Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240172

RESUMO

Punicic acid (PuA) is a polyunsaturated fatty acid with significant medical, biological, and nutraceutical properties. The primary source of punicic acid is the pomegranate seed oil obtained from fruits of trees that are mainly cultivated in subtropical and tropical climates. To establish sustainable production of PuA, various recombinant microorganisms and plants have been explored as platforms with limited efficiencies. In this study, the oleaginous yeast Yarrowia lipolytica was employed as a host for PuA production. First, growth and lipid accumulation of Y. lipolytica were evaluated in medium supplemented with pomegranate seed oil, resulting in the accumulation of lipids up to 31.2%, consisting of 22% PuA esterified in the fraction of glycerolipids. In addition, lipid-engineered Y. lipolytica strains, transformed with the bifunctional fatty acid conjugase/desaturase from Punica granatum (PgFADX), showed the ability to accumulate PuA de novo. PuA was detected in both polar and neutral lipid fractions, especially in phosphatidylcholine and triacylglycerols. Promoter optimization for PgFADX expression resulted in improved accumulation of PuA from 0.9 to 1.8 mg/g of dry cell weight. The best-producing strain expressing PgFADX under the control of a strong erythritol-inducible promoter produced 36.6 mg/L PuA. These results demonstrate that the yeast Y. lipolytica is a promising host for PuA production.


Assuntos
Yarrowia , Ácidos Graxos Dessaturases/metabolismo , Ácidos Linolênicos/metabolismo , Óleos de Plantas/metabolismo , Ácidos Graxos/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675252

RESUMO

The aim of this study was to evaluate the anti-atherosclerotic effect of pomegranate seed oil as a source of conjugated linolenic acid (CLnA) (cis-9,trans-11,cis-13; punicic acid) compared to linolenic acid (LnA) and conjugated linoleic acid (CLA) (cis-9,trans-11) in apoE/LDLR-/- mice. In the LONG experiment, 10-week old mice were fed for the 18 weeks. In the SHORT experiment, 18-week old mice were fed for the 10 weeks. Diets were supplied with seed oils equivalent to an amount of 0.5% of studied fatty acids. In the SHORT experiment, plasma TCh and LDL+VLDL cholesterol levels were significantly decreased in animals fed CLnA and CLA compared to the Control. The expression of PPARα in liver was four-fold increased in CLnA group in the SHORT experiment, and as a consequence the expression of its target gene ACO was three-fold increased, whereas the liver's expression of SREBP-1 and FAS were decreased in CLnA mice only in the LONG experiment. Punicic acid and CLA isomers were determined in the adipose tissue and liver in animals receiving pomegranate seed oil. In both experiments, there were no effects on the area of atherosclerotic plaque in aortic roots. However, in the SHORT experiment, the area of atherosclerosis in the entire aorta in the CLA group compared to CLnA and LnA was significantly decreased. In conclusion, CLnA improved the lipid profile and affected the lipid metabolism gene expression, but did not have the impact on the development of atherosclerotic plaque in apoE/LDLR-/- mice.


Assuntos
Aterosclerose , Ácidos Linoleicos Conjugados , Placa Aterosclerótica , Punica granatum , Camundongos , Animais , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/metabolismo , Punica granatum/metabolismo , Metabolismo dos Lipídeos , Ácidos Linolênicos/farmacologia , Ácidos Linolênicos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Óleos de Plantas/farmacologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo
3.
Plant J ; 108(6): 1735-1753, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643970

RESUMO

Light quantity and quality affect many aspects of plant growth and development. However, few reports have addressed the molecular connections between seed oil accumulation and light conditions, especially dense shade. Shade-avoiding plants can redirect plant resources into extension growth at the expense of leaf and root expansion in an attempt to reach areas containing richer light. Here, we report that tung tree seed oil accumulation is suppressed by dense shade during the rapid oil accumulation phase. Transcriptome analysis confirmed that oil accumulation suppression due to dense shade was attributed to reduced expression of fatty acid and triacylglycerol biosynthesis-related genes. Through weighted gene co-expression network analysis, we identified 32 core transcription factors (TFs) specifically upregulated in densely shaded seeds during the rapid oil accumulation period. Among these, VfHB21, a class I homeodomain leucine zipper TF, was shown to suppress expression of FAD2 and FADX, two key genes related to α-eleostearic acid, by directly binding to HD-ZIP I/II motifs in their respective promoter regions. VfHB21 also binds to similar motifs in the promoters of VfWRI1 and VfDGAT2, two additional key seed lipid regulatory/biosynthetic genes. Functional conservation of HB21 during plant evolution was demonstrated by the fact that AtWRI1, AtSAD1, and AtFAD2 were downregulated in VfHB21-overexpressor lines of transgenic Arabidopsis, with concomitant seed oil reduction, and the fact that AtHB21 expression also was induced by shade. This study reveals some of the regulatory mechanisms that specifically control tung tree seed oil biosynthesis and more broadly regulate plant storage carbon partitioning in response to dense shade conditions.


Assuntos
Euphorbiaceae/metabolismo , Proteínas de Plantas/genética , Sementes/metabolismo , Triglicerídeos/biossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Euphorbiaceae/genética , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica de Plantas , Zíper de Leucina , Luz , Ácidos Linolênicos/genética , Ácidos Linolênicos/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Árvores , Triglicerídeos/genética
4.
Food Funct ; 12(17): 7897-7908, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241611

RESUMO

This study aimed to elucidate the effect of punicic acid (PUA, cis9,trans11,cis13-18 : 3) on obesity and liver steatosis in mice induced by high-fat diet (HFD), and to explore the possible mechanism. Mice were fed with either a HFD or a control diet for 8 weeks. Half of HFD-mice received daily supplementation of PUA. Supplementation with PUA ameliorated the liver steatosis and obesity in mice fed by HFD, as demonstrated by the decreased hepatic triglyceride accumulation, body weight gain and fat weight. A HFD increased the ratio of Firmicutes to Bacteroidetes, whereas supplementation with PUA effectively restored it. PUA supplementation counteracted the upregulation in family Desulfovibrionaceae and Helicobacteraceae, and the downregulation in Muribaculaceae and Bacteroidaceae induced by HFD. Correspondingly, the family of Desulfovibrionaceae was positively related, whereas Muribaculaceae was negatively related to the amount of epididymal and perirenal fat, and the level of liver triglyceride and total cholesterol. The family Helicobacteraceae was also positively related to the amount of epididymal and perirenal fat. Moreover, PUA supplementation counteracted the increase in the population of Anaerotruncus, Faecalibaculim, Mucispirillum, and the decrease in the population of Lactobacillus, Roseburia, Oscillibacter at the genus level induced by HFD. These results demonstrated that PUA can at least in part ameliorate obesity and liver steatosis in mice induced by HFD by regulating gut microbiota composition.


Assuntos
Fígado Gorduroso/metabolismo , Microbioma Gastrointestinal , Ácidos Linolênicos/metabolismo , Obesidade/metabolismo , Óleos de Plantas/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/dietoterapia , Fígado Gorduroso/etiologia , Fígado Gorduroso/microbiologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Obesidade/dietoterapia , Obesidade/etiologia , Obesidade/microbiologia , Óleos de Plantas/química , Punica granatum/química , Punica granatum/metabolismo , Sementes/química , Sementes/metabolismo
5.
Nat Commun ; 12(1): 2244, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854057

RESUMO

Ferroptosis is associated with lipid hydroperoxides generated by the oxidation of polyunsaturated acyl chains. Lipid hydroperoxides are reduced by glutathione peroxidase 4 (GPX4) and GPX4 inhibitors induce ferroptosis. However, the therapeutic potential of triggering ferroptosis in cancer cells with polyunsaturated fatty acids is unknown. Here, we identify conjugated linoleates including α-eleostearic acid (αESA) as ferroptosis inducers. αESA does not alter GPX4 activity but is incorporated into cellular lipids and promotes lipid peroxidation and cell death in diverse cancer cell types. αESA-triggered death is mediated by acyl-CoA synthetase long-chain isoform 1, which promotes αESA incorporation into neutral lipids including triacylglycerols. Interfering with triacylglycerol biosynthesis suppresses ferroptosis triggered by αESA but not by GPX4 inhibition. Oral administration of tung oil, naturally rich in αESA, to mice limits tumor growth and metastasis with transcriptional changes consistent with ferroptosis. Overall, these findings illuminate a potential approach to ferroptosis, complementary to GPX4 inhibition.


Assuntos
Coenzima A Ligases/metabolismo , Ferroptose , Ácidos Linolênicos/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/fisiopatologia , Animais , Morte Celular , Coenzima A Ligases/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
6.
Int J Food Sci Nutr ; 70(4): 421-431, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30326753

RESUMO

The objective of this study was to evaluate the effects of a supplementation of pomegranate seed oil (PSO), being rich in punicic acid, on the biochemical parameters of healthy rats. PSO was given to the animals intragastrically for 40 days at concentrations of 1%, 2% and 4%. There were no changes in their total body weight gain, their serum biochemical markers, or in the oxidative stress in their tissues. However, the TBARS values were reduced in the brains of the animals, noting that no significant amounts of conjugated fatty acids were found in this tissue. Conjugated linoleic acid (CLA) was present in all the other tissues studied. The results obtained have demonstrated that punicic acid from PSO was metabolised and incorporated in the form of CLA in different rat tissues. It did not cause alterations in their lipid metabolism, nor did it participate in the processes of oxidation inhibition.


Assuntos
Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linolênicos/metabolismo , Metabolismo dos Lipídeos , Animais , Encéfalo/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Miocárdio/metabolismo , Óleos de Plantas/administração & dosagem , Ratos , Ratos Wistar , Distribuição Tecidual
7.
Acta Sci Pol Technol Aliment ; 17(3): 199-209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30269459

RESUMO

BACKGROUND: The purpose of the study was to evaluate the post-slaughter value and quality of broiler chicken meat, and the possibility of enriching it with health-promoting fatty acids. METHODS: The experiment was carried out on 108 sexed broiler chickens (Ross 308). For the first 21 days of their lives, the chickens received the same diet, and after 21 days the chickens were divided into 3 groups of 36 birds (six replicate pens with 6 birds per pen comprised one experimental group), and fed the experimental diets until the 42nd day. The experimental diets were wheat-corn-soybean diets with soybean oil (5% control), grape seed oil or pomegranate seed oil. The grape seed oil and pomegranate seed oil replaced 2% of the soybean oil in the control diet. On day 42, the broilers were slaughtered and post-slaughter tests were performed. Samples of breast and thigh muscle were collected for basic chemical composition, physical characteristics, fatty acid profile, malondialdehyde content and sensory evaluation. RESULTS: The source of the oils did not significantly alter the slaughter yield, basic nutrients and physical characteristics of the breast and thigh muscles, but pomegranate seed oil significantly improved the palat- ability of thigh muscles. Grape seed oil and pomegranate seed oil influenced the fatty acid profile of the meat. The grape seed oil significantly decreased saturated fatty acids (palmitic) in muscles. The inclusion of pome- granate seed oil resulted in the deposition of a small amount of punicic acid, while significantly increasing rumenic acid. The inclusion of 2% grape seed oil in the broilers’ diet significantly increased the sum of the n-6 fatty acids and the ratio of n-6 to n-3 relative to the control group. Punicic acid – contained in the pomegran- ate seed oil – was effectively converted to rumenic acid, indicating the possibility of enriching the meat with these acids and increasing the health-promoting properties of broiler’ meat. CONCLUSIONS: Grape and pomegranate seed oil are potentially promising additives which could improve the fatty acid profile of poultry meat. The inclusion of grape and pomegranate seed oils into the feed is one way to improve the quality of broiler chicken meat and the derived “functional food”. It could also be a way to give people better quality food without changing their eating habits.


Assuntos
Ração Animal , Dieta , Ácidos Graxos/metabolismo , Lythraceae , Carne/análise , Óleos de Plantas/farmacologia , Vitis , Animais , Galinhas , Humanos , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linolênicos/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Sementes , Paladar
8.
Methods Mol Biol ; 1835: 119-128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109648

RESUMO

To date, several sensitive methods, based on radiolabeled elements or sterically hindered fluorochrome groups, are usually employed to screen lipase and phospholipase A (PLA) activities. Here, a new ultraviolet spectrophotometric assay for lipase or PLA was developed using natural triglycerides or synthetic glycerophosphatidylcholines containing α-eleostearic acid (9Z, 11E, 13E-octadecatrienoic acid) purified from Aleurites fordii seed oil. The conjugated triene present in α-eleostearic acid constitutes an intrinsic chromophore and consequently confers strong UV absorption properties of this free fatty acid as well as of lipid substrates harboring it. The substrate was coated into the wells of a microplate, and the lipolytic activities were measured by the absorbance increase at 272 nm due to the transition of α-eleostearic acid moiety from the adsorbed to the soluble state. This continuous assay is compatible with a high-throughput screening method and can be applied specifically to the screening of new potential lipase, PLA1 and PLA2 inhibitors.


Assuntos
Ácidos Linolênicos/metabolismo , Lipase/metabolismo , Fosfolipases A/metabolismo , Espectrofotometria , Ativação Enzimática , Ensaios Enzimáticos/métodos , Lipase/química , Lipólise , Fosfolipases A/química , Óleos de Plantas/química , Espectrofotometria/métodos , Espectrofotometria/normas , Espectrofotometria Ultravioleta/métodos , Especificidade por Substrato
9.
Lipids Health Dis ; 16(1): 99, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558700

RESUMO

Punicic acid, a bioactive compound of pomegranate seed oil has gained wide attention for their therapeutic potential. Different studies conducted on animal and human models have revealed that punicic acid is very effective against various chronic diseases. Substantial laboratory works has been carried out to elaborate punicic acid effectiveness and mechanism of action in animals. The intention of this review article is to explore the facts about the clinical trials of punicic acid and to discuss different future strategies that can be employed to use it in human clinical trials. Although punicic acid may represent a novel therapeutic unconventional approach for some disorders, still further experimental studies are required to demonstrate its effects in human beings.


Assuntos
Ácidos Linolênicos/metabolismo , Síndrome Metabólica/metabolismo , Antioxidantes/metabolismo , Ácidos Graxos/metabolismo , Humanos , Ácidos Linoleicos Conjugados/metabolismo
10.
J Agric Food Chem ; 65(8): 1543-1549, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28198188

RESUMO

The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO. Lymphatic absorption of PLA from PNO and from SPT was compared in a rat model of lymphatic cannulation. Significantly (P < 0.05) greater amounts of PLA were detected in lymph collected for 8 h from an emulsion containing SPT (28.5 ± 0.7% dose) than from an emulsion containing PNO (26.2 ± 0.6% dose), thereby indicating that PLA present in SPT has a greater capacity for lymphatic absorption than PLA from PNO.


Assuntos
Ácidos Linolênicos/química , Ácidos Linolênicos/metabolismo , Linfa/metabolismo , Pinus/metabolismo , Óleos de Plantas/metabolismo , Triglicerídeos/metabolismo , Animais , Esterificação , Absorção Intestinal , Linfa/química , Masculino , Estrutura Molecular , Nozes/química , Nozes/metabolismo , Pinus/química , Óleos de Plantas/química , Ratos , Ratos Sprague-Dawley , Triglicerídeos/química
11.
Acta Pol Pharm ; 74(2): 624-632, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29624268

RESUMO

Oils are important food ingredients, mainly as a source of unsaturated fatty acids. The offer of novel edible oils from herbs, spices and fruit seeds has grown and many of them are used as functional food and dietary supplements but also as feed additives in animal feeding. Poultry meat is recommended.in properly balanced diet and its consumption in Poland has been growing. The objective of present study was to verify if the supplementation of chickens' diet with grape seed oil or pomegranate seed oil influences cholesterol content and fatty acids (FA) profile in their livers. Ross 308 chickens (n = 24) were fed with fodder enriched with grape seed oil (G group) or pomegranate seed oil (P group). Diet of control group (C group) was based on soybean oil. FA analysis in livers as well as cholesterol content was made with gas chromatography. We observed significant increase in fat content when part of soybean oil was replaced by grape seed oil (p = 0.0002). Its highest amount was detected in G group (4.44 ± 1.53%) whereas the lowest in C group (1.73 ± 0.53%). Applied supplementation did not change total cholesterol content. Its content ranged from 233.0 ± 12.2 mg/100 g in G group to 234.6 ± 29.7 mg1100 g in C group. However, chickens' diet modification with grape seed oil and pomegranate seed oil influenced the FA profile in livers. We detected the presence of punicic acid (cis-9, trans-11, cis-13 C18:3, PA) in livers of chicken fed with pomegranate seed oil. Pomegranate seed oil is one of natural sources of conjugated linolenic acids (CLnA), which predominate in this oil (PA >70% of all FA). However, in livers PA constituted only 0.90 ± 0.10% of all fatty acids. Furthermore, we detected substantial amounts of rumenic acid (cis-9, trans-11 C18:2, RA) - the major isomer of conjugated linoleic acids (CLA). Its natural sources in diet are meat and milk of ruminants, but incorporation of pomegranate seed oil into chickens' diet caused a significant increase of its share in fatty acids pool in their livers (3.73 ? 0.79% in P group in relation to 0.08 ± 0.03% in G group and 0.02 ± 0.00% in C group, p < 0.0001). It proves that PA is effectively converted into RA in chickens organisms. Pomegranate seed oil seems to be an interesting feed additive in chicken feeding which can improve FA profile of poultry meat.


Assuntos
Ração Animal , Galinhas/metabolismo , Colesterol/metabolismo , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Fígado/metabolismo , Lythraceae , Óleos de Plantas/metabolismo , Sementes , Vitis , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Galinhas/crescimento & desenvolvimento , Dieta , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linolênicos/metabolismo , Lythraceae/química , Óleos de Plantas/administração & dosagem , Óleos de Plantas/isolamento & purificação , Sementes/química , Vitis/química
12.
Nutrients ; 8(12)2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27973445

RESUMO

We previously reported that bitter melon seed oil (BMSO) was an effective anti-steatosis and antiobesity agent. Since the major fatty acid α-eleostearic acid (α-ESA) in BMSO is a peroxisome proliferator-activated receptor α (PPARα) activator, the objective was to investigate the role of PPARα in BMSO-modulated lipid disorders and α-ESA metabolism. C57BL/6J wild (WD) and PPARα knockout (KO) mice were fed a high-fat diet containing BMSO (15% soybean oil + 15% BMSO, HB) or not (30% soybean oil, HS) for 5 weeks. The HB diet significantly reduced hepatic triglyceride concentrations and increased acyl-CoA oxidase activity in WD, but not in KO mice. However, regardless of genotype, body fat percentage was lowered along with upregulated protein levels of uncoupling protein 1 (UCP1) and tyrosine hydroxylase, as well as signaling pathway of cAMP-dependent protein kinase and AMP-activated protein kinase in the white adipose tissue of HB-treated groups compared to HS cohorts. In WD-HB and KO-HB groups, white adipose tissue had autophagy, apoptosis, inflammation, and browning characteristics. Without PPARα, in vivo reduction of α-ESA into rumenic acid was slightly but significantly lowered, along with remarkable reduction of hepatic retinol saturase (RetSat) expression. We concluded that BMSO-mediated anti-steatosis depended on PPARα, whereas the anti-adiposity effect was PPARα-independent. In addition, PPARα-dependent enzymes may participate in α-ESA conversion, but only have a minor role.


Assuntos
Dislipidemias/tratamento farmacológico , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linolênicos/metabolismo , Momordica charantia/química , PPAR alfa/fisiologia , Fitoterapia , Óleos de Plantas/química , Acil-CoA Oxidase/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Óleos de Plantas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Desacopladora 1/metabolismo
13.
Pestic Biochem Physiol ; 134: 63-72, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27914541

RESUMO

Panax ginseng C.A. Meyer is a valuable herb in China that has also gained popularity in the West because of its pharmacological properties. The constituents isolated and characterized in ginseng stems include ginsenosides, fatty acids, amino acids, volatile oils, and polysaccharides. In this study, the effects of fungicide azoxystrobin applied on antioxidant enzyme activity and ginsenosides content in ginseng stems was studied by using Panax ginseng C. A. Mey. cv. (the cultivar of Ermaya) under natural environmental conditions. The azoxystrobin formulation (25% SC) was sprayed three times on ginseng plants at different doses (150ga.i./ha and 225ga.i./ha), respectively. Two new fatty acids esters (ethyl linoleate and methyl linolenate) were firstly detected in ginseng stems by the application of azoxystrobin as foliar spray. The results indicated that activities of enzymatic antioxidants, the content of ginsenosides and two new fatty acids esters in ginseng stems in azoxystrobin-treated plants were increased. Azoxystrobin treatments to ginseng plants at all growth stages suggest that the azoxystrobin-induced delay of senescence is due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species (AOS). The activity of superoxide dismutase (SOD) in azoxystrobin-treated plants was about 1-3 times higher than that in untreated plants. And the effects was more significant (P=0.05) when azoxystrobin was applied at dose of 225ga.i./ha. This work suggests that azoxystrobin plays an important role in delaying of senescence by changing physiological and biochemical indicators and increasing ginsenosides content in ginseng stems.


Assuntos
Fungicidas Industriais/farmacologia , Ácidos Linoleicos/metabolismo , Ácidos Linolênicos/metabolismo , Metacrilatos/farmacologia , Panax/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Pirimidinas/farmacologia , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Ésteres , Ginsenosídeos/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Panax/química , Panax/metabolismo , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Estrobilurinas , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
14.
J Nutr Biochem ; 33: 28-35, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27260465

RESUMO

α-Eleostearic acid (α-ESA), or the cis-9, trans-11, trans-13 isomer of conjugated linolenic acid, is a special fatty acid present at high levels in bitter melon seed oil. The aim of this study was to examine the effect of α-ESA on hepatic lipid metabolism. Using H4IIEC3 hepatoma cell line, we showed that α-ESA significantly lowered intracellular triglyceride accumulation compared to α-linolenic acid (LN), used as a fatty acid control, in a dose- and time-dependent manner. The effects of α-ESA on enzyme activities and mRNA profiles in H4IIEC3 cells suggested that enhanced fatty acid oxidation and lowered lipogenesis were involved in α-ESA-mediated triglyceride lowering effects. In addition, α-ESA triggered AMP-activated protein kinase (AMPK) activation without altering sirtuin 1 (SIRT1) protein levels. When cells were treated with vehicle control (VC), LN alone (LN; 100µmol/L) or in combination with α-ESA (LN+α-ESA; 75+25µmol/L) for 24h, acetylation of forkhead box protein O1 was decreased, while the NAD(+)/NADH ratio, mRNA levels of NAMPT and PTGR1 and enzyme activity of nicotinamide phosphoribosyltransferase were increased by LN+α-ESA treatment compared to treatment with LN alone, suggesting that α-ESA activates SIRT1 by increasing NAD(+) synthesis and NAD(P)H consumption. The antisteatosis effect of α-ESA was confirmed in mice treated with a high-sucrose diet supplemented with 1% α-ESA for 5weeks. We conclude that α-ESA favorably affects hepatic lipid metabolism by increasing cellular NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathways.


Assuntos
Suplementos Nutricionais , Regulação Enzimológica da Expressão Gênica , Hepatócitos/metabolismo , Hipolipemiantes/uso terapêutico , Ácidos Linoleicos Conjugados/uso terapêutico , Ácidos Linolênicos/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ativação Enzimática , Hepatócitos/enzimologia , Hipertrigliceridemia/sangue , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/prevenção & controle , Hipolipemiantes/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linolênicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Momordica charantia/química , NAD/química , NAD/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredução , PPAR alfa/agonistas , PPAR alfa/metabolismo , Ratos , Sementes/química , Transdução de Sinais , Sirtuína 1/química , Sirtuína 1/metabolismo , Células Tumorais Cultivadas
15.
Plant Physiol Biochem ; 98: 112-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26686283

RESUMO

Green leaf volatiles (GLVs) are C6-aliphatic aldehydes/alcohols/acetates, and biosynthesized from the central precursor fatty acid 13-hydroperoxides by 13-hydroperoxide lyases (HPLs) in various plant species. While GLVs have been implicated as defense compounds in plants, GLVs give characteristic grassy note to a bouquet of aroma in green tea, which is manufactured from young leaves of Camellia sinensis. Here we identify three HPL-related genes from C. sinensis via RNA-Sequencing (RNA-Seq) in silico, and functionally characterized a candidate gene, CYP74B24, as a gene encoding tea HPL. Recombinant CYP74B24 protein heterologously expressed in Escherichia coli specifically produced (Z)-3-hexenal from 13-HPOT with the optimal pH 6.0 in vitro. CYP74B24 gene was expressed throughout the aerial organs in a rather constitutive manner and further induced by mechanical wounding. Constitutive expression of CYP74B24 gene in intact tea leaves might account for low but substantial and constitutive formation of a subset of GLVs, some of which are stored as glycosides. Our results not only provide novel insights into the biological roles that GLVs play in tea plants, but also serve as basis for the improvement of aroma quality in tea manufacturing processes.


Assuntos
Aldeído Liases/metabolismo , Camellia sinensis/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Acetatos/metabolismo , Aldeído Liases/genética , Aldeídos/metabolismo , Sequência de Aminoácidos , Camellia sinensis/química , Camellia sinensis/genética , Sistema Enzimático do Citocromo P-450/genética , Expressão Gênica , Ácidos Linolênicos/metabolismo , Peróxidos Lipídicos/química , Peróxidos Lipídicos/metabolismo , Dados de Sequência Molecular , Filogenia , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Alinhamento de Sequência , Análise de Sequência de RNA , Chá , Compostos Orgânicos Voláteis/química
16.
PLoS One ; 10(12): e0145420, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26714018

RESUMO

Nucleotide-binding domain and leucine-rich repeat containing (NLR) family are intracellular sentinels of cytosolic homeostasis that orchestrate immune and inflammatory responses in infectious and immune-mediated diseases. NLRX1 is a mitochondrial-associated NOD-like receptor involved in the modulation of immune and metabolic responses. This study utilizes molecular docking approaches to investigate the structure of NLRX1 and experimentally assesses binding to naturally occurring compounds from several natural product and lipid databases. Screening of compound libraries predicts targeting of NLRX1 by conjugated trienes, polyketides, prenol lipids, sterol lipids, and coenzyme A-containing fatty acids for activating the NLRX1 pathway. The ligands of NLRX1 were identified by docking punicic acid (PUA), eleostearic acid (ESA), and docosahexaenoic acid (DHA) to the C-terminal fragment of the human NLRX1 (cNLRX1). Their binding and that of positive control RNA to cNLRX1 were experimentally determined by surface plasmon resonance (SPR) spectroscopy. In addition, the ligand binding sites of cNLRX1 were predicted in silico and validated experimentally. Target mutagenesis studies demonstrate that mutation of 4 critical residues ASP677, PHE680, PHE681, and GLU684 to alanine resulted in diminished affinity of PUA, ESA, and DHA to NLRX1. Consistent with the regulatory actions of NLRX1 on the NF-κB pathway, treatment of bone marrow derived macrophages (BMDM)s with PUA and DHA suppressed NF-κB activity in a NLRX1 dependent mechanism. In addition, a series of pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the regulatory function of PUA on colitis is NLRX1 dependent. Thus, we identified novel small molecules that bind to NLRX1 and exert anti-inflammatory actions.


Assuntos
Anti-Inflamatórios/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Colite/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Ácidos Linolênicos/metabolismo , Ácidos Linolênicos/farmacologia , Ácidos Linolênicos/uso terapêutico , Camundongos , Proteínas Mitocondriais/genética , Mutação , NF-kappa B/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína
17.
Anal Chem ; 86(21): 10576-83, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25266374

RESUMO

To date, several sensitive methods, based on radiolabeled elements or sterically hindered fluorochrome groups, are usually employed to screen phospholipase A (PLA) activities. With the aim of developing a convenient, specific, sensitive, and continuous new ultraviolet (UV) spectrophotometric assay for PLA, we have synthesized a specific glycerophosphatidylcholine (PC) esterified at the sn-1 and sn-2 positions, with α-eleostearic acid (9Z, 11E, 13E-octadecatrienoic acid) purified from Aleurites fordii seed oil. The conjugated triene present in α-eleostearic acid constitutes an intrinsic chromophore and, consequently, confers the strong UV absorption properties of this free fatty acid as well as of the glycerophospholipids harboring it. This coated PC film cannot be desorbed by the various buffers used during PLA assays. Following the action of PLA at the oil-water interface, α-eleostearic acid is freed and desorbed from the film and then solubilized with ß-cyclodextrin. The UV absorbance of the α-eleostearic acid is considerably enhanced due to the transformation from an adsorbed to a water-soluble state. The PLA activity can be measured continuously by recording the variations with time of the UV absorption spectra. The rate of lipolysis was monitored by measuring the increase of absorption at 272 nm, which was found to be linear with time and proportional to the amount of added PLA. This continuous high-throughput PLA assay could be used to screen new PLA and/or PLA inhibitors present in various biological samples.


Assuntos
Ascomicetos/enzimologia , Abelhas/enzimologia , Ensaios Enzimáticos/métodos , Ácidos Linolênicos/química , Fosfatidilcolinas/química , Fosfolipases A/metabolismo , Aleurites/química , Animais , Ensaios de Triagem em Larga Escala/métodos , Ácidos Linolênicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipases A/análise , Óleos de Plantas/química , Espectrofotometria Ultravioleta/métodos , beta-Ciclodextrinas/química , beta-Ciclodextrinas/metabolismo
18.
Free Radic Biol Med ; 73: 127-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24835770

RESUMO

Oxidative stress has a prominent role in life-span regulation of living organisms. One of the endogenous free radical scavenger systems is associated with glutathione (GSH), the most abundant nonprotein thiol in mammalian cells, acting as a major reducing agent and in antioxidant defense by maintaining a tight control over redox status. We have recently designed a series of novel S-acyl-GSH derivatives capable of preventing amyloid oxidative stress and cholinergic dysfunction in Alzheimer disease models, upon an increase in GSH intake. In this study we show that the longevity of the wild-type N2 Caenorhabditis elegans strain was significantly enhanced by dietary supplementation with linolenoyl-SG (lin-SG) thioester with respect to the ethyl ester of GSH, linolenic acid, or vitamin E. RNA interference analysis and activity inhibition assay indicate that life-span extension was mediated by the upregulation of Sir-2.1, a NAD-dependent histone deacetylase ortholog of mammalian SIRT1. In particular, lin-SG-mediated overexpression of Sir-2.1 appears to be related to the Daf-16 (FoxO) pathway. Moreover, the lin-SG derivative protects N2 worms from the paralysis and oxidative stress induced by Aß/H2O2 exposure. Overall, our findings put forward lin-SG thioester as an antioxidant supplement triggering sirtuin upregulation, thus opening new future perspectives for healthy aging or delayed onset of oxidative-related diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Glutationa/metabolismo , Longevidade/efeitos dos fármacos , Sirtuínas/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento/metabolismo , Doença de Alzheimer/patologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Suplementos Nutricionais , Fatores de Transcrição Forkhead , Peróxido de Hidrogênio/toxicidade , Ácidos Linolênicos/metabolismo , Estresse Oxidativo , Interferência de RNA , RNA Interferente Pequeno , Sirtuínas/biossíntese , Sirtuínas/genética , Estresse Fisiológico , Ativação Transcricional , Vitamina E
19.
Analyst ; 138(18): 5230-8, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23851449

RESUMO

We have designed a convenient, specific, sensitive and continuous lipase assay based on the use of natural triacylglycerols (TAGs) from the Aleurites fordii seed oil which contains α-eleostearic acid (9,11,13,cis,trans,trans-octadecatrienoic acid) and which was coated in the wells of microtiter plates. The coated TAG film cannot be desorbed by the various buffers used during the lipase assay. Upon lipase action, α-eleostearic acid is liberated and desorbed from the interface and then solubilized into the micellar phase. Consequently, the UV absorbance of the α-eleostearic acid is considerably enhanced due to the transformation from an adsorbed to a water soluble state. The lipase activity can be measured continuously by recording the variations with time of the UV absorption spectra. The rate of lipolysis was monitored by measuring the increase of OD at 272 nm, which was found to be linear with time and directly proportional to the amount of added lipase. This microtiter plate lipase assay, based on coated TAGs, presents various advantages as compared to the classical systems: (i) coated TAGs on the microtiter plates could be stored for a long-time at 4 °C, (ii) higher sensitivity in lipase detection, (iii) good reproducibility, and (iv) increase of signal to noise ratio due to high UV absorption after transfer of α-eleostearic acid from an adsorbed to a soluble state. Low concentrations, down to 1 pg mL(-1) of pure Thermomyces lanuginosus or human pancreatic lipase, could be detected under standard assay conditions. The detection sensitivity of this coated method is around 1000 times higher as compared to those obtained with the classical emulsified systems. This continuous high throughput lipase assay could be used to screen new lipases and/or lipase inhibitors present in various biological samples.


Assuntos
Produtos Biológicos/metabolismo , Ensaios Enzimáticos/métodos , Lipase/metabolismo , Microtecnologia/métodos , Triglicerídeos/metabolismo , Aleurites/química , Animais , Produtos Biológicos/química , Humanos , Hidrólise , Cinética , Ácidos Linolênicos/química , Ácidos Linolênicos/metabolismo , Lipase/antagonistas & inibidores , Óleos de Plantas/química , Espectrofotometria Ultravioleta , Estereoisomerismo , Especificidade por Substrato , Triglicerídeos/química
20.
Genet Mol Res ; 12(4): 6554-64, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24391002

RESUMO

The tung tree (Vernicia fordii Hemsl.; Vf) has great potential as an industrial crop owning to its seed oil that has multiple uses. Diacylglycerol acyltransferases (DGATs) catalyze the last and most committed step of triacylglycerol (TAG) biosynthesis. In order to examine the physiological role of the VfDGAT2 gene in the tung tree, we characterized its expression profiles in different tung tissues/organs and seeds at different developmental stages. Oil content and α-eleostearic acid production during seed development were also examined. Expression studies showed that VfDGAT2 was expressed in all tissues tested, with the highest expression in developing seeds where the expression was about 19-fold more than that in leaves. VfDGAT2 showed temporal-specific expression during seed development and maturation. Notably, the expression of VfDGAT2 in developing seeds was found to be consistent with tung oil accumulation and α-eleostearic acid production. The expression level of VfDGAT2 was lower in the early stages of oil accumulation and α-eleostearic acid biosynthesis, rapidly increased during the peak periods of fatty acid synthesis in August, and then decreased during completion of the accumulation period at the end of September. When the VfDGAT2 gene was transferred to the oleaginous yeast Rhodotorula glutinis, its expression was detected along with fatty acid products. The results showed that VfDGAT2 was highly expressed in transgenic yeast clones, and the total fatty acid content in one of these clones, VfDGAT2-3, was 7.8-fold more than that in the control, indicating that VfDGAT2 contributed to fatty acid accumulation into TAG and might be a target gene for improving tung oil composition through genetic engineering.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Euphorbiaceae/genética , Óleos de Plantas/metabolismo , Rhodotorula/genética , Diacilglicerol O-Aciltransferase/biossíntese , Ácidos Graxos/biossíntese , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Linolênicos/biossíntese , Ácidos Linolênicos/metabolismo , Folhas de Planta/metabolismo , Sementes/metabolismo , Triglicerídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA