Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(12): 4545-4554, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29414777

RESUMO

NO synthase (NOS) enzymes perform interdomain electron transfer reactions during catalysis that may rely on complementary charge interactions at domain-domain interfaces. Guided by our previous results and a computer-generated domain-docking model, we assessed the importance of cross-domain charge interactions in the FMN-to-heme electron transfer in neuronal NOS (nNOS). We reversed the charge of three residues (Glu-762, Glu-816, and Glu-819) that form an electronegative triad on the FMN domain and then individually reversed the charges of three electropositive residues (Lys-423, Lys-620, and Lys-660) on the oxygenase domain (NOSoxy), to potentially restore a cross-domain charge interaction with the triad, but in reversed polarity. Charge reversal of the triad completely eliminated heme reduction and NO synthesis in nNOS. These functions were partly restored by the charge reversal at oxygenase residue Lys-423, but not at Lys-620 or Lys-660. Full recovery of heme reduction was probably muted by an accompanying change in FMN midpoint potential that made electron transfer to the heme thermodynamically unfavorable. Our results provide direct evidence that cross-domain charge pairing is required for the FMN-to-heme electron transfer in nNOS. The unique ability of charge reversal at position 423 to rescue function indicates that it participates in an essential cross-domain charge interaction with the FMN domain triad. This supports our domain-docking model and suggests that it may depict a productive electron transfer complex formed during nNOS catalysis.


Assuntos
Elétrons , Heme/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Animais , Catálise , Citocromos c/metabolismo , Transporte de Elétrons , Mononucleotídeo de Flavina/metabolismo , Cinética , Modelos Moleculares , Mutação , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/genética , Oxirredução , Domínios Proteicos , Ratos
2.
PLoS One ; 8(7): e69158, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922688

RESUMO

BACKGROUND: Nitric oxide synthase (NOS) is responsible for synthesizing nitric oxide (NO) from L-arginine, and involved in multiple physiological functions. However, its immunological role in mollusc was seldom reported. METHODOLOGY: In the present study, an NOS (CfNOS) gene was identified from the scallop Chlamys farreri encoding a polypeptide of 1486 amino acids. Its amino acid sequence shared 50.0~54.7, 40.7~47.0 and 42.5~44.5% similarities with vertebrate neuronal (n), endothelial (e) and inducible (i) NOSs, respectively. CfNOS contained PDZ, oxygenase and reductase domains, which resembled those in nNOS. The CfNOS mRNA transcripts expressed in all embryos and larvae after the 2-cell embryo stage, and were detectable in all tested tissues with the highest level in the gonad, and with the immune tissues hepatopancreas and haemocytes included. Moreover, the immunoreactive area of CfNOS distributed over the haemocyte cytoplasm and cell membrane. After LPS, ß-glucan and PGN stimulation, the expression level of CfNOS mRNA in haemocytes increased significantly at 3 h (4.0-, 4.8- and 2.7-fold, respectively, P < 0.01), and reached the peak at 12 h (15.3- and 27.6-fold for LPS and ß-glucan respectively, P < 0.01) and 24 h (17.3-fold for PGN, P < 0.01). In addition, TNF-α also induced the expression of CfNOS, which started to increase at 1 h (5.2-fold, P < 0.05) and peaked at 6 h (19.9-fold, P < 0.01). The catalytic activity of the native CfNOS protein was 30.3 ± 0.3 U mgprot(-1), and it decreased significantly after the addition of the selective inhibitors of nNOS and iNOS (26.9 ± 0.4 and 29.3 ± 0.1 U mgprot(-1), respectively, P < 0.01). CONCLUSIONS: These results suggested that CfNOS, with identical structure with nNOS and similar enzymatic characteristics to nNOS and iNOS, played the immunological role of iNOS to be involved in the scallop immune defense against PAMPs and TNF-α.


Assuntos
Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/imunologia , Pectinidae/enzimologia , Pectinidae/imunologia , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Western Blotting , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hemócitos/enzimologia , Humanos , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/genética , Funções Verossimilhança , Dados de Sequência Molecular , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Pectinidae/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia
3.
Phytomedicine ; 14(5): 344-52, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17084601

RESUMO

NO-synthase (NOS) is a heme-containing enzyme that catalyzes the oxidation of L-arginine to nitric oxide, an important cellular signaling molecule. Recently, it was found that aqueous extracts of tobacco cigarettes cause the inactivation of the neuronal isoform of NOS (nNOS) and that this may explain some of the toxicological effects of smoking. Although the exact identity of the chemical inactivator(s) is not known, we wondered if extracts prepared from other plants, including those closely related to tobacco, Nicotiana tabacum (Solanaceae), would similarly inactivate nNOS. We examined 33 plants, representing diverse members of the plant kingdom ranging from whisk fern, Psilotum nudum (Psilotaceae) to tobacco and discovered 18 plants that contain a chemical inactivator(s) of nNOS. Of these plants, 16 are members of the core asterids flowering plant group. Of these asterids, 6 are members of the Solanaceae family, of which tobacco is a member. Based on the phylogenetic relationship of the plants, it is possible that the same chemical or related chemical inactivator(s) exist. This, in turn, may help elucidate the structure of the chemical(s), as well as provide a source of a potentially novel inactivator of nNOS. The alkaloid nicotine can be excluded as putative nNOS inhibitor.


Assuntos
Inibidores Enzimáticos/farmacologia , Nicotiana , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Fitoterapia , Extratos Vegetais/farmacologia , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/química , Humanos , Concentração Inibidora 50 , Óxido Nítrico Sintase Tipo I/química , Componentes Aéreos da Planta , Extratos Vegetais/química
4.
J Biol Chem ; 280(47): 39208-19, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16150731

RESUMO

The neuronal nitric-oxide synthase (nNOS) flavoprotein domain (nNOSr) contains regulatory elements that repress its electron flux in the absence of bound calmodulin (CaM). The repression also requires bound NADP(H), but the mechanism is unclear. The crystal structure of a CaM-free nNOSr revealed an ionic interaction between Arg(1400) in the C-terminal tail regulatory element and the 2'-phosphate group of bound NADP(H). We tested the role of this interaction by substituting Ser and Glu for Arg(1400) in nNOSr and in the full-length nNOS enzyme. The CaM-free nNOSr mutants had cytochrome c reductase activities that were less repressed than in wild-type, and this effect could be mimicked in wild-type by using NADH instead of NADPH. The nNOSr mutants also had faster flavin reduction rates, greater apparent K(m) for NADPH, and greater rates of flavin auto-oxidation. Single-turnover cytochrome c reduction data linked these properties to an inability of NADP(H) to cause shielding of the FMN module in the CaM-free nNOSr mutants. The full-length nNOS mutants had no NO synthesis in the CaM-free state and had lower steady-state NO synthesis activities in the CaM-bound state compared with wild-type. However, the mutants had faster rates of ferric heme reduction and ferrous heme-NO complex formation. Slowing down heme reduction in R1400E nNOS with CaM analogues brought its NO synthesis activity back up to normal level. Our studies indicate that the Arg(1400)-2'-phosphate interaction is a means by which bound NADP(H) represses electron transfer into and out of CaM-free nNOSr. This interaction enables the C-terminal tail to regulate a conformational equilibrium of the FMN module that controls its electron transfer reactions in both the CaM-free and CaM-bound forms of nNOS.


Assuntos
NADP/metabolismo , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Arginina/química , Sequência de Bases , Calmodulina/metabolismo , DNA Complementar/genética , Transporte de Elétrons , Heme/metabolismo , Humanos , Técnicas In Vitro , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo I/genética , Oxirredução , Conformação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA