Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Infect Immun ; 92(5): e0008024, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534100

RESUMO

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.


Assuntos
Aderência Bacteriana , Catequina/análogos & derivados , Infecções por Escherichia coli , Fenóis , Álcool Feniletílico/análogos & derivados , Infecções Urinárias , Escherichia coli Uropatogênica , Escherichia coli Uropatogênica/efeitos dos fármacos , Animais , Camundongos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Fenóis/farmacologia , Humanos , Aderência Bacteriana/efeitos dos fármacos , Resveratrol/farmacologia , Células Epiteliais/microbiologia , Células Epiteliais/efeitos dos fármacos , Bexiga Urinária/microbiologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Extratos Vegetais/farmacologia , Feminino , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/antagonistas & inibidores , Linhagem Celular , Catequina/farmacologia , Ácidos Cafeicos/farmacologia
2.
Food Chem ; 444: 138516, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38306771

RESUMO

In this study, the phytochemical profile of fifty olive leaves (OL) extracts from Spain, Italy, Greece, Portugal, and Morocco was characterized and their anti-cholinergic, anti-inflammatory, and antioxidant activities were evaluated. Luteolin-7-O-glucoside, isoharmnentin, and apigenin were involved in the acetylcholinesterase (AChE) inhibitory activity, while oleuropein and hydroxytyrosol showed noteworthy potential. Secoiridoids contributed to the cyclooxygenase-2 inhibitory activity and antioxidant capacity. Compounds such as oleuropein, ligstroside and luteolin-7-O-glucoside, may exert an important role in the ferric reducing antioxidant capacity. It should be also highlighted the role of hydroxytyrosol, hydroxycoumarins, and verbascoside concerning the antioxidant activity. This research provides valuable insights and confirms that specific compounds within OL extracts contribute to distinct anti-cholinergic, anti-inflammatory, and anti-oxidative effects.


Assuntos
Antioxidantes , Glucosídeos Iridoides , Olea , Álcool Feniletílico/análogos & derivados , Antioxidantes/química , Acetilcolinesterase , Olea/química , Ciclo-Oxigenase 2 , Extratos Vegetais/química , Iridoides/análise , Compostos Fitoquímicos/análise , Folhas de Planta/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Antagonistas Colinérgicos/análise
3.
Genes (Basel) ; 15(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397163

RESUMO

Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor ß1 (TGF-ß1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFßR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.


Assuntos
Aldeídos , Monoterpenos Ciclopentânicos , Fenóis , Álcool Feniletílico/análogos & derivados , Óleos de Plantas , Fator A de Crescimento do Endotélio Vascular , Humanos , Azeite de Oliva/farmacologia , Óleos de Plantas/análise , Biomarcadores , Antígenos de Diferenciação , Proliferação de Células , Fibroblastos , Expressão Gênica
4.
J Dent ; 143: 104867, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286192

RESUMO

OBJECTIVES: This study aimed to evaluate silver nanoparticles (AgNPs) obtained by a 'green' route associated or not to tyrosol (TYR) against Streptococcus mutans and Candida albicans in planktonic and biofilms states. METHODS: AgNPs were obtained by a 'green' route using pomegranate extract. The minimum inhibitory concentration (MIC) against S. mutans and C. albicans was determined for AgNPs and TYR combined and alone, and fractional inhibitory concentration index (FICI) was calculated. Single biofilms of C. albicans and S. mutans were cultivated for 24 h and then treated with drugs alone or in combination for 24 h. RESULTS: AgNPs and TYR were effective against C. albicans and S. mutans considering planktonic cells alone and combined. The MIC values obtained for C. albicans was 312.5 µg/mL (AgNPs) and 50 mM (TYR) and for S. mutans was 78.1 µg/mL (AgNPs) and 90 mM (TYR). The combination of these antimicrobial agents was also effective against both microorganisms: 2.44 µg/mL/0.08 mM (AgNPs/TYR) for C. albicans and 39.05 µg/mL /1.25 mM (AgNPs/TYR) for S. mutans. However, synergism was observed only for C. albicans (FICI 0.008). When biofilm was evaluated, a reduction of 4.62 log10 was observed for S. mutans biofilm cells treated with AgNPs (p < 0.05, Tukey test). However, the addition of TYR to AgNPs did not improve their action against biofilm cells (p > 0.05). AgNPs combined with TYR demonstrated a synergistic effect against C. albicans biofilms. CONCLUSIONS: These findings suggest the potential use of AgNPs with or without TYR against C. albicans and S. mutans, important oral pathogens. CLINICAL SIGNIFICANCE: AgNPs obtained by a 'green' route combined or not with TYR can be an alternative to develop several types of oral antimicrobial therapies and biomaterials.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Prata/farmacologia , Anti-Infecciosos/farmacologia , Álcool Feniletílico/farmacologia , Candida albicans , Biofilmes , Streptococcus mutans
5.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203800

RESUMO

Tendinopathy (TP) is a complex clinical syndrome characterized by local inflammation, pain in the affected area, and loss of performance, preceded by tendon injury. The disease develops in three phases: Inflammatory phase, proliferative phase, and remodeling phase. There are currently no proven treatments for early reversal of this type of injury. However, the metabolic pathways of the transition metabolism, which are necessary for the proper functioning of the organism, are known. These metabolic pathways can be modified by a number of external factors, such as nutritional supplements. In this study, the modulatory effect of four dietary supplements, maslinic acid (MA), hydroxytyrosol (HT), glycine, and aspartate (AA), on hepatic intermediary metabolism was observed in Wistar rats with induced tendinopathy at different stages of the disease. Induced tendinopathy in rats produces alterations in the liver intermediary metabolism. Nutraceutical treatments modify the intermediary metabolism in the different phases of tendinopathy, so AA treatment produced a decrease in carbohydrate metabolism. In lipid metabolism, MA and AA caused a decrease in lipogenesis at the tendinopathy and increased fatty acid oxidation. In protein metabolism, MA treatment increased GDH and AST activity; HT decreased ALT activity; and the AA treatment does not cause any alteration. Use of nutritional supplements of diet could help to regulate the intermediary metabolism in the TP.


Assuntos
Doenças Musculoesqueléticas , Ácido Oleanólico/análogos & derivados , Álcool Feniletílico/análogos & derivados , Tendinopatia , Ratos , Animais , Ratos Wistar , Suplementos Nutricionais , Metabolismo dos Lipídeos , Tendinopatia/etiologia , Ácido Aspártico
6.
Molecules ; 29(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257212

RESUMO

Nowadays, olive leaf polyphenols have been at the center of scientific interest due to their beneficial effects on human health. The most abundant polyphenol in olive leaves is oleuropein. The biological properties of oleuropein are mainly due to the hydroxytyrosol moiety, a drastic catechol group, whose biological activity has been mentioned many times in the literature. Hence, in recent years, many nutritional supplements, food products, and cosmetics enriched in hydroxytyrosol have been developed and marketed, with unexpectedly positive results. However, the concentration levels of hydroxytyrosol in olive leaves are low, as it depends on several agricultural factors. In this study, a rapid and easy methodology for the production of hydroxytyrosol-enriched extracts from olive leaves was described. The proposed method is based on the direct acidic hydrolysis of olive leaves, where the extraction procedure and the hydrolysis of oleuropein are carried out in one step. Furthermore, we tested the in vitro bioactivity of this extract using cell-free and cell-based methods, evaluating its antioxidant and DNA-protective properties. Our results showed that the hydroxytyrosol-enriched extract produced after direct hydrolysis of olive leaves exerted significant in vitro antioxidant and geno-protective activity, and potentially these extracts could have various applications in the pharmaceutical, food, and cosmetic industries.


Assuntos
Glucosídeos Iridoides , Olea , Álcool Feniletílico/análogos & derivados , Humanos , Antioxidantes/farmacologia , Grécia , Hidrólise , Folhas de Planta , Extratos Vegetais/farmacologia
7.
Food Res Int ; 161: 111756, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192871

RESUMO

Many studies have shown that caffeic acid phenethyl ester (CAPE) has various functions, such as antioxidant, anti-inflammatory and anticancer activity, but its low bioavailability and stability limit its application. In this study, the colorectal targeted delivery system for CAPE based on a solid-in-oil-in-water (S/O/W) multilayer emulsion was prepared using CAPE-loaded nanoparticles as the solid phase, coconut oil as the oil phase, and a mixture of lecithin and sodium caseinate as the aqueous phase. The stability of the O/W interfacial layer was improved by using a sodium casein-lecithin mixture as the aqueous surface layer in the preparation. This S/O/W emulsion is a spherical droplet with an S/O/W trilayer structure with a particle size of 155.5 ± 0.72 nm and a polydispersity index (PDI) of 0.24 ± 0.01. The Fourier transform infrared (FTIR) results confirmed that CAPE was successfully loaded into the S/O/W emulsion. This S/O/W emulsion was able to maintain a stable liquid state at pH 6.00-7.4 or cholate concentration of 0-50 mg/mL but showed a gel state at pH 2.0-3.0. The storage experiments demonstrated that the S/O/W emulsion was stable for 15 days at 4 °C, but was prone to agglomeration and emulsion breakage at 25 °C. The in vivo digestion process indicated that the S/O/W emulsion was gradually digested in the digestive tract and released solid phase nanoparticles in the large intestine. Therefore, this newly developed targeted delivery system can effectively deliver CAPE to the colorectum and achieve a 12-hour delayed release, which improved the bioavailability and activity of CAPE.


Assuntos
Caseínas , Lecitinas , Antioxidantes/química , Ácidos Cafeicos , Colatos , Óleo de Coco , Digestão , Emulsões/química , Álcool Feniletílico/análogos & derivados , Sódio , Água/química
8.
Food Res Int ; 161: 111843, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192973

RESUMO

Olive oil is one of the most important ingredients in the Mediterranean diet, in which its polyphenols adversely affect dietary lipid oxidation. In this study, the effect of olive oil polyphenols on lipid oxidation of high-fat beef during digestion was determined. Thirty-three phenolic compounds were tentatively identified, and the contents of 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA), 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA), p-hydroxyphenylethanol elenolic acid (p-HPEA-EA) and hydroxytyrosol were higher than those of other compounds. In an in vitro model, the production of lipid oxidation products, including hydroperoxides, malondialdehyde, 4-hydroxy-2-hexenal and 4-hydroxy-2-nominal, were significantly inhibited by olive polyphenol in the gastrointestinal digests. Compared with the other four groups, the inhibition was better when the polyphenol content reached 600 mg GAE/kg. The 3,4-DHPEA-EDA and 3,4-DHPEA-EA played a better antioxidant role in the stomach stage, while hydroxytyrosol showed the more potent antioxidant activity in the intestinal phase. Electron spin resonance technology showed that two main free radicals, including alkyl radical and alkoxy radical, were detected during the high-fat beef digestion, and olive polyphenols could significantly reduce their formation. All these results showed that the lipid oxidation could be significantly inhibited by olive oil with higher polyphenol content, indicating that the consumption of olive oil with abundant levels of polyphenols could reduce lipid oxidation of high-fat meat during digestion.


Assuntos
Olea , Polifenóis , Animais , Antioxidantes/farmacologia , Bovinos , Digestão , Malondialdeído , Azeite de Oliva , Fenóis , Álcool Feniletílico/análogos & derivados , Óleos de Plantas/farmacologia , Polifenóis/farmacologia , Piranos
9.
Nutrients ; 14(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145170

RESUMO

Non-alcoholic fatty liver disease (NAFLD)-related liver fibrosis results in the encapsulation of injured liver parenchyma by a collagenous scar mainly imputable to hepatic stellate cells' activation. Approved pharmacological treatments against NAFLD-related fibrosis are still lacking, but natural compounds such as hydroxytyrosol (HXT) and vitamin E (VitE), are emerging as promising therapeutic opportunities. In this study, the potential anti-fibrotic effect of HXT + VitE combination therapy was investigated in vitro and in vivo. In particular, tumor growth factor (TGF)-ß-activated LX-2 cells as an in vitro model, and carbon tetrachloride plus a Western diet as a mice model were employed. The effect of HXT + VitE on fibrosis was also investigated in children with biopsy-proven NAFLD. Our results demonstrated that HXT + VitE caused a reduction of proliferation, migration, contractility, and expression of pro-fibrogenic genes in TGF-ß-activated LX-2 cells. HXT + VitE treatment also antagonized TGF-ß-dependent upregulation of pro-oxidant NOX2 by interfering with nuclear translocation/activation of SMAD2/3 transcription factors. The mouse model of NAFLD-related fibrosis treated with HXT + VitE showed a marked reduction of fibrosis pattern by histology and gene expression. Accordingly, in children with NAFLD, HXT + VitE treatment caused a decrease of circulating levels of PIIINP and NOX2 that was supported over time. Our study suggests that HXT + VitE supplementation may improve NAFLD-related fibrosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Tetracloreto de Carbono , Fibrose , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Álcool Feniletílico/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vitamina E/uso terapêutico
10.
Molecules ; 27(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889329

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits, which are accompanied by memory loss and cognitive disruption. Rhodiola sachalinensis (RSE) is a medicinal plant that has been used in northeastern Asia for various pharmacological activities. We attempted to carry out the bioconversion of RSE (Bio-RSE) using the mycelium of Bovista plumbe to obtain tyrosol-enriched Bio-RSE. The objective of this study was to investigate the effects of Bio-RSE on the activation of the cholinergic system and the inhibition of oxidative stress in mice with scopolamine (Sco)-induced memory impairment. Sco (1 mg/kg body weight, i.p.) impaired the mice's performance on the Y-maze test, passive avoidance test, and water maze test. However, the number of abnormal behaviors was reduced in the groups supplemented with Bio-RSE. Bio-RSE treatment improved working memory and avoidance times against electronic shock, increased step-through latency, and reduced the time to reach the escape zone in the water maze test. Bio-RSE dramatically improved the cholinergic system by decreasing acetylcholinesterase activity and regulated oxidative stress by increasing antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)). The reduction in nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling in the brain tissue due to scopolamine was restored by the administration of Bio-RSE. Bio-RSE also significantly decreased amyloid-beta 1-42 (Aß1-42) and amyloid precursor protein (APP) expression. Moreover, the increased malondialdehyde (MDA) level and low total antioxidant capacity in Sco-treated mouse brains were reversed by Bio-RSE, and an increase in Nrf2 and HO-1 was also observed. In conclusion, Bio-RSE protected against Sco-induced cognitive impairment by activating Nrf2/HO-1 signaling and may be developed as a potential beneficial material for AD.


Assuntos
Doença de Alzheimer , Rhodiola , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/metabolismo , Colinérgicos/farmacologia , Cognição , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Camundongos , Micélio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Álcool Feniletílico/análogos & derivados , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rhodiola/metabolismo , Escopolamina/farmacologia
11.
Phytomedicine ; 103: 154256, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714456

RESUMO

BACKGROUND: Hyperuricemia is characterized with high serum uric acids (SUAs) and directly causes suffering gout. Caffeic acid phenethyl ester (CAPE) is widely included in dietary plants and especially propolis of honey hives. HYPOTHESIS/PURPOSE: Since CAPE exerts a property resembling a redox shuttle, the hypothesis is that it may suppress xanthine oxidase (XOD) and alleviate hyperuricemia. The aim is to unveil the hypouricemic effect of CAPE and the underlying mechanisms. METHODS: By establishing a hyperuricemic model with potassium oxonate (PO) and hypoxanthine (HX) together, we investigated the hypouricecmic effect of CAPE. On this model, the expressions of key mRNAs and proteins, including glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1), and the activity of XOD were assayed in vivo. Also, the inhibitory effect of CAPE against XOD was assayed in vitro through enzymatic activity tests and by molecular docking. RESULTS: CAPE demonstrated a remarkable hypouricemic effect, which reduced the SUAs of hyperuricemic mice (401 ± 111 µmol/l) to 209 ± 56, 204 ± 65 and 154 ± 40 µmol/l (p < 0.01) at the doses of 15, 30 and 60 mg/kg respectively, depicting efficacies between 48 and 62% and approaching allopurinol's efficacy (52%). Serum parameters, body weights, inner organ coefficients, and H&E staining suggested that CAPE displayed no general toxicity and it alleviated the liver and kidney injuries caused by hyperuricemia. Mechanistically, CAPE decreased XOD activities significantly in vivo, presented an IC50 at 214.57 µM in vitro and depicted a favorable binding to XOD in molecular simulation, indicating that inhibiting XOD may be an underlying mechanism of CAPE against hyperuricemia. CAPE did decreased GLUT9 protein and down-regulated URAT1 mRNA and protein. In addition, CAPE up-regulated ATP binding cassette subfamily G member 2 (ABCG2) and organic anion transporter 3 (OAT3) mRNA and proteins in comparison with that of the hyperuricemic control. All above, CAPE may alleviate hyperuricmia through inhibiting XOD, decreasing GLUT9 and URAT1 and increasing ABCG2 and OAT3. CONCLUSION: CAPE presented potent hypouricemic effect in hyperuricemic mice through inhibiting XOD activity and up-regulating OAT3. CAPE may be a promising treatment against hyperuricemia.


Assuntos
Hiperuricemia , Transportadores de Ânions Orgânicos , Animais , Ácidos Cafeicos , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Rim , Camundongos , Simulação de Acoplamento Molecular , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ácido Oxônico , Álcool Feniletílico/análogos & derivados , RNA Mensageiro/metabolismo , Ácido Úrico , Xantina Oxidase/metabolismo
12.
Biomed Res Int ; 2022: 6199627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620226

RESUMO

The purification of hydroxytyrosol from olive leaves extract by modified activated carbon was studied experimentally in a batch system and a column by adsorption and desorption processes. The extraction yield reached 90% of hydroxytyrosol, which is the major compound found in the extract. Despite the abundance of research on extracts of hydroxytyrosol from olive leaves, it seems that the applied methods can be further improved. In this study, several approaches were applied to optimize the extraction conditions of this molecule. Hence, the response surface method and the Box-Behnken design (BBD) were used to evaluate the effect of the temperature, time, and adsorbent dose on the hydroxytyrosol recovery. Moreover, adsorption isotherm, kinetics, and thermodynamic studies were also performed to clarify the nature of the process. The main finding was the obtainment of a maximum adsorption yield of 97.5% at an adsorbent/adsorbate ratio of 1 : 20, after a 6 h cycle and at a temperature of 30°C. Furthermore, adsorption process seemed to fit best with Freundlich model. In addition, the thermodynamic study describes a spontaneous and endothermic process. Desorption assay using ethanol helped to recover 73% of hydroxytyrosol. Furthermore, the HPLC analysis of fractions after column adsorption showed a simple peak of hydroxytyrosol with purity higher than 97% and a flavonoids-rich fraction. These findings would indicate that this separation method for the recovery of phenolic compounds with high antioxidant activity can be a very promising one.


Assuntos
Carvão Vegetal , Olea , Álcool Feniletílico/análogos & derivados , Extratos Vegetais , Folhas de Planta , Projetos de Pesquisa
13.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456916

RESUMO

Caffeic acid phenethyl ester (CAPE) is a natural component isolated from propolis and used in traditional medicine. We aimed to investigate the antimicrobial properties and action mechanism of CAPE and caffeamide derivatives (26G and 36M) against oral disease microbes. We resolved the minimum inhibitory and bactericidal concentrations of 26G and 36M and their stability at different temperatures and pH. We also evaluated their effect on biofilm formation and antibiotic resistance gene expression in methicillin-resistant Staphylococcus aureus (MRSA). Our results revealed that 26G and 36M showed the best anticancer and antimicrobial activities, respectively, compared with the other four caffeamide derivatives. Both 26G and 36M showed heat-dependent decreases in antimicrobial activity. The 36M derivative was stable irrespective of pH, whereas 26G was not stable under high pH conditions. Biofilm formation and antibiotic resistance-related gene expression were consistent with their respective phenotypes. This study provides evidence for the potential application of CAPE and caffeamide derivatives in dental medicine to cure or prevent oral diseases.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Álcool Feniletílico , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Álcool Feniletílico/análogos & derivados
14.
Nutrition ; 97: 111579, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248848

RESUMO

OBJECTIVE: An increase in the global prevalence of inflammatory bowel disease has been reported in recent years. Although its pathogenesis has not been fully elucidated, inflammatory bowel disease is highly correlated with intestinal oxidative stress, immune disorders, overexpression of proinflammatory factors, and imbalance of gut microbiota. Hydroxytyrosol (HT), extracted from olive oil and leaves, exhibits significant antioxidant and antiinflammatory activities. METHODS: Therefore, this study sought to evaluate whether the antiinflammatory effect of HT on dextran sodium sulfate (DSS)-induced ulcerative colitis in mice is regulated by targeting the NLRP3 inflammasome and gut microbiota. RESULTS: Colon pathologic morphology and apoptosis were found to be ameliorated in the DSS + HT group compared to the DSS group. Antioxidant capacity was higher in the DSS + HT group than in the DSS group (P < 0.01). HT suppressed expression levels of NLRP3, caspase-1, and ASC mRNA and downregulated interleukin-18 and interleukin-1ß levels in the DSS group (P < 0.01). Furthermore, HT exerted a shift from pathogens to probiotics, and increased the levels of short-chain fatty acids (P < 0.01) in the DSS group. CONCLUSION: In summary, HT supplementation exerts antiinflammatory effects in DSS-induced ulcerative colitis by enhancing colonic antioxidant capacities, inhibiting NLRP3 inflammasome activation, and modulating gut microbiota in vivo.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Antioxidantes/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo , Sulfato de Dextrana/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Álcool Feniletílico/análogos & derivados , Sulfatos
15.
Pharm Dev Technol ; 27(2): 155-163, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34978253

RESUMO

Hydroxytyrosol (HT), a naturally occurring polyphenol from the olive plant, is a potent antioxidant, cardioprotective, neuroprotective, and anti-inflammatory agent. Upon oral administration, HT undergoes rapid elimination within minutes and thus limiting its therapeutic utility. Due to its hydrophilic nature, percutaneous absorption and transdermal delivery of HT are very low. The aim of this research was to enhance the skin permeation of hydroxytyrosol using a niosome gel formulation. The formulations prepared with Span 60 as surfactant showed uniform particle size and high encapsulation efficiency (>90%). The niosome formulations showed a pseudoplastic behavior for topical application within the lipid/surfactant composition of 45-50%. The formulations showed a controlled release of HT compared to the HT solution. The flux of HT across human skin was increased by 28 and 4.4 fold compared to aqueous and ethanolic HT solutions, respectively (p < 0.001). The presence of lecithin lowered the flux and increased the retention of the formulations compared to HT solutions (p < 0.001). The formulations containing lecithin showed two-fold higher skin retention of hydroxytyrosol (p < 0.05). In conclusion, this study demonstrates niosome gel as a promising alternative to oral delivery of HT, providing sustained delivery and greater efficacy.


Assuntos
Antioxidantes , Lipossomos , Administração Cutânea , Cadáver , Humanos , Lecitinas , Álcool Feniletílico/análogos & derivados , Pele , Tensoativos
16.
Food Chem ; 379: 132182, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065497

RESUMO

Water-in-soybean oil organogelled emulsions (OGEs) were formulated as fat replacers and evaluated as delivery systems of hydroxytyrosol (HT, hydrophilic compound), hydroxytyrosol octanoate (HTC18, hydrophobic compound) and hydroxytyrosol decanoate (HTC10, with intermediate hydrophobicity and the highest antioxidant activity measured by conjugated autoxidizable triene assay). OGEs formulated with 55% of water and a ternary blend of candelilla wax, fully hydrogenated palm oil and monoacylglycerols showed mechanical properties similar to lard and solid-like behavior. The increase in the water content, together with a higher concentration of structuring agents in the oil phase, led to an increase in oil retention capacity and texture parameters. A slight desesterification of HTC10 and HTC18 was found during in vitro gastrointestinal digestion. The three bioactive compounds loaded in OGEs showed high bioaccessibility values (∼84%) at the end of digestion, regardless their chain length and hydrophobicity. These OGEs designed as fat replacers showed a great potential for vehiculation of both hydrophilic and lipophilic compounds.


Assuntos
Álcool Feniletílico , Óleo de Soja , Emulsões , Ésteres , Álcool Feniletílico/análogos & derivados
17.
Environ Toxicol ; 37(5): 995-1006, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35006630

RESUMO

In the present study, we evaluated the radiomodulatory potential of caffeic acid phenethyl ester (CAPE), an active component of traditional herbal medicine propolis. CAPE has been identified as a potent anticancer agent in multiple cancer types and is reported to have the dual role of radioprotection and radiosensitization. However, the radiomodulatory potential of CAPE in prostate cancer (PCa), which eventually becomes radioresistant is not known. Therefore, we studied the effect of co-treatment of CAPE and gamma radiation on androgen-independent DU145 and PC3 cells. The combination treatment sensitized PCa cells to radiation in a dose-dependent manner. The radiosensitizing effect of CAPE was observed in both cell lines. CAPE enhanced the level of ionizing radiation (IR)-induced gamma H2AX foci and cell death by apoptosis. The combination treatment also decreased the migration potential of PCa cells. This was confirmed by increased expression of E-cadherin and decrease in vimentin expression. CAPE sensitized PCa cells to radiation in vitro and induced apoptosis, augmented phosphorylation of Akt/mTOR, and hampered cell migration. At the mechanistic level, co-treatment of CAPE and IR inhibited cell growth by decreasing RAD50 and RAD51 proteins involved in DNA repair. This resulted in enhanced DNA damage and cell death. CAPE might represent a promising new adjuvant for the treatment of hormone-refractory radioresistant PCa.


Assuntos
Álcool Feniletílico , Neoplasias da Próstata , Androgênios/farmacologia , Apoptose , Ácidos Cafeicos/farmacologia , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Humanos , Masculino , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Neoplasias da Próstata/metabolismo
18.
Environ Sci Pollut Res Int ; 29(20): 29624-29637, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34676481

RESUMO

As olive leaves constitute the main by-product of the olive oil industry with important environmental and economic impact, there is an increasing demand for its valorization. In the present work, we report the development and application of immobilized enzyme batch bioreactors for the chemo-enzymatic treatment of an aqueous Olea europaea leaf extract rich in oleuropein to produce an extract enriched in hydroxytyrosol and other oleuropein hydrolysis products. To this end, a robust biocatalyst was developed through the immobilization of ß-glucosidase on chitosan-coated magnetic beads which exhibited high hydrolytic stability after 240 h of incubation at 37 °C. The biocatalyst was successfully used in both a rotating bed-reactor and a stir-tank reactor for the modification of the olive leaf extract leading to high conversion yields of oleuropein (exceeding 90%), while an up to 2.5 times enrichment in hydroxytyrosol was achieved. Over 20 phenolic compounds (from different classes of phytochemicals such as flavonoids, secoiridoids, and their derivatives) were identified, in the extract before and after its modification through various chromatographic and spectroscopic techniques. Finally, the biological activity of both extracts was evaluated. Compared to the non-modified extract, the modified one demonstrated 20% higher antioxidant activity, seven-fold higher antibacterial activity, and enhanced cytotoxicity against leiomyosarcoma cells.


Assuntos
Olea , Antioxidantes/química , Antioxidantes/farmacologia , Enzimas Imobilizadas , Iridoides/química , Olea/química , Álcool Feniletílico/análogos & derivados , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta
19.
Mol Cell Biochem ; 477(1): 39-51, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34529223

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, responsible for the synthesis of the CFTR protein, a chloride channel. The gene has approximately 2000 known mutations and all of them affect in some degree the protein function, which makes the pathophysiological manifestations to be multisystemic, mainly affecting the respiratory, gastrointestinal, endocrine, and reproductive tracts. Currently, the treatment of the disease is restricted to controlling symptoms and, more recently, a group of drugs that act directly on the defective protein, known as CFTR modulators, was developed. However, their high cost and difficult access mean that their use is still very restricted. It is important to search for safe and low-cost alternative therapies for CF and, in this context, natural compounds and, mainly, caffeic acid phenethyl ester (CAPE) appear as promising strategies to assist in the treatment of the disease. CAPE is a compound derived from propolis extracts that has antioxidant and anti-inflammatory activities, covering important aspects of the pathophysiology of CF, which points to the possible benefit of its use in the disease treatment. To date, no studies have effectively tested CAPE for CF and, therefore, we intend with this review to elucidate the role of inflammation and oxidative stress for tissue damage seen in CF, associating them with CAPE actions and its pharmacologically active derivatives. In this way, we offer a theoretical basis for conducting preclinical and clinical studies relating the use of this molecule to CF.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ácidos Cafeicos/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Inflamação , Mutação , Álcool Feniletílico/uso terapêutico
20.
Nutrients ; 13(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34959830

RESUMO

Women and men share similar diseases; however, women have unique issues, including gynecologic diseases and diseases related to menstruation, menopause, and post menopause. In recent decades, scientists paid more attention to natural products and their derivatives because of their good tolerability and effectiveness in disease prevention and treatment. Olive oil is an essential component in the Mediterranean diet, a diet well known for its protective impact on human well-being. Investigation of the active components in olive oil, such as oleuropein and hydroxytyrosol, showed positive effects in various diseases. Their effects have been clarified in many suggested mechanisms and have shown promising results in animal and human studies, especially in breast cancer, ovarian cancer, postmenopausal osteoporosis, and other disorders. This review summarizes the current evidence of the role of olives and olive polyphenols in women's health issues and their potential implications in the treatment and prevention of health problems in women.


Assuntos
Dieta Saudável/métodos , Olea/química , Azeite de Oliva/farmacologia , Substâncias Protetoras/farmacologia , Saúde da Mulher , Animais , Dieta Mediterrânea , Feminino , Humanos , Glucosídeos Iridoides/farmacologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Óleos de Plantas/farmacologia , Polifenóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA