Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 793
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118545, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431067

RESUMO

An extensive volume of acid mine drainage (AMD) generated throughout the mining process has been widely regarded as one of the most catastrophic environmental problems. Surface water and groundwater impacted by pollution exhibit extreme low pH values and elevated sulfate and metal/metalloid concentrations, posing a serious threat to the production efficiency of enterprises, domestic water safety, and the ecological health of the basin. Over the recent years, a plethora of techniques has been developed to address the issue of AMD, encompassing nanofiltration membranes, lime neutralization, and carrier-microencapsulation. Nonetheless, these approaches often come with substantial financial implications and exhibit restricted long-term sustainability. Among the array of choices, the permeable reactive barrier (PRB) system emerges as a noteworthy passive remediation method for AMD. Distinguished by its modest construction expenses and enduring stability, this approach proves particularly well-suited for addressing the environmental challenges posed by abandoned mines. This study undertook a comprehensive evaluation of the PRB systems utilized in the remediation of AMD. Furthermore, it introduced the concept of low permeability barrier, derived from the realm of site-contaminated groundwater management. The strategies pertaining to the selection of materials, the physicochemical aspects influencing long-term efficacy, the intricacies of design and construction, as well as the challenges and prospects inherent in barrier technology, are elaborated upon in this discourse.


Assuntos
Mineração , Poluentes Químicos da Água/análise , Recuperação e Remediação Ambiental/métodos , Ácidos , Água Subterrânea/química , Filtração/métodos , Concentração de Íons de Hidrogênio
2.
Environ Pollut ; 348: 123768, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493868

RESUMO

In this research, a sustainable substrate, termed green and long-lasting substrate (GLS), featuring a blend of emulsified substrate (ES) and modified rice husk ash (m-RHA) was devised. The primary objective was to facilitate the bioremediation of groundwater contaminated with trichloroethylene (TCE) using innovative GLS for slow carbon release and pH control. The GLS was concocted by homogenizing a mixture of soybean oil, surfactants (Simple Green™ and soya lecithin), and m-RHA, ensuring a gradual release of carbon sources. The hydrothermal synthesis was applied for the production of m-RHA production. The analyses demonstrate that m-RHA were uniform sphere-shape granules with diameters in micro-scale ranges. Results from the microcosm study show that approximately 83% of TCE could be removed (initial TCE concentration = 7.6 mg/L) with GLS supplement after 60 days of operation. Compared to other substrates without RHA addition, higher TCE removal efficiency was obtained, and higher Dehalococcoides sp. (DHC) population and hydA gene (hydrogen-producing gene) copy number were also detected in microcosms with GLS addition. Higher hydrogen concentrations enhanced the DHC growth, which corresponded to the increased DHC populations. The addition of the GLS could provide alkalinity at the initial stage to neutralize the acidified groundwater caused by the produced organic acids after substrate biodegradation, which was advantageous to DHC growth and TCE dechlorination. The addition of m-RHA reached an increased TCE removal efficiency, which was due to the fact that the m-RHA had the zeolite-like structure with a higher surface area and lower granular diameter, and thus, it resulted in a more effective initial adsorption effect. Therefore, a significant amount of TCE could be adsorbed onto the surface of m-RHA, which caused a rapid TCE removal through adsorption. The carbon substrates released from m-RHA could then enhance the subsequent dechlorination. The developed GLS is an environmentally-friendly and green substrate.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/metabolismo , Biodegradação Ambiental , Carbono , Poluentes Químicos da Água/análise , Água Subterrânea/química , Hidrogênio , Concentração de Íons de Hidrogênio
3.
Environ Sci Technol ; 58(12): 5372-5382, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488121

RESUMO

Long-term phosphorus (P) fertilization results in P accumulation in agricultural soil and increases the risk of P leaching into water bodies. However, evaluating P leaching into groundwater is challenging, especially in clay soil with a high P sorption capacity. This study examined whether the combination of PO4 oxygen isotope (δ18OPO4) analysis and the P saturation ratio (PSR) was useful to identify P enrichment mechanisms in groundwater. We investigated the groundwater and possible P sources in Kubi, western Japan, with intensive citrus cultivation. Shallow groundwater had oxic conditions with high PO4 concentrations, and orchard soil P accumulation was high compared with forest soil. Although the soil had a high P sorption capacity, the PSR was above the threshold, indicating a high risk of P leaching from the surface orchard soil. The shallow groundwater δ18OPO4 values were higher than the expected isotopic equilibrium with pyrophosphatase. The high PSR and δ18OPO4 orchard soil values indicated that P leaching from orchard soil was the major P enrichment mechanism. The Bayesian mixing model estimated that 76.6% of the P supplied from the orchard soil was recycled by microorganisms. This demonstrates the utility of δ18OPO4 and the PSR to evaluate the P source and biological recycling in groundwater.


Assuntos
Água Subterrânea , Fósforo , Fósforo/análise , Fosfatos , Solo , Isótopos de Oxigênio/análise , Adsorção , Teorema de Bayes
4.
Sci Total Environ ; 926: 171918, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522553

RESUMO

The disposal of spent nuclear fuel in deep subsurface repositories using multi-barrier systems is considered to be the most promising method for preventing radionuclide leakage. However, the stability of the barriers can be affected by the activities of diverse microbes in subsurface environments. Therefore, this study investigated groundwater geochemistry and microbial populations, activities, and community structures at three potential spent nuclear fuel repository construction sites. The microbial analysis involved a multi-approach including both culture-dependent, culture-independent, and sequence-based methods for a comprehensive understanding of groundwater biogeochemistry. The results from all three sites showed that geochemical properties were closely related to microbial population and activities. Total number of cells estimates were strongly correlated to high dissolved organic carbon; while the ratio of adenosine-triphosphate:total number of cells indicated substantial activities of sulfate reducing bacteria. The 16S rRNA gene sequencing revealed that the microbial communities differed across the three sites, with each featuring microbes performing distinctive functions. In addition, our multi-approach provided some intriguing findings: a site with a low relative abundance of sulfate reducing bacteria based on the 16S rRNA gene sequencing showed high populations during most probable number incubation, implying that despite their low abundance, sulfate reducing bacteria still played an important role in sulfate reduction within the groundwater. Moreover, a redundancy analysis indicated a significant correlation between uranium concentrations and microbial community compositions, which suggests a potential impact of uranium on microbial community. These findings together highlight the importance of multi-methodological assessments in better characterizing groundwater biogeochemical properties for the selection of potential spent nuclear fuel disposal sites.


Assuntos
Desulfovibrio , Água Subterrânea , Urânio , Bactérias , Urânio/análise , RNA Ribossômico 16S/genética , Estudos Prospectivos , Água Subterrânea/química , Sulfatos/análise
5.
Isotopes Environ Health Stud ; 60(2): 103-121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38344763

RESUMO

The biogeochemical consequences of dihydrogen (H2) underground storage in porous aquifers are poorly understood. Here, the effects of nutrient limitations on anaerobic H2 oxidation of an aquifer microbial community in sediment microcosms were determined in order to evaluate possible responses to high H2 partial pressures. Hydrogen isotope analyses of H2 yielded isotope depletion in all biotic setups indicating microbial H2 consumption. Carbon isotope analyses of carbon dioxide (CO2) showed isotope enrichment in all H2-supplemented biotic setups indicating H2-dependent consumption of CO2 by methanogens or homoacetogens. Homoacetogenesis was indicated by the detection of acetate and formate. Consumption of CO2 and H2 varied along the differently nutrient-amended setups, as did the onset of methane production. Plotting carbon against hydrogen isotope signatures of CH4 indicated that CH4 was produced hydrogenotrophically and fermentatively. The putative hydrogenotrophic Methanobacterium sp. was the dominant methanogen. Most abundant phylotypes belonged to typical ferric iron reducers, indicating that besides CO2, Fe(III) was an important electron acceptor. In summary, our study provides evidence for the adaptability of subsurface microbial communities under different nutrient-deficient conditions to elevated H2 partial pressures.


Assuntos
Água Subterrânea , Microbiota , Anaerobiose , Metano/análise , Dióxido de Carbono , Compostos Férricos , Isótopos de Carbono/análise , Hidrogênio
6.
Sci Total Environ ; 917: 170397, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38307284

RESUMO

Confronting the threat of environment uranium pollution, decades of research have yielded advanced and significant findings in uranium bioremediation, resulting in the accumulation of tremendous amount of high-quality literature. In this study, we analyzed over 10,000 uranium reduction-related papers published from 1990 to the present in the Web of Science based on bibliometrics, and revealed some critical information on knowledge structure, thematic evolution and additional attention. Methods including contribution comparison, co-occurrence and temporal evolution analysis are applied. The results of the distribution and impact analysis of authors, sources, and journals indicated that the United States is a leader in this field of research and China is on the rise. The top keywords remained stable, primarily focused on chemicals (uranium, iron, plutonium, nitrat, carbon), characters (divers, surfac, speciat), and microbiology (microbial commun, cytochrome, extracellular polymeric subst). Keywords related to new strains, reduction mechanisms and product characteristics demonstrated the strongest uptrend, while some keywords related to mechanism and performance were clearly emerging in the past 5 years. Furthermore, the evolution of the thematic progression can be categorized into three stages, commencing with the discovery of the enzymatic reduction of hexavalent uranium to tetravalent uranium, developing in the groundwater remediation process at uranium-contaminated sites, and delving into the research on microbial reduction mechanisms of uranium. For future research, enhancing the understanding of mechanisms, improving uranium removal performance, and exploring practical applications can be considered. This study provides unique insights into microbial uranium reduction research, providing valuable references for related studies in this field.


Assuntos
Água Subterrânea , Urânio , Urânio/análise , Ferro , Biodegradação Ambiental , Água Subterrânea/química , Bibliometria
7.
J Hazard Mater ; 465: 133377, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237439

RESUMO

The regeneration of wastewater has been recognized as an effective strategy to counter water scarcity. Nonetheless, Wastewater Treatment Plant (WWTP) effluents still contain a wide range of contaminants of emerging concern (CECs) even after water depuration. Filtration through Soil Aquifer Treatment (SAT) systems has proven efficient for CECs removal although the attenuation of their associated biological effects still remains poorly understood. To evaluate this, three pilot SAT systems were monitored, two of them enhanced with different reactive barriers. SATs were fed with secondary effluents during two consecutive campaigns. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. The potential attenuation of effluent-associated biological effects by SATs was evaluated through toxicogenomic bioassays using zebrafish eleutheroembryos and human hepatic cells. Transcriptomic analyses revealed a wide range of toxic activities exerted by the WWTP effluents that were reduced by more than 70% by SAT. Similar results were observed when HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared partially determined by the barrier composition and/or SAT managing and correlated with CECs removal. SAT appears as a promising approach to efficiently reduce effluent-associated toxicity contributing to environmental and human health preservation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Animais , Humanos , Peixe-Zebra , Solo , Poluentes Químicos da Água/análise , Água/análise , Monitoramento Ambiental , Eliminação de Resíduos Líquidos
8.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273563

RESUMO

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Assuntos
Ecossistema , Água Subterrânea , Biodiversidade , Água Doce , Poluição Ambiental
9.
J Contam Hydrol ; 261: 104297, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219282

RESUMO

Nonpoint source pollution caused by agricultural activities has long attracted widespread attention from people in society and academia. Many studies have found that human activities not only convey exogenous pollutants into aquifers but also affect the mobilization and transport of geogenic pollutants in aquifers. Geogenic groundwater with high phosphorus concentrations has been found, but it is unclear whether the changes in hydrogeochemical conditions caused by flood irrigation in paddy fields affect the fate of phosphorus. We investigated the temporal and spatial distribution characteristics of phosphorus in groundwater under the influence of flood irrigation through laboratory experiments, proved its impact on phosphorus in groundwater, and explored the mechanisms influencing P concentrations. The results show that flood irrigation can increase the release of phosphorus in the aquifer media and greatly increase the phosphorus concentration in the groundwater of the study area, which has a negative impact on groundwater quality. The main mechanism of increase in phosphorus concentration in groundwater involves an increase in the reducibility of the aquifer via flood irrigation; as a result, iron oxides are reductively dissolved and iron-bound phosphorus is released into the groundwater. Changes in pH also result in the dissolution of calcium phosphate minerals and the release calcium-bound phosphorus. This study not only advances the theory of multielement-coupled hydrogeochemistry but also provides a reference for agricultural planning and groundwater pollution prevention and control in rice-growing areas.


Assuntos
Arsênio , Poluentes Ambientais , Água Subterrânea , Poluentes Químicos da Água , Humanos , Fósforo , Inundações , Arsênio/análise , Ferro , Poluentes Químicos da Água/análise , Monitoramento Ambiental
10.
J Contam Hydrol ; 261: 104298, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38242064

RESUMO

Groundwater contamination at legacy uranium processing sites is an ongoing global challenge. Plumes at many uranium-contaminated sites are more persistent than originally predicted by groundwater modeling. Previous investigations of uranium plume persistence identified residual and secondary sources that contribute to plume longevity, but there is a remaining need to revise forecasted cleanup times using information about these ongoing sources. The purpose of this study is to investigate the quantitative impact of residual vadose zone sources of uranium on groundwater remediation time frame. This objective was approached by applying numerical uranium transport simulations and uncertainty analysis to a former uranium mill site in the southwestern United States. Information from recent site investigations provided details about the distribution and release characteristics of uranium accumulations in the vadose zone. The residual uranium characteristics were incorporated as decaying source terms in the transport model. A stochastic approach using an iterative ensemble smoother was applied for history matching, and the transport model was used to assess the impact of multiple remedial alternatives on forecasted time frame. The forecasted time frame to achieve the groundwater remediation goal for uranium by monitored natural attenuation is on the order of thousands of years, and treatment of the dissolved plume does not reduce the projected time frame. The large proportion of residual uranium mass remaining in the vadose zone and the gradual leaching rate due to the site's semiarid climate create a long-lived source that can sustain a dissolved plume for thousands of years despite an estimated 99% mass removal achieved during mill tailings disposal. Residual uranium in vadose zone sediments beneath former tailings impoundments could present comparable uranium plume persistence and remediation challenges at other legacy uranium mill sites in semiarid climates. Other remaining uranium-impacted sites are similarly complex, and forecasted remedial time frames are needed to effectively achieve compliance, manage risk, assess the benefits of additional treatment, manage and project costs, and support beneficial site reuse.


Assuntos
Água Subterrânea , Urânio , Poluentes Radioativos da Água , Urânio/análise , Poluentes Radioativos da Água/análise
11.
Environ Res ; 247: 118289, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266905

RESUMO

As one of the ultimate products of hydrocarbon biodegradation, inorganic carbon always be used to evaluate hydrocarbon biodegradation rates in petroleum-hydrocarbon-contaminated (PHC) aquifers. The evaluation method was challenged because of the existence of carbon fixation microorganisms, which may uptake inorganic carbons and consequently cause the biodegradation rates to be underestimated. We wonder if there are carbon fixation microorganisms in PHC aquifers. Although an extremely limited number of carbon fixation microorganisms in PHC sites have been studied in previous studies, the vast majority of microorganisms that participate in carbon fixation have not been systematically identified. To systematically reveal carbon fixation microorganisms and their survival environmental conditions, high-throughput metagenomic sequencing technologies, which are characterized by culture-independent, unbiased, and comprehensive methods for the detection and taxonomic characterization of microorganisms, were introduced to analyze the groundwater samples collected from a PHC aquifer. Results showed that 1041 genera were annotated as carbon fixation microorganisms, which accounted for 49% of the total number of genera in the PHC aquifer. Carbon fixation genes involved in Calvin-Benson-Bassham (CBB), 3-hydroxy propionate (3HP), reductive tricarboxylic acid (rTCA), and Wood-Ljungdahl (WL) cycles accounted for 2%, 41%, 34%, and 23% of the total carbon fixation genes, respectively, and 3HP, rTCA, and WL can be deemed as the dominant carbon fixation pathways. Most of the identified carbon fixation microorganisms are potential hydrocarbon biodegraders, and the most abundant carbon fixation microorganisms, such as Microbacterium, Novosphingobium, and Reyranella, were just the most abundant microorganisms in the aquifer system. It's deduced that most of the microorganisms in the aquifer were facultative autotrophic, and undertaking the dual responsibilities of degrading hydrocarbons to inorganic carbon and uptaking inorganic carbon to biomass.


Assuntos
Água Subterrânea , Petróleo , Hidrocarbonetos , Carbono , Ciclo do Carbono , Biodegradação Ambiental
12.
Chemosphere ; 351: 141174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218242

RESUMO

Sodium persulphate (PS) is a highly effective oxidising agent widely used in groundwater remediation and wastewater treatment. Although numerous studies have examined the impact of PS with respect to the removal efficiency of organic pollutants, the residual effects of PS exposure on the biogeochemical parameters and microbial ecosystems of contaminated aquifers are not well understood. This study investigates the effects of exposure to different concentrations of PS on the biogeochemical parameters of petroleum-contaminated aquifers using microcosm batch experiments. The results demonstrate that PS exposure increases the oxidation-reduction potential (ORP) and electrical conductivity (EC), while decreasing total organic carbon (TOC), dehydrogenase (DE), and polyphenol oxidase (PO) in the aquifer. Three-dimensional excitation-emission matrix (3D-EEM) analysis indicates PS is effective at reducing fulvic acid-like and humic acid-like substances and promoting microbial metabolic activity. In addition, PS exposure reduces the abundance of bacterial community species and the diversity index of evolutionary distance, with a more pronounced effect at high PS concentrations (31.25 mmol/L). Long-term (90 d) PS exposure results in an increase in the abundance of microorganisms with environmental resistance, organic matter degradation, and the ability to promote functional genes related to biological processes such as basal metabolism, transmission of genetic information, and cell motility of microorganisms. Structural equation modeling (SEM) further confirms that ORP and TOC are important drivers of change in the abundance of dominant phyla and functional genes. These results suggest exposure to different concentrations of PS has both direct and indirect effects on the dominant phyla and functional genes by influencing the geochemical parameters and enzymatic activity of the aquifer. This study provides a valuable reference for the application of PS in ecological engineering.


Assuntos
Água Subterrânea , Microbiota , Petróleo , Compostos de Sódio , Sulfatos , Petróleo/toxicidade , Petróleo/metabolismo , Bactérias/genética , Bactérias/metabolismo , Água Subterrânea/química
13.
Chemosphere ; 351: 141204, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237778

RESUMO

Priestia sp. WW1 was isolated from a uranium-contaminated mining soil and identified. The uranium removal characteristics and mechanism of Priestia sp. WW1 were investigated. The results showed that the removal efficiency of uranium decreased with the increase of initial uranium concentration. When the uranium initial concentration was 5 mg/L, the uranium removal efficiency achieved 92.1%. The increase of temperature could promote the uranium removal. Carbon source could affect the removal rate of uranium, which was the fastest when the methanol was used as carbon source. The solution pH had significant effect on the uranium removal efficiency, which reached the maximum under solution pH 5.0. The experimental results and FTIR as well as XPS demonstrated that Priestia sp. WW1 could remove uranium via both adsorption and reduction. The common chloride ions, sulfate ions, Mn(II) and Cu(II) enhanced the uranium removal, while Fe(III) depressed the uranium removal. The Priestia sp. WW1 could effectively remove the uranium in the actual mining groundwater, and the increase of initial biomass could improve the removal efficiency of uranium in the actual mining groundwater. This study provided a promising bacterium for uranium remediation in the groundwater.


Assuntos
Bacillaceae , Água Subterrânea , Urânio , Urânio/análise , Compostos Férricos , Carbono , Íons , Solo , Adsorção
14.
Water Res ; 252: 121195, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290236

RESUMO

Successful in situ chemical oxidation (ISCO) applications require real-time monitoring to assess the oxidant delivery and treatment effectiveness, and to support rapid and cost-effective decision making. Existing monitoring methods often suffer from poor spatial coverage given a limited number of boreholes in most field conditions. The ionic nature of oxidants (e.g., permanganate) makes time-lapse electrical resistivity tomography (ERT) a potential monitoring tool for ISCO. However, time-lapse ERT is usually limited to qualitative analysis because it cannot distinguish between the electrical responses of the ionic oxidant and the ionic products from contaminant oxidation. This study proposed a real-time quantitative monitoring approach for ISCO by integrating time-lapse ERT and physics-based reactive transport models (RTM). Moving past common practice, where an electrical-conductivity anomaly in an ERT survey would be roughly linked to concentrations of anything ionic, we used PHT3D as our RTM to distinguish the contributions from the ionic oxidant and the ionic products and to quantify the spatio-temporal evolution of all chemical components. The proposed approach was evaluated through laboratory column experiments for trichloroethene (TCE) remediation. This ISCO experiment was monitored by both time-lapse ERT and downstream sampling. We found that changes in inverted bulk electrical conductivity, unsurprisingly, did not correlate well with the observed permanganate concentrations due to the ionic products. By integrating time-lapse ERT and RTM, the distribution of all chemical components was satisfactorily characterized and quantified. Measured concentration data from limited locations and the non-intrusive ERT data were found to be complementary for ISCO monitoring. The inverted bulk conductivity data were effective in capturing the spatial distribution of ionic species, while the concentration data provided information regarding dissolved TCE. Through incorporating multi-source data, the error of quantifying ISCO efficiency was kept at most 5 %, compared to errors that can reach up to 68 % when relying solely on concentration data.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Compostos de Manganês , Óxidos , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/química , Água Subterrânea/química , Poluentes Químicos da Água/química , Oxirredução , Oxidantes , Tomografia
15.
Chemosphere ; 349: 140865, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048829

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a group of fluorinated organic contaminants classified as persistent in the aquatic environment. Early studies using targeted analysis approaches to evaluate the degradation of PFAS by advanced oxidation processes (AOP) in real water matrices may have been misinterpreted due to the presence of undetected or unknown PFAS in these matrices. The aims of the present study were to (1) screen selected commercially available AOPs (UV, UV + H2O2, O3/H2O2) and UV photocatalysis in a pilot system using commercially used and novel photocatalysts (TiO2, boron nitride [BN]) for removing PFAS contaminants and (2) evaluate their role on the conversion of non-detected/unknown to known PFAS compounds in real groundwater used as drinking water supplies. Results indicated that, while AOPs have the potential to achieve removal of the EPA method 533 target PFAS compounds (PFDA [100%], PFNA [100%], PFOA [85-94%], PFOS [25-100%], PFHxS [3-100%], PFPeS [100%], PFBS [100%]), AOPs transformed non-detected/unknown longer-chain PFAS compounds to detectable shorter-chain ones under very high-dose AOP operating conditions, leading to an increase in ∑PFAS concentration ranging from 95% to 340%. As emerging PFAS treatment processes transition from lab-scale investigations of target PFAS to pilot testing of real water matrices, studies will need to consider impact of the presence of non-target long-chain PFAS to transform into targeted PFAS compounds. A promising approach to address the potential risks and unforeseen consequences could involve an increased reliance on adsorbable organic fluorine (AOF) analysis before and after advanced oxidation process (AOP) treatment.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Peróxido de Hidrogênio/análise , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Oxirredução , Ácidos Alcanossulfônicos/análise
16.
Sci Total Environ ; 912: 168954, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042188

RESUMO

To investigate the strengthening effects and mechanisms of bioaugmentation on the microbial remediation of uranium-contaminated groundwater via bioreduction coupled to biomineralization, two exogenous microbial consortia with reducing and phosphate-solubilizing functions were screened and added to uranium-contaminated groundwater as the experimental groups (group B, reducing consortium added; group C, phosphate-solubilizing consortium added). ß-glycerophosphate (GP) was selected to stimulate the microbial community as the sole electron donor and phosphorus source. The results showed that bioaugmentation accelerated the consumption of GP and the proliferation of key functional microbes in groups B and C. In group B, Dysgonomonas, Clostridium_sensu_stricto_11 and Clostridium_sensu_stricto_13 were the main reducing bacteria, and Paenibacillus was the main phosphate-solubilizing bacteria. In group C, the microorganisms that solubilized phosphate were mainly unclassified_f_Enterobacteriaceae. Additionally, bioaugmentation promoted the formation of unattached precipitates and alleviated the inhibitory effect of cell surface precipitation on microbial metabolism. As a result, the formation rate of U-phosphate precipitates and the removal rates of aqueous U(VI) in both groups B and C were elevated significantly after bioaugmentation. The U(VI) removal rate was poor in the control group (group A, with only an indigenous consortium). Propionispora, Sporomusa and Clostridium_sensu_stricto_11 may have played an important role in the removal of uranium in group A. Furthermore, the addition of a reducing consortium promoted the reduction of U(VI) to U(IV), and immobilized uranium existed in the form of U(IV)-phosphate and U(VI)-phosphate precipitates in group B. In contrast, U was present mainly as U(VI)-phosphate precipitates in groups A and C. Overall, bioaugmentation with an exogenous consortium resulted in the rapid removal of uranium from groundwater and the formation of U-phosphate minerals and served as an effective strategy for improving the treatment of uranium-contaminated groundwater in situ.


Assuntos
Água Subterrânea , Urânio , Fosfatos/metabolismo , Urânio/metabolismo , Oxirredução , Bactérias/metabolismo , Biodegradação Ambiental
17.
J Environ Manage ; 351: 119758, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086118

RESUMO

Targeted conservation approaches seek to focus resources on areas where they can deliver the greatest benefits and are recognized as key to reducing nonpoint source nutrients from agricultural landscapes into sensitive receiving waters. Moreover, there is growing recognition of the importance and complementarity of in-field and edge-of-field conservation for reaching nutrient reduction goals. Here we provide a generic prioritization that can help with spatial targeting and applied it across the conterminous US (CONUS). The prioritization begins with identifying areas with high agricultural nutrient surplus, i.e., where the most nitrogen (N) and/or phosphorus (P) inputs are left on the landscape after crop harvest. Subwatersheds with high surplus included 52% and 50% of CONUS subwatersheds for N and P, respectively, and were located predominantly in the Midwest for N, in the South for P, and in California for both N and P. Then we identified the most suitable conservation strategies using a hierarchy of metrics including nutrient use efficiency (proportion of new nutrient inputs removed by crop harvest), tile drainage, existing buffers for agricultural run-off, and wetland restoration potential. In-field nutrient input reduction emerged as a priority because nutrient use efficiency fell below a high but achievable goal of 0.7 (30% of nutrients applied are not utilized) in 45% and 44% of CONUS subwatersheds for N and P, respectively. In many parts of the southern and western US, in-field conservation (i.e., reducing inputs + preventing nutrients from leaving fields) alone was likely the optimal strategy as agriculture was already well-buffered. However, stacking in-field conservation with additional edge-of-field buffering would be important to conservation strategies in 35% and 29% of CONUS subwatersheds for N and P, respectively. Nutrient use efficiencies were often high enough in the Midwest that proposed strategies focused more on preventing nutrients from leaving fields, managing tile effluent, and buffering agricultural fields. Almost all major river basins would benefit from a variety of nutrient reduction conservation strategies, underscoring the potential of targeted approaches to help limit excess nutrients in surface and ground waters.


Assuntos
Agricultura , Água Subterrânea , Fósforo , Nitrogênio , Nutrientes
18.
Sci Total Environ ; 913: 169252, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38092210

RESUMO

Groundwater contributes to an average of 8 % of the total water source capacity in the Republic of Korea. Hence, private residential households in rural areas in Korea are still using groundwater for drinking without any regular water quality inspection. This can increase the risk of exposure to natural radionuclides like uranium through drinking groundwater. This study investigated the uranium level in drinking groundwater all over the country by analyzing 11,451 samples from private residential drinking groundwater facilities and compared the exposure amount and its associated carcinogenic and non-carcinogenic risk based on the geological characteristics of the aquifer. Results yield that although the average hazard quotient (HQ) and excess cancer risk (ECR) of exposure to natural uranium through drinking groundwater were respectively below 1 and 1 × 10-6 and do not indicate a potential health hazard, significantly high HQ and ECR up to respectively 70 and 4 × 10-4 in samples where the aquifer is the Jurassic granite observed. Accordingly, regular water quality investigation and onsite treatment methods are required to provide healthy drinking water in such areas.


Assuntos
Água Potável , Água Subterrânea , Urânio , Poluentes Químicos da Água , Urânio/análise , República da Coreia , Radioisótopos , Medição de Risco , Poluentes Químicos da Água/análise , Monitoramento Ambiental
19.
Environ Microbiol ; 26(1): e16552, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38098179

RESUMO

The deep terrestrial subsurface (DTS) harbours a striking diversity of microorganisms. However, systematic research on microbial metabolism, and how varying groundwater composition affects the bacterial communities and metabolites in these environments is lacking. In this study, DTS groundwater bacterial consortia from two Fennoscandian Shield sites were enriched and studied. We found that the enriched communities from the two sites consisted of distinct bacterial taxa, and alterations in the growth medium composition induced changes in cell counts. The lack of an exogenous organic carbon source (ECS) caused a notable increase in lipid metabolism in one community, while in the other, carbon starvation resulted in low overall metabolism, suggesting a dormant state. ECS supplementation increased CO2 production and SO4 2- utilisation, suggesting activation of a dissimilatory sulphate reduction pathway and sulphate-reducer-dominated total metabolism. However, both communities shared common universal metabolic features, most probably involving pathways needed for the maintenance of cell homeostasis (e.g., mevalonic acid pathway). Collectively, our findings indicate that the most important metabolites related to microbial reactions under varying growth conditions in enriched DTS communities include, but are not limited to, those linked to cell homeostasis, osmoregulation, lipid biosynthesis and degradation, dissimilatory sulphate reduction and isoprenoid production.


Assuntos
Bactérias , Água Subterrânea , Sulfatos/metabolismo , Carbono/metabolismo , Água Subterrânea/microbiologia
20.
Environ Sci Pollut Res Int ; 30(56): 118377-118395, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910363

RESUMO

Petroleum refineries are deemed strategic industrial sectors that can release toxic materials to the environment and cause potential hazards. In this regard, designing and installation of soil contamination monitoring networks at petroleum refineries is a necessity. In this research, we designed an optimal monitoring network with maximum coverage and minimum number of monitoring boreholes. The main regarded parameters are the groundwater contamination history, the location of effective structures, the location of flare stacks and the soil texture. In addition, the soil contamination was calculated based on previous contamination of the soil at the sampling points by the Entropy Weighting Model. It was employed with other parameters to estimate the soil contamination across the site. The Machine Learning method of XGBoost was implemented for estimating and assigning priority for every point of the site. To achieve the optimal network in the optimization program, four parameters were regarded including (a) the optimal value of the optimization program's objective function, (b) the number of Advance Zero-half cuts of the Cut Generation algorithm, (c) the consumed time, and (d) the optimal boreholes number of the network corresponding with different effective contamination detection radius. The network was designed by generalized Maximal Covering Location Problem and for optimizing it, the advantages of Mixed-Integer Linear Programming method were used. To evaluate the applicability of the method, it has been developed and implemented in a refinery in the south of Iran. 92.84% of XGBoost estimation accuracy, the optimal number of 113 and the effective contamination detection radius of 160 m were obtained for boreholes of the network. To investigate the efficiency of the model, a new Regret function has been defined. Furthermore, sensitivity analysis of the parameters and feature importance analysis of XGBoost both showed that the main parameter of the model was the location of effective structures.


Assuntos
Água Subterrânea , Petróleo , Poluentes do Solo , Petróleo/análise , Solo , Poluentes do Solo/análise , Algoritmos , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA