibureto/farmacologia , Hidroxiácidos/farmacologia , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/genética , Canais KATP/metabolismo , Magnésio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/genética , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Food Microbiol ; 324: 108613, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32224332

RESUMO

This study aimed to develop a pasteurization method against Salmonella enterica serovar Typhimurium in orange juice using low concentrations of naturally derived antimicrobials, ß-resorcylic acid and capric acid, under mild temperature conditions based on their synergistic bactericidal interactions. Response surface methodology was used to construct a model based on four variables, namely ß-resorcylic acid (1, 3, 5, 7, and 9 mM), capric acid (0.05, 0.10, 0.15, 0.20, and 0.25 mM), treatment temperature (35, 40, 45, 50, and 55 °C), and time (1, 2, 3, 4, and 5 min), and the resulting model was used to predict the reduction in the content of fastidious bacteria (S. Typhimurium) in orange juice and to identify the optimal treatment combination for juice pasteurization. A second-order quadratic model for Salmonella reduction showed a high regression coefficient (R2 = 0.9503), and the accuracy of the predictive model was also verified (R2 = 0.9317). The optimal conditions determined by ridge analysis were 8.43 mM ß-resorcylic acid combined with 0.10 mM capric acid at 43.46 °C for 3.03 min, and these yielded an estimated 7.41-log reduction. Treatment times <30 s under the optimal conditions also resulted in a >5.7-log reduction. The combined treatment did not affect either the pH or sugar concentration in brix, and average pH and sugar concentration values of 3.86 and 11.05% were observed, respectively. The distinct advantage of the developed method is its ability to effectively reduce the content of S. Typhimurium over a short time under low temperature conditions through the addition of consumer-preferred naturally derived antimicrobials. The predictive model could be used to determine the most cost-efficient amounts of antimicrobial agents and conditions (treatment temperature and time) for sterilizing orange juice.


Assuntos
Anti-Infecciosos/farmacologia , Citrus sinensis , Sucos de Frutas e Vegetais/microbiologia , Pasteurização/métodos , Salmonella typhimurium/isolamento & purificação , Contagem de Colônia Microbiana , Ácidos Decanoicos/farmacologia , Hidroxibenzoatos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Temperatura , Fatores de Tempo
16.
Food Res Int ; 131: 109005, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32247489

RESUMO

The grape seed extract (GSE) hybridized with medium-chain saturated fatty acids (decanoic acid) exhibited higher lipophilicity, antioxidant activity, and anti-proliferative activity than its parents. The chemical structures of individual hybridized GSE derivatives were identified as 3'-O-decanoyl catechin, 3'-O-decanoyl epicatechin, 3', 5'-2-O-decanoyl epigallocatechin, and 3', 4', 3″, 5″-4-O-decanoyl epicatechin gallate by HPLC-MS2 and 1H and 13C NMR. For growth inhibitory effect on HepG2 cells, hybridized GSE derivatives (EC50 = 44.38 µg/mL) were significantly (p < 0.01) stronger than natural GSE (EC50 = 60.83 µg/mL) due to increased lipophilicity. The effects of GSE derivatives on apoptosis and cell cycle in HepG2 cells were further evaluated by flow cytometry. The results showed that the percentage of apoptotic cells increased markedly in the presence of hybridized GSE derivatives. Moreover, hybridized GSE derivatives were capable of inducing cell cycle arrest in G1 phase. This research suggests that hybridized GSE derivatives are effective lipophilic antioxidants and show the potential as adjuvant therapy for cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/metabolismo , Antioxidantes/química , Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Cromatografia Líquida de Alta Pressão , Ácidos Decanoicos/química , Células Hep G2 , Humanos , Espectrometria de Massas
17.
Food Res Int ; 127: 108628, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882076

RESUMO

Perfluorodecanoic acid (PFDA) is a highly toxic food contaminant that is extensively used in food applications as surface antifouling agent. In this present study, we aimed to assess whether green tea polyphenols (GTPs) and epigallocatechin-3-gallate (EGCG) exert protective effects against PFDA-induced liver damage and inflammation in mice. A mouse model to evaluate liver toxicity was established by giving mice drinking water containing different concentrations of PFDA. GTPs or EGCG (0.32%, w/v) were co-administered to mice exposed to PFDA in drinking water. Overall, GTPs and EGCG extended the survival time and inhibited weight loss among mice who received a lower dose of PFDA. Moreover, GTPs and EGCG ameliorated hepatic oxidative stress, cell apoptosis, necrosis, steatosis, edema, and degeneration, reduced hepatic inflammation and NLRP3 inflammasome activation caused by a moderate dose of PFDA. Taken together, these results show that GTPs or EGCG (or green tea intake) supplements can be beneficial for people exposed to PFDA.


Assuntos
Catequina/análogos & derivados , Inflamassomos/efeitos dos fármacos , Inflamação/prevenção & controle , Hepatopatias/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Polifenóis/farmacologia , Chá , Animais , Antioxidantes/farmacologia , Catequina/farmacologia , Ácidos Decanoicos , Modelos Animais de Doenças , Fluorocarbonos , Masculino , Camundongos
18.
Molecules ; 24(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717454

RESUMO

Endophytes have been recognized as a source for structurally novel and biologically active secondary metabolites. Among the host plants for endophytes, some medicinal plants that produce pharmaceuticals have been reported to carry endophytes, which could also produce bioactive secondary metabolites. In this study, the medicinal plant Aconitum carmichaeli was selected as a potential source for endophytes. An endophytic microorganism, Aureobasidium pullulans AJF1, harbored in the flower of Aconitum carmichaeli, was cultured on a large scale and extracted with an organic solvent. Extensive chemical investigation of the extracts resulted in isolation of three lipid type compounds (1-3), which were identified to be (3R,5R)-3,5-dihydroxydecanoic acid (1), (3R,5R)-3-(((3R,5R)-3,5-dihydroxydecanoyl)oxy)-5-hydroxydecanoic acid (2), and (3R,5R)-3-(((3R,5R)-5-(((3R,5R)-3,5-dihydroxydecanoyl)oxy)-3-hydroxydecanoyl)oxy)-5-hydroxydecanoic acid (3) by chemical methods in combination with spectral analysis. Compounds 2 and 3 had new structures. Absolute configurations of the isolated compounds (1-3) were established using modified Mosher's method together with analysis of NMR data for their acetonide derivatives. All the isolates (1-3) were evaluated for antibiotic activities against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and their cytotoxicities against MCF-7 cancer cells. Unfortunately, they showed low antibiotic activities and cytotoxic activities.


Assuntos
Ascomicetos/metabolismo , Ácidos Decanoicos/química , Ácidos Decanoicos/metabolismo , Hidroxiácidos/química , Hidroxiácidos/metabolismo , Aconitum/genética , Aconitum/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Ascomicetos/genética , Bactérias/efeitos dos fármacos , Ácidos Decanoicos/síntese química , Ácidos Decanoicos/farmacologia , Humanos , Hidroxiácidos/síntese química , Hidroxiácidos/farmacologia , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular
19.
Sci Rep ; 9(1): 14926, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624310

RESUMO

Deep eutectic solvents have been recently reported as an interesting alternative to improve the therapeutic efficacy of conventional drugs, hence called therapeutic deep eutectic solvents (THEDES). The main objective of this work was to evaluate the potential of limonene (LIM) based THEDES as new possible systems for cancer treatment. LIM is known to have antitumor activity, however it is highly toxic and cell viability is often compromised, thus this compound is not selective towards cancer cells. Different THEDES based on LIM were developed to unravel the anticancer potential of such systems. THEDES were prepared by gently mixing saturated fatty acids menthol or ibuprofen (IBU) with LIM. Successful THEDES were obtained for Menthol:LIM (1:1), CA:LIM (1:1), IBU:LIM (1:4) and IBU:LIM(1:8). The results indicate that all the THEDES present antiproliferative properties, but IBU:LIM (1:4) was the only formulation able to inhibit HT29 proliferation without comprising cell viability. Therefore, IBU:LIM (1:4) was the formulation selected for further assessment of anticancer properties. The results suggest that the mechanism of action of LIM:IBU (1:4) is different from isolated IBU and LIM, which suggest the synergetic effect of DES. In this work, we unravel a methodology to tune the selectivity of LIM towards HT29 cell line without compromising cell viability of healthy cells. We demonstrate furthermore that coupling LIM with IBU leads also to an enhancement of the anti-inflammatory activity of IBU, which may be important in anti-cancer therapies.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Líquidos Iônicos/farmacologia , Limoneno/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Ácidos Decanoicos/química , Ácidos Decanoicos/farmacologia , Ácidos Decanoicos/uso terapêutico , Composição de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Ibuprofeno/química , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Líquidos Iônicos/química , Líquidos Iônicos/uso terapêutico , Limoneno/química , Limoneno/uso terapêutico , Mentol/química , Mentol/farmacologia , Mentol/uso terapêutico , Ácido Mirístico/química , Ácido Mirístico/farmacologia , Ácido Mirístico/uso terapêutico , Neoplasias/patologia
20.
Eur J Pharmacol ; 862: 172636, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491405

RESUMO

Several studies have reported that CORM-3, a water-soluble carbon monoxide releasing molecule, elicits cardioprotection against myocardial infarction but the mechanism remains to be investigated. Numerous reports indicate that inhibition of pH regulators, the Na+/H+ exchanger (NHE) and Na+/HCO3- symporter (NBC), protect cardiomyocytes from hypoxia/reoxygenation injury by delaying the intracellular pH (pHi) recovery at reperfusion. Our goal was to explore whether CORM-3-mediated cytoprotection involves the modulation of pH regulation. When added at reoxygenation, CORM-3 (50 µM) reduced the mortality of cardiomyocytes exposed to 3 h of hypoxia and 2 h of reoxygenation in HCO3--buffered solution. This effect was lost when using inactive iCORM-3, which is depleted of CO and used as control, thus implicating CO as the mediator of this cardioprotection. Interestingly, the cardioprotective effect of CORM-3 was abolished by switching to a bicarbonate-free medium. This effect of CORM-3 was also inhibited by 5-hydroxydecanoate, a mitochondrial ATP-dependent K+ (mKATP) channel inhibitor (500 µM) or PD098059, a MEK1/2 inhibitor (10 µM). In additional experiments and in the absence of hypoxia-reoxygenation, intracellular pH was monitored in cardiomyocytes exposed to cariporide to block NHE activity. CORM-3 inhibited alkalinisation and this effect was blocked by PD098059 and 5-HD. In conclusion, CORM-3 protects the cardiomyocyte against hypoxia-reoxygenation injury by inhibiting a bicarbonate transporter at reoxygenation, probably the Na+/HCO3- symporter. This cardioprotective effect of CORM-3 requires the activation of mKATP channels and the activation of MEK1/2.


Assuntos
Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Substâncias Protetoras/farmacologia , Animais , Monóxido de Carbono/metabolismo , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/química , Ácidos Decanoicos/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Flavonoides/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Hidroxiácidos/farmacologia , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Masculino , Camundongos , Mitocôndrias/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Compostos Organometálicos/uso terapêutico , Cultura Primária de Células , Substâncias Protetoras/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA