Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 459: 132100, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37523962

RESUMO

The lack of universal indicators for predicting microbial biodegradation potential and assessing remediation effects limits the generalization of bioremediation. The community-level ribosomal RNA gene operon (rrn) copy number, an important functional trait, has the potential to serve as a key indicator of the bioremediation of organic pollutants. A meta-analysis based on 1275 samples from 26 hydrocarbon-related studies revealed a positive relationship between the microbial hydrocarbon biodegradation level and the community-level rrn copy number in soil, seawater and culture. Subsequently, a microcosm experiment was performed to decipher the community-level rrn copy number response mechanism during total petroleum hydrocarbon (TPH) biodegradation. The treatment combining straw with resuscitation-promoting factor (Rpf) exhibited the highest community-level rrn copy number and the most effective biodegradation compared with other treatments, and the initial TPH content (20,000 mg kg-1) was reduced by 67.67% after 77 days of incubation. TPH biodegradation rate was positively correlated with the average community-level rrn copy number (p = 0.001, R2 = 0.5781). Both meta and community analyses showed that rrn copy number may reflect the potential of hydrocarbon degradation and microbial dormancy. Our findings provide insight into the applicability of the community-level rrn copy number to assess bacterial biodegradation for pollution remediation.


Assuntos
Petróleo , Poluentes do Solo , RNA Ribossômico , Genes de RNAr , Variações do Número de Cópias de DNA , Poluentes do Solo/metabolismo , Bactérias/genética , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Óperon , Petróleo/metabolismo , Microbiologia do Solo , Solo/química
2.
Biosci Biotechnol Biochem ; 86(10): 1383-1397, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35881471

RESUMO

The Bacillus subtilis rhiLFGN-rhgR-yesTUVWXYZ (formerly yesOPQRSTUVWXYZ) gene cluster includes genes for metabolizing rhamnogalacturonan type I (RG-I), a major pectin constituent, and the rhgR gene encoding an AraC/XylS transcriptional activator. The yesL-rhgKL (formerly yesLMN) operon, adjacent to the rhiL gene, includes the rhgKL genes encoding a two-component regulatory system. The reporter analyses showed that 3 promoters immediately upstream of the rhiL, yesW, and yesL genes were induced by RG-I and repressed by glucose in the medium. The reporter analyses also showed that RhgL and RhgR contribute to the RG-I-dependent induction of the rhiL promoter and that CcpA mediates the catabolite repression of the rhiL and yesL promoters. The in vitro experiments demonstrated that the RhgL response regulator and the CcpA complex bind to each site in the rhiL promoter region. The RT-PCR analysis and the different properties of the rhiL and yesW promoters suggested the rhiLFGN-rhgR-yesTUV genes as an operon.


Assuntos
Bacillus subtilis , Ramnogalacturonanos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Óperon/genética , Proteínas Repressoras/genética
3.
Mol Microbiol ; 116(5): 1315-1327, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34597430

RESUMO

Biotin is an essential metabolic cofactor and de novo biotin biosynthetic pathways are widespread in microorganisms and plants. Biotin synthetic genes are generally found clustered into bio operons to facilitate tight regulation since biotin synthesis is a metabolically expensive process. Dethiobiotin synthetase (DTBS) catalyzes the penultimate step of biotin biosynthesis, the formation of 7,8-diaminononanoate (DAPA). In Escherichia coli, DTBS is encoded by the bio operon gene bioD. Several studies have reported transcriptional activation of ynfK a gene of unknown function, under anaerobic conditions. Alignments of YnfK with BioD have led to suggestions that YnfK has DTBS activity. We report that YnfK is a functional DTBS, although an enzyme of poor activity that is poorly expressed. Supplementation of growth medium with DAPA or substitution of BioD active site residues for the corresponding YnfK residues greatly improved the DTBS activity of YnfK. We confirmed that FNR activates transcriptional level of ynfK during anaerobic growth and identified the FNR binding site of ynfK. The ynfK gene is well conserved in γ-proteobacteria.


Assuntos
Biotina/biossíntese , Biotina/genética , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Sequência de Aminoácidos , Diamino Aminoácidos/metabolismo , Anaerobiose , Sítios de Ligação , Vias Biossintéticas , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Ferro-Enxofre/metabolismo , Óperon , Filogenia
4.
Appl Radiat Isot ; 177: 109911, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34481316

RESUMO

The bioleaching process is developing as an economic and successful biotechnology method in the metallurgy industry. Acidithiobacillus ferrooxidans is one of the most important bacteria involved in uranium bioleaching which converts insoluble U4+ to soluble U6+ by oxidation of Fe2+ to Fe3+ using several periplasmic proteins encoded by the genes in rus and petI operons in its electron transport pathway. Accordingly, the purpose of this study was to consider the expression of these genes through exposed A. ferrooxidans sp. FJ2 to γ-ray in 17 different doses targeting uranium extraction yield. Acidithiobacillus ferrooxidans sp. FJ2 was irradiated by gamma rays at 25, 50, 75, 100, 150, 300, 450, 600, 750 Gy and 1, 2, 5, 10, 15, 20, 25 and 30 kGy doses. Moreover, the Eh value of 9k culture media was measured as special screening criteria to select the four treatments. The selected bacteria were cultured in 9k media, containing 50% uranium ore powder in the bioleaching process. Then, the value of pH & Eh of culture media, Fe2+ and uranium concentrations in 4, 8 and 13 day's period of incubation were measured. In followings, the expression levels of cyc1, cyc2, rus, coxB, petA, petB, petC and cycA genes at the end of each period were investigated by real-time PCR. Overall, all samples demonstrated a decrease in pH value and Fe2+ concentration and an increase in Eh value and U concentration in time intervals. The gamma irradiation in given doses raised the expression levels of all genes encoded in rus and petI operons, except petB gene during the bioleaching process, although, it had no effect either on the pH, Eh values or on Fe2+ and uranium concentrations. This result implies that during the oxidation of ferrous iron and formation of Jarosite sediment, the decreasing trend of pH and the increasing trend of Eh occurred in all samples. However, the differences in expression of the genes of rus and petI operons in the samples did not have an effect on uranium extraction.


Assuntos
Acidithiobacillus/genética , Acidithiobacillus/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Óperon/genética , Óperon/efeitos da radiação , Urânio/isolamento & purificação , Raios gama , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Metalurgia , Oxirredução
5.
Appl Environ Microbiol ; 87(20): e0137521, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34378993

RESUMO

Streptococcus suis is an emerging zoonotic pathogen that causes severe swine and human infections. Metals are essential nutrients for life; however, excess metals are toxic to bacteria. Therefore, maintenance of intracellular metal homeostasis is important for bacterial survival. Here, we characterize a DtxR family metalloregulator, TroR, in S. suis. TroR is located upstream of the troABCD operon, whose expression was found to be significantly downregulated in response to excess manganese (Mn). Deletion of troR resulted in reduced growth when S. suis was cultured in metal-replete medium supplemented with elevated concentrations of zinc (Zn), copper (Cu), or cobalt (Co). Mn supplementation could alleviate the growth defects of the ΔtroR mutant under Zn and Co excess conditions; however, it impaired the growth of the wild-type (WT) and complemented (CΔtroR) strains under Cu excess conditions. The growth of ΔtroR was also inhibited in metal-depleted medium supplemented with elevated concentrations of Mn. Moreover, the ΔtroR mutant accumulated increased levels of intracellular Mn and Co, rather than Zn and Cu. Deletion of troR in S. suis led to significant upregulation of the troABCD operon. Furthermore, troA expression in the WT strain was induced by ferrous iron [Fe(II)] and Co and repressed by Mn and Cu; the repression of troA was mediated by TroR. Finally, TroR is required for S. suis virulence in an intranasal mouse model. Together, these data suggest that TroR is a negative regulator of the TroABCD system and contributes to resistance to metal toxicity and virulence in S. suis. IMPORTANCE Metals are essential nutrients for life; however, the accumulation of excess metals in cells can be toxic to bacteria. In the present study, we identified a metalloregulator, TroR, in Streptococcus suis, which is an emerging zoonotic pathogen. In contrast to the observations in other species that TroR homologs usually contribute to the maintenance of homeostasis of one or two metals, we demonstrated that TroR is required for resistance to the toxicity conferred by multiple metals in S. suis. We also found that deletion of troR resulted in significant upregulation of the troABCD operon, which has been demonstrated to be involved in manganese acquisition in S. suis. Moreover, we demonstrated that TroR is required for the virulence of S. suis in an intranasal mouse model. Collectively, these results suggest that TroR is a negative regulator of the TroABCD system and contributes to resistance to metal toxicity and virulence in S. suis.


Assuntos
Proteínas de Bactérias/genética , Resistência a Medicamentos/genética , Metais Pesados/toxicidade , Proteínas Repressoras/genética , Streptococcus suis/efeitos dos fármacos , Virulência/genética , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Feminino , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Óperon , Proteínas Periplásmicas de Ligação , Infecções Estreptocócicas , Streptococcus suis/genética , Streptococcus suis/crescimento & desenvolvimento , Streptococcus suis/patogenicidade
6.
Methods Mol Biol ; 2354: 375-385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34448170

RESUMO

Potato bacterial wilt is caused by the devastating bacterial pathogen Ralstonia solanacearum. Quantitative resistance to this disease has been and is currently introgressed from a number of wild relatives into cultivated varieties through laborious breeding programs. Here, we present two methods that we have developed to facilitate the screening for resistance to bacterial wilt in potato. The first one uses R. solanacearum reporter strains constitutively expressing the luxCDABE operon or the green fluorescent protein (gfp) to follow pathogen colonization in potato germplasm. Luminescent strains are used for nondestructive live imaging, while fluorescent ones enable precise pathogen visualization inside the plant tissues through confocal microscopy. The second method is a BIO-multiplex-PCR assay that is useful for sensitive and specific detection of viable R. solanacearum (IIB-1) cells in latently infected potato plants. This BIO-multiplex-PCR assay can specifically detect IIB-1 sequevar strains as well as strains belonging to all four R. solanacearum phylotypes and is sensitive enough to detect without DNA extraction ten bacterial cells per mL in complex samples.The described methods allow the detection of latent infections in roots and stems of asymptomatic plants and were shown to be efficient tools to assist potato breeding programs.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Reação em Cadeia da Polimerase Multiplex , Óperon , Doenças das Plantas , Ralstonia solanacearum/genética
7.
mSphere ; 6(3): e0024521, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34047652

RESUMO

The evolution of resistance to one antimicrobial can result in enhanced sensitivity to another, known as "collateral sensitivity." This underexplored phenomenon opens new therapeutic possibilities for patients infected with pathogens unresponsive to classical treatments. Intrinsic resistance to ß-lactams in Mycobacterium tuberculosis (the causative agent of tuberculosis) has traditionally curtailed the use of these low-cost and easy-to-administer drugs for tuberculosis treatment. Recently, ß-lactam sensitivity has been reported in strains resistant to classical tuberculosis therapy, resurging the interest in ß-lactams for tuberculosis. However, a lack of understanding of the molecular underpinnings of this sensitivity has delayed exploration in the clinic. We performed gene expression and network analyses and in silico knockout simulations of genes associated with ß-lactam sensitivity and genes associated with resistance to classical tuberculosis drugs to investigate regulatory interactions and identify key gene mediators. We found activation of the key inhibitor of ß-lactam resistance, blaI, following classical drug treatment as well as transcriptional links between genes associated with ß-lactam sensitivity and those associated with resistance to classical treatment, suggesting that regulatory links might explain collateral sensitivity to ß-lactams. Our results support M. tuberculosis ß-lactam sensitivity as a collateral consequence of the evolution of resistance to classical tuberculosis drugs, mediated through changes to transcriptional regulation. These findings support continued exploration of ß-lactams for the treatment of patients infected with tuberculosis strains resistant to classical therapies. IMPORTANCE Tuberculosis remains a significant cause of global mortality, with strains resistant to classical drug treatment considered a major health concern by the World Health Organization. Challenging treatment regimens and difficulty accessing drugs in low-income communities have led to a high prevalence of strains resistant to multiple drugs, making the development of alternative therapies a priority. Although Mycobacterium tuberculosis is naturally resistant to ß-lactam drugs, previous studies have shown sensitivity in strains resistant to classical drug treatment, but we currently lack understanding of the molecular underpinnings behind this phenomenon. We found that genes involved in ß-lactam susceptibility are activated after classical drug treatment resulting from tight regulatory links with genes involved in drug resistance. Our study supports the hypothesis that ß-lactam susceptibility observed in drug-resistant strains results from the underlying regulatory network of M. tuberculosis, supporting further exploration of the use of ß-lactams for tuberculosis treatment.


Assuntos
Antibacterianos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Óperon/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Resistência beta-Lactâmica/genética , beta-Lactamas/farmacologia , Simulação por Computador , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/patogenicidade , Óperon/genética , Transcrição Gênica
8.
Artigo em Inglês | MEDLINE | ID: mdl-33289625

RESUMO

In Australia, Stylosanthes little leaf (StLL) phytoplasma has been detected in Stylosanthes scabra Vogel, Arachis pintoi Krapov, Saccharum officinarum L., Carica papaya L., Medicago sativa L., and Solanum tuberosum L. The 16S rRNA gene sequence of StLL phytoplasma strains from S. scabra, C. papaya, S. officinarum and S. tuberosum were compared and share 99.93-100 % nucleotide sequence identity. Phylogenetic comparisons between the 16S rRNA genes of StLL phytoplasma and other 'Candidatus Phytoplasma' species indicate that StLL represents a distinct phytoplasma lineage. It shares its most recent known ancestry with 'Ca. Phytoplasma luffae' (16SrVIII-A), with which it has 97.17-97.25 % nucleotide identity. In silico RFLP analysis of the 16S rRNA amplicon using iPhyClassifier indicate that StLL phytoplasmas have a unique pattern (similarity coefficient below 0.85) that is most similar to that of 'Ca. Phytoplasma luffae'. The unique in silico RFLP patterns were confirmed in vitro. Nucleotide sequences of genes that are more variable than the 16S rRNA gene, namely tuf (tu-elongation factor), secA (partial translocation gene), and the partial ribosomal protein (rp) gene operon (rps19-rpl22-rps3), produced phylogenetic trees with similar branching patterns to the 16S rRNA gene tree. Sequence comparisons between the StLL 16S rRNA spacer region confirmed previous reports of rrn interoperon sequence heterogeneity for StLL, where the spacer region of rrnB encodes a complete tRNA-Isoleucine gene and the rrnA spacer region does not. Together these results suggest that the Australian phytoplasma, StLL, is unique according to the International Organization for Mycoplasmology (IRPCM) recommendations. The novel taxon 'Ca. Phytoplasma stylosanthis' is proposed, with the most recent strain from a potato crop in Victoria, Australia, serving as the reference strain (deposited in the Victorian Plant Pathology Herbarium as VPRI 43683).


Assuntos
Filogenia , Phytoplasma/classificação , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Austrália , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Genes Bacterianos , Especificidade de Hospedeiro , Tipagem de Sequências Multilocus , Óperon , Phytoplasma/isolamento & purificação , RNA Ribossômico 16S/genética , Proteínas Ribossômicas/genética , Análise de Sequência de DNA
9.
Mol Microbiol ; 115(4): 554-573, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33034093

RESUMO

S. aureus USA300 isolates utilize the copBL and copAZ gene products to prevent Cu intoxication. We created and examined a ΔcopAZ ΔcopBL mutant strain (cop-). The cop- strain was sensitive to Cu and accumulated intracellular Cu. We screened a transposon (Tn) mutant library in the cop- background and isolated strains with Tn insertions in the mntABC operon that permitted growth in the presence of Cu. The mutations were in mntA and they were recessive. Under the growth conditions utilized, MntABC functioned in manganese (Mn) import. When cultured with Cu, strains containing a mntA::Tn accumulated less Cu than the parent strain. Mn(II) supplementation improved growth when cop- was cultured with Cu and this phenotype was dependent upon the presence of MntR, which is a repressor of mntABC transcription. A ΔmntR strain had an increased Cu load and decreased growth in the presence of Cu, which was abrogated by the introduction of mntA::Tn. Over-expression of mntABC increased cellular Cu load and sensitivity to Cu. The presence of a mntA::Tn mutation protected iron-sulfur (FeS) enzymes from inactivation by Cu. The data presented are consistent with a model wherein defective MntABC results in decreased cellular Cu accumulation and protection to FeS enzymes from Cu poisoning.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Cobre/metabolismo , Cobre/farmacologia , Regulação Bacteriana da Expressão Gênica , Manganês/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/fisiologia , DNA Bacteriano , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Mutagênese Insercional , Óperon , RNA Bacteriano , Proteínas Repressoras/fisiologia , Infecções Estafilocócicas/microbiologia
10.
Microb Cell Fact ; 19(1): 205, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167976

RESUMO

BACKGROUND: Plipastatin is a potent Bacillus antimicrobial lipopeptide with the prospect to replace conventional antifungal chemicals for controlling plant pathogens. However, the application of this lipopeptide has so far been investigated in a few cases, principally because of the yield in low concentration and unknown regulation of biosynthesis pathways. B. subtilis synthesizes plipastatin by a non-ribosomal peptide synthetase encoded by the ppsABCDE operon. In this study, B. subtilis 3NA (a non-sporulation strain) was engineered to gain more insights about plipastatin mono-production. RESULTS: The 4-phosphopantetheinyl transferase Sfp posttranslationally converts non-ribosomal peptide synthetases from inactive apoforms into their active holoforms. In case of 3NA strain, sfp gene is inactive. Accordingly, the first step was an integration of a repaired sfp version in 3NA to construct strain BMV9. Subsequently, plipastatin production was doubled after integration of a fully expressed degQ version from B. subtilis DSM10T strain (strain BMV10), ensuring stimulation of DegU-P regulatory pathway that positively controls the ppsABSDE operon. Moreover, markerless substitution of the comparably weak native plipastatin promoter (Ppps) against the strong constitutive promoter Pveg led to approximately fivefold enhancement of plipastatin production in BMV11 compared to BMV9. Intriguingly, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) did not increase the plipastatin yield. Afterwards, deletion of surfactin (srfAA-AD) operon by the retaining the regulatory comS which is located within srfAB and is involved in natural competence development, resulted in the loss of plipastatin production in BMV9 and significantly decreased the plipastatin production of BMV11. We also observed that supplementation of ornithine as a precursor for plipastatin formation caused higher production of plipastatin in mono-producer strains, albeit with a modified pattern of plipastatin composition. CONCLUSIONS: This study provides evidence that degQ stimulates the native plipastatin production. Moreover, a full plipastatin production requires surfactin synthetase or some of its components. Furthermore, as another conclusion of this study, results point towards ornithine provision being an indispensable constituent for a plipastatin mono-producer B. subtilis strain. Therefore, targeting the ornithine metabolic flux might be a promising strategy to further investigate and enhance plipastatin production by B. subtilis plipastatin mono-producer strains.


Assuntos
Bacillus subtilis/metabolismo , Ácidos Graxos/biossíntese , Engenharia Metabólica/métodos , Oligopeptídeos/biossíntese , Peptídeos Cíclicos/biossíntese , Anti-Infecciosos/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Lipopeptídeos/biossíntese , Óperon , Peptídeo Sintases/metabolismo , Regiões Promotoras Genéticas
11.
J Bacteriol ; 203(2)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33077636

RESUMO

Streptococcus mutans utilizes numerous metabolite transporters to obtain essential nutrients in the "feast or famine" environment of the human mouth. S. mutans and most other streptococci are considered auxotrophic for several essential vitamins including riboflavin (vitamin B2), which is used to generate key cofactors and to perform numerous cellular redox reactions. Despite the well-known contributions of this vitamin to central metabolism, little is known about how S. mutans obtains and metabolizes B2 The uncharacterized protein SMU.1703c displays high sequence homology to the riboflavin transporter RibU. Deletion of SMU.1703c hindered S. mutans growth in complex and defined medium in the absence of saturating levels of exogenous riboflavin, whereas deletion of cotranscribed SMU.1702c alone had no apparent effect on growth. Expression of SMU.1703c in a Bacillus subtilis riboflavin auxotroph functionally complemented growth in nonsaturating riboflavin conditions. S. mutans was also able to grow on flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) in an SMU.1703c-dependent manner. Deletion of SMU.1703c and/or SMU.1702c impacted S. mutans acid stress tolerance, as all mutants showed improved growth at pH 5.5 compared to that of the wild type when medium was supplemented with saturating riboflavin. Cooccurrence of SMU.1703c and SMU.1702c, a hypothetical PAP2 family acid phosphatase gene, appears unique to the streptococci and may suggest a connection of SMU.1702c to the acquisition or metabolism of flavins within this genus. Identification of SMU.1703c as a RibU-like riboflavin transporter furthers our understanding of how S. mutans acquires essential micronutrients within the oral cavity and how this pathogen successfully competes within nutrient-starved oral biofilms.IMPORTANCE Dental caries form when acid produced by oral bacteria erodes tooth enamel. This process is driven by the fermentative metabolism of cariogenic bacteria, most notably Streptococcus mutans Nutrient acquisition is key in the competitive oral cavity, and many organisms have evolved various strategies to procure carbon sources or necessary biomolecules. B vitamins, such as riboflavin, which many oral streptococci must scavenge from the oral environment, are necessary for survival within the competitive oral cavity. However, the primary mechanism and proteins involved in this process remain uncharacterized. This study is important because it identifies a key step in S. mutans riboflavin acquisition and cofactor generation, which may enable the development of novel anticaries treatment strategies via selective targeting of metabolite transporters.


Assuntos
Óperon/fisiologia , Riboflavina/metabolismo , Streptococcus mutans/fisiologia , Sequência de Aminoácidos , Biologia Computacional , Teste de Complementação Genética , Humanos , Concentração de Íons de Hidrogênio , Reação em Cadeia da Polimerase/métodos , Riboflavina/química , Alinhamento de Sequência , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento , Estresse Fisiológico/genética
12.
Appl Microbiol Biotechnol ; 104(23): 10091-10103, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33119797

RESUMO

Extracellular glycosyl hydrolases are uncommon in lactobacilli and include amylases and fructosidases mediating starch and fructan utilization, respectively. Extracellular arabinanases have not been described in lactobacilli. This study is aimed at identifying the function of an arabinan utilization operon in Lactobacillus crispatus DSM29598 and at characterizing two putative extracellular arabinanases that are located on that operon. The arabinan utilization operon of L. crispatus DSM29598 encodes enzymes for degradation of arabinan, α-galactosidases, ß-galactosidases, and enzymes and for utilization of arabinose including phosphoketolase. The two putative extracellular arabinanases, AbnA and AbnB, are homologous to family GH43 endo-arabinanases. In Lactobacillaceae, homologs of these enzymes were identified exclusively in vertebrate-adapted species of the genus Lactobacillus. L. crispatus grew with arabinan from sugar beet pectin as sole carbon source, indicating extracellular arabinanase activity, and produced lactate and acetate, indicating metabolism via the phosphoketolase pathway. The two arabinanases AbnA and AbnB were heterologously expressed and purified by affinity chromatography. AbnA hydrolyzed linear and branched arabinan, while AbnB hydrolyzed only linear arabinan. The optimum pH for AbnA and AbnB was 6 and 7.5, respectively; 40 °C was the optimum temperature for both enzymes. The application of arabinan degrading L. crispatus as probiotic or as synbiotic with pectins may improve the production of short-chain fatty acids from pectin to benefit host health. KEY POINTS: • An arabinan utilization operon in L. crispatus encodes two extracellular arabinanases. • The same operon also encodes metabolic genes for arabinose conversion. • In Lactobacillaceae, extracellular arabinanases are exclusive to Lactobacillus species.


Assuntos
Glicosídeo Hidrolases , Lactobacillus crispatus , Arabinose , Glicosídeo Hidrolases/genética , Óperon , Pectinas , Polissacarídeos
13.
Plant Cell ; 32(9): 2898-2916, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647068

RESUMO

Engineering improved Rubisco for the enhancement of photosynthesis is challenged by the alternate locations of the chloroplast rbcL gene and nuclear RbcS genes. Here we develop an RNAi-RbcS tobacco (Nicotiana tabacum) master-line, tobRrΔS, for producing homogenous plant Rubisco by rbcL-rbcS operon chloroplast transformation. Four genotypes encoding alternative rbcS genes and adjoining 5'-intergenic sequences revealed that Rubisco production was highest (50% of the wild type) in the lines incorporating a rbcS gene whose codon use and 5' untranslated-region matched rbcL Additional tobacco genotypes produced here incorporated differing potato (Solanum tuberosum) rbcL-rbcS operons that either encoded one of three mesophyll small subunits (pS1, pS2, and pS3) or the potato trichome pST-subunit. The pS3-subunit caused impairment of potato Rubisco production by ∼15% relative to the lines producing pS1, pS2, or pST However, the ßA-ßB loop Asn-55-His and Lys-57-Ser substitutions in the pS3-subunit improved carboxylation rates by 13% and carboxylation efficiency (CE) by 17%, relative to potato Rubisco incorporating pS1 or pS2-subunits. Tobacco photosynthesis and growth were most impaired in lines producing potato Rubisco incorporating the pST-subunit, which reduced CE and CO2/O2 specificity 40% and 15%, respectively. Returning the rbcS gene to the plant plastome provides an effective bioengineering chassis for introduction and evaluation of novel homogeneous Rubisco complexes in a whole plant context.


Assuntos
Cloroplastos/genética , Nicotiana/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Solanum tuberosum/fisiologia , Proteínas de Bactérias/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Óperon , Iniciação Traducional da Cadeia Peptídica , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Subunidades Proteicas , Interferência de RNA , Rhodospirillum rubrum/genética , Ribulose-Bifosfato Carboxilase/genética , Solanum tuberosum/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
14.
Enzyme Microb Technol ; 138: 109555, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32527525

RESUMO

Hydroxy- or ketone- functionalized fatty acid methyl esters (FAMEs) are important compounds for production of pharmaceuticals, vitamins, cosmetics or dietary supplements. Biocatalysis through enzymatic cascades has drawn attention to the efficient, sustainable, and greener synthetic processes. Furthermore, whole cell catalysts offer important advantages such as cofactor regeneration by cell metabolism, omission of protein purification steps and increased enzyme stability. Here, we report the first whole cell catalysis employing an engineered P450 BM3 variant and cpADH5 coupled cascade reaction for the biosynthesis of hydroxy- and keto-FAMEs. Firstly, P450 BM3 was engineered through the KnowVolution approach yielding P450 BM3 variant YE_M1_2, (R47S/Y51W/T235S/N239R/I401 M) which exhibited boosted performance toward methyl hexanoate. The initial oxidation rate of YE_M1_2 toward methyl hexanoate was determined to be 23-fold higher than the wild type enzyme and a 1.5-fold increase in methyl 3-hydroxyhexanoate production was obtained (YE_M1_2; 2.75 mM and WT; 1.8 mM). Subsequently, the whole cell catalyst for the synthesis of methyl 3-hydroxyhexanoate and methyl 3-oxohexanoate was constructed by combining the engineered P450 BM3 and cpADH5 variants in an artificial operon. A 2.06 mM total product formation was achieved by the whole cell catalyst including co-expressed channel protein, FhuA and co-solvent addition. Moreover, the generated whole cell biocatalyst also accepted methyl valerate, methyl heptanoate as well as methyl octanoate as substrates and yielded ω-1 ketones as the main product.


Assuntos
Álcool Desidrogenase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ésteres/metabolismo , Ácidos Graxos/biossíntese , Álcool Desidrogenase/genética , Bacillus megaterium/enzimologia , Bacillus megaterium/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biocatálise , Candida parapsilosis/enzimologia , Candida parapsilosis/genética , Caproatos/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular Direcionada , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ésteres/química , Ácidos Graxos/química , Hidroxilação , Óperon , Especificidade por Substrato
15.
Int J Antimicrob Agents ; 55(6): 105956, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32278810

RESUMO

Colistin remains a last-line antibiotic for the treatment of infections by multidrug-resistant Acinetobacter species. However, mortality rates are high in patients with Acinetobacter infection receiving colistin treatment. This multicentre study evaluated whether colistin susceptibility, additional antimicrobial agents or other prognostic factors influenced the clinical outcomes of patients receiving colistin treatment for Acinetobacter bacteraemia. This retrospective study enrolled 122 adults receiving colistin for monomicrobial Acinetobacter bacteraemia at six medical centres in the ACTION Study Group over an 8-year period. Clinical information, antimicrobial susceptibility and colistin resistance determinants were analysed. The primary outcome measure was 14-day mortality. Among 122 patients, 18 and 104 were infected with colistin-resistant (ColR) isolates [minimum inhibitory concentration (MIC) ≥4 mg/L] and colistin-susceptible (ColS) isolates (MIC ≤2 mg/L), respectively. Patients infected with ColR and ColS isolates did not differ significantly with regard to Charlson comorbidity index, invasive procedures, sources of bacteraemia, disease severity and 14-day mortality rate (44.4% vs. 34.6%; P = 0.592). No specific additional antimicrobial agent was independently associated with higher or lower mortality. Coronary artery disease, higher Acute Physiology and Chronic Health Evaluation (APACHE) II score and bacteraemia caused Acinetobacter baumannii were independent risk factors associated with 14-day mortality. Mechanisms of colistin resistance were associated with amino acid variants in the pmrCAB operon. Finally, previously unreported Acinetobacter nosocomialis amino acid variants related to colistin resistance were identified. In conclusion, colistin susceptibility and colistin combination antimicrobial treatment were not associated with decreased 14-day mortality in patients with Acinetobacter bacteraemia receiving colistin treatment.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/mortalidade , Acinetobacter/efeitos dos fármacos , Colistina/uso terapêutico , Acinetobacter/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/mortalidade , Comorbidade , Farmacorresistência Bacteriana , Feminino , Genoma Bacteriano , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Óperon , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento
16.
Curr Microbiol ; 77(7): 1167-1173, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32072274

RESUMO

Staphylococcus epidermidis is one of the main causes of medical device-related infections and bovine mastitis owing to its biofilm-forming abilities. Oxytropis glabra DC. is one of the most widespread Fabaceae species and used as a Chinese herbal formulation in Western China. Our research investigated the effects of O. glabra on the biofilm formation of S. epidermidis and the possible inhibiting mechanism. The biofilm-forming reference strain, S. epidermidis SE-1 (ATCC 35,984), was employed as a model and semi-quantitative biofilm assay was performed to evaluate the antibiofilm activity of O. glabra. The exopolysaccharides (EPS) production and expression of ica operon were studied to explore the possible antibiofilm mechanism using thin-layer chromatography and quantitative real-time PCR assay, respectively. The results obtained indicated that O. glabra decoction at 7.5 mg mL-1 significantly inhibited biofilm formation by about 95% without affecting cell growth of S. epidermidis. Two hydrolysis productions of EPS were significantly decreased by 64% and 54% with the addition of 7.5 mg mL-1O. glabra and the expression of icaR was significantly up-regulated 2.2-times, whereas icaB was significantly down-regulated more than 50% by 7.5 mg mL-1O. glabra. These findings suggest a potential application for O. glabra as a promising candidate for the exploration of new drugs against S. epidermidis biofilm-associated infections.


Assuntos
Biofilmes/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Oxytropis , Extratos Vegetais/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Óperon/efeitos dos fármacos , Extratos Vegetais/química , Staphylococcus epidermidis/genética
17.
J Agric Food Chem ; 68(1): 250-257, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31823602

RESUMO

Cysteine is a commercially important sulfur-containing amino acid widely used as a supplement in the agricultural and food industries. It is extremely desirable to achieve a high sulfur conversion rate in the fermentation-based cysteine production. Here, the metabolic engineering of Escherichia coli was performed to enhance the sulfur conversion rate in cysteine biosynthesis. Accordingly, the reduction of sulfur loss by the regulator decR and its yhaOM operons were deleted. serACB was integrated into chromosome with constitutive promoter to coordinately increase sulfur utilization. The sulfur assimilation pathways and sulfur transcriptional regulator cysB were overexpressed to regulate sulfur metabolism and enhance sulfur conversion significantly. After the process optimization in fed-batch fermentation, LH16 [SLH02 ΔyhaM Ptrc1-serACB-cysM-nrdH-(pLH03, pTrc99a-cysB)] produced 7.5 g/L of cysteine with a sulfur conversion rate of 90.11%. These results indicate that cysteine production by LH16 is a valuable process in the agricultural and food industries.


Assuntos
Cisteína/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Enxofre/metabolismo , Cisteína/química , Escherichia coli/química , Fermentação , Cinética , Engenharia Metabólica , Óperon , Enxofre/química
18.
PLoS One ; 14(12): e0227009, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31887179

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infection is an important clinical concern in patients, and is often associated with significant disease burden and metastatic infections. There is an increasing evidence of heterogeneous vancomycin-intermediate S. aureus (hVISA) associated treatment failure. In this study, we aim to understand the molecular mechanism of teicoplanin resistant MRSA (TR-MRSA) and hVISA. A total of 482 MRSA isolates were investigated for these phenotypes. Of the tested isolates, 1% were identified as TR-MRSA, and 12% identified as hVISA. A highly diverse amino acid substitution was observed in tcaRAB, vraSR, and graSR genes in TR-MRSA and hVISA strains. Interestingly, 65% of hVISA strains had a D148Q mutation in the graR gene. However, none of the markers were reliable in differentiating hVISA from TR-MRSA. Significant pbp2 upregulation was noted in three TR-MRSA strains, which had teicoplanin MICs of 16 or 32 µg/ml, whilst significant pbp4 downregulation was not noted in these strains. In our study, multiple mutations were identified in the candidate genes, suggesting a complex evolutionary pathway involved in the development of TR-MRSA and hVISA strains.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/tratamento farmacológico , Teicoplanina/uso terapêutico , Resistência a Vancomicina/genética , Vancomicina/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Análise Mutacional de DNA , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Índia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Mutação/efeitos dos fármacos , Óperon/efeitos dos fármacos , Óperon/genética , Proteínas de Ligação às Penicilinas/genética , Reação em Cadeia da Polimerase em Tempo Real , Infecções Estafilocócicas/microbiologia , Teicoplanina/farmacologia , Falha de Tratamento , Regulação para Cima , Vancomicina/uso terapêutico , Resistência a Vancomicina/efeitos dos fármacos
19.
mBio ; 10(4)2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409679

RESUMO

Neisseria gonorrhoeae has developed resistance to every antibiotic introduced for treatment of gonorrhea since 1938, and concern now exists that gonorrheal infections may become refractory to all available antibiotics approved for therapy. The current recommended dual antibiotic treatment regimen of ceftriaxone (CRO) and azithromycin (AZM) is threatened with the emergence of gonococcal strains displaying resistance to one or both of these antibiotics. Non-beta-lactamase resistance to penicillin and third-generation cephalosporins, as well as low-level AZM resistance expressed by gonococci, requires overexpression of the mtrCDE-encoded efflux pump, which in wild-type (WT) strains is subject to transcriptional repression by MtrR. Since earlier studies showed that loss of MtrCDE renders gonococci hypersusceptible to beta-lactams and macrolides, we hypothesized that transcriptional dampening of mtrCDE would render an otherwise resistant strain susceptible to these antibiotics as assessed by antibiotic susceptibility testing and during experimental infection. In order to test this hypothesis, we ectopically expressed a WT copy of the mtrR gene, which encodes the repressor of the mtrCDE efflux pump operon, in N. gonorrhoeae strain H041, the first reported gonococcal strain to cause a third-generation-cephalosporin-resistant infection. We now report that MtrR production can repress the expression of mtrCDE, increase antimicrobial susceptibility in vitro, and enhance beta-lactam efficacy in eliminating gonococci as assessed in a female mouse model of lower genital tract infection. We propose that strategies that target the MtrCDE efflux pump should be considered to counteract the increasing problem of antibiotic-resistant gonococci.IMPORTANCE The emergence of gonococcal strains resistant to past or currently used antibiotics is a global public health concern, given the estimated 78 million infections that occur annually. The dearth of new antibiotics to treat gonorrhea demands that alternative curative strategies be considered to counteract antibiotic resistance expressed by gonococci. Herein, we show that decreased expression of a drug efflux pump that participates in gonococcal resistance to antibiotics can increase gonococcal susceptibility to beta-lactams and macrolides under laboratory conditions, as well as improve antibiotic-mediated clearance of gonococci from the genital tract of experimentally infected female mice.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Gonorreia/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Neisseria gonorrhoeae/efeitos dos fármacos , Animais , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Gonorreia/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/crescimento & desenvolvimento , Óperon , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico
20.
Sci Rep ; 9(1): 8608, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197236

RESUMO

The influence of carbon metabolism on oxidative phosphorylation is poorly understood in mycobacteria. M. tuberculosis expresses two respiratory terminal oxidases, the cytochrome bc1:aa3 and the cytochrome bd oxidase, which are jointly required for oxidative phosphorylation and mycobacterial viability. The essentiality of the cytochrome bc1:aa3 for optimum growth is illustrated by its vulnerability to chemical inhibition by the clinical drug candidate Q203 and several other chemical series. The cytochrome bd oxidase is not strictly essential for growth but is required to maintain bioenergetics when the function of the cytochrome bc1:aa3 is compromised. In this study, we observed that the potency of drugs targeting the cytochrome bc1:aa3 is influenced by carbon metabolism. The efficacy of Q203 and related derivatives was alleviated by glycerol supplementation. The negative effect of glycerol supplementation on Q203 potency correlated with an upregulation of the cytochrome bd oxidase-encoding cydABDC operon. Upon deletion of cydAB, the detrimental effect of glycerol on the potency of Q203 was abrogated. The same phenomenon was also observed in recent clinical isolates, but to a lesser extent compared to the laboratory-adapted strain H37Rv. This study reinforces the importance of optimizing in vitro culture conditions for drug evaluation in mycobacteria, a factor which appeared to be particularly essential for drugs targeting the cytochrome bc1:aa3 terminal oxidase.


Assuntos
Antituberculosos/farmacologia , Carbono/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Resistência a Medicamentos/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glicerol/farmacologia , Imidazóis/farmacologia , Mutação/genética , Mycobacterium tuberculosis/isolamento & purificação , Óperon/genética , Piperidinas/farmacologia , Piridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA