Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Ethnopharmacol ; 323: 117699, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38185262

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Withania somnifera (L.) Dunal, known as Ashwagandha, has long been used in traditional medicine in Ayurveda, India, a representative adaptogen. The main active constituents of W. somnifera are withanolides, and the root is often used as a medicine with a wide range of pharmacological activities, which can be used to treat insomnia, neurasthenia, diabetes mellitus and skin cancer. AIM OF THE STUDY: Whole-component qualitative and quantitative analyses were performed on W. somnifera. We explored the ameliorative effect of the adaptogen representative plant W. somnifera on the senescence events of MGO-injured fibroblasts and its action mechanism and verified the hypotheses that WS can inhibit the accumulation of AGEs and regulate the dynamic balance among the components of the ECM by modulating the expression of integrin ß1 receptor; as a result, WS maintains cellular behavioural and biological functions in a normal range and retards the aging of skin from the cellular level. MATERIALS AND METHODS: In this study, the components of WS were first qualitatively and quantitatively analysed by HPLC fingerprinting and LC-MS detection. Second, a model of MGO-induced injury of CML-overexpressing fibroblasts was established. ELISA was used to detect CML expression and the synthesis of key extracellular matrix ECM protein components COL1, FN1, LM5 and TNC synthesis; CCK-8 was used to detect cell viability; EDU was used to detect cell proliferation capacity; fluorescence was used to detect cell adhesion capacity; and migration assay were used to detect cell migration capacity; qRT-PCR was used to detect the regulatory pathway TGF-ß1 and MMP-2, MMP-9 in ECMs; immunofluorescence was used to detect the expression of ITGB1; and WB was used to detect the expression of COL1, FN1, LM5, Tnc, TGF-ß1, MMP-2, MMP-9 and ITGB1. RESULTS: In total, 27 active ingredients were analysed from WS, which mainly consisted of withanolide components, such as withaferin A and withanolide A. Based on the model of MGO-induced fibroblast senescence injury, WS significantly inhibited CML synthesis. By up-regulating the expression of integrin ß1, it upregulated the expression of the TGF-ß1 gene, which is closely related to the generation of ECMs, downregulated the expression of the MMP-2 and MMP-9 genes, which are closely related to the degradation of ECMs, maintained the dynamic balance of the four types of ECMs, and improved cell viability as well as proliferation, migration and adhesion abilities. CONCLUSIONS: WS can prevent cellular behavioural dysfunction and delay skin ageing by reducing the accumulation of CML, upregulating the expression of the ITGB1 receptor, maintaining the normal function of ECM-integrin receptor interaction and preventing an imbalance between the production and degradation of protein components of ECMs. The findings reported in this study suggest that WS as a CML inhibitor can modulate ECM-integrin homeostasis and has great potential in the field of aging retardation.


Assuntos
Withania , Vitanolídeos , Fator de Crescimento Transformador beta1/metabolismo , Withania/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Óxido de Magnésio/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Integrinas/metabolismo , Vitanolídeos/farmacologia , Vitanolídeos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Fibroblastos/metabolismo , Matriz Extracelular/metabolismo , Raízes de Plantas/química
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37350733

RESUMO

Magnesium oxide (MgO) is one of the most used Mg supplements in livestock. However, to avoid relying upon only one Mg source, it is important to have alternative Mg sources. Therefore, the objective of this study was to evaluate the effects of the interaction of two Mg sources with buffer use on the ruminal microbiota composition, ruminal fermentation, and nutrient digestibility in lactating dairy cows. Twenty lactating Holstein cows were blocked by parity and days in milk into five blocks with four cows each, in a 2 × 2 factorial design. Within blocks, cows were assigned to one of four treatments: 1) MgO; 2) MgO + Na sesquicarbonate (MgO+); 3) calcium-magnesium hydroxide (CaMgOH); 4) CaMgOH + Na sesquicarbonate (CaMgOH+). For 60 d, cows were individually fed a corn silage-based diet, and treatments were top-dressed. Ruminal fluid was collected via an orogastric tube, for analyses of the microbiota composition, volatile fatty acids (VFA), lactate, and ammonia nitrogen (NH3-N). The microbiota composition was analyzed using V4/16S rRNA gene sequencing, and taxonomy was assigned using the Silva database. Statistical analysis was carried out following the procedures of block design analysis, where block and cow were considered random variables. Effects of Mg source, buffer, and the interaction between Mg Source × Buffer were analyzed through orthogonal contrasts. There was no interaction effect of the two factors evaluated. There was a greater concentration of NH3-N, lactate, and butyrate in the ruminal fluid of cows fed with CaMg(OH)2, regardless of the buffer use. The increase in these fermentation intermediates/ end-products can be explained by an increase in abundance of micro-organisms of the genus Prevotella, Lactobacillus, and Butyrivibrio, which are micro-organisms mainly responsible for proteolysis, lactate-production, and butyrate-production in the rumen, respectively. Also, dietary buffer use did not affect the ruminal fermentation metabolites and pH; however, an improvement of the apparent total tract digestibility of dry matter (DM), organic matter (OM), neutral fiber detergent (NDF), and acid fiber detergent (ADF) were found for animals fed with dietary buffer. In summary, there was no interaction effect of buffer use and Mg source, whereas buffer improved total tract apparent digestibility of DM and OM through an increase in NDF and ADF digestibility and CaMg(OH)2 increased ruminal concentration of butyrate and abundance of butyrate-producing bacteria.


Magnesium oxide (MgO) is extensively used as a dietary magnesium (Mg) source in dairy cow diets. However, dairy operations can benefit from other Mg sources. Thus, we evaluated the replacement of dietary MgO with calcium­magnesium hydroxide (CaMg(OH)2) in diets with and without ruminal buffer and their effects on the ruminal microbiota composition, ruminal fermentation, and nutrient digestibility in lactating dairy cows. The study used 20 lactating Holstein cows that were blocked in groups of four and randomly assigned to one of the four treatments. The ruminal content, feed, feces, and urine were collected for analysis of the microbiota composition, ruminal fermentation, nitrogen metabolism, and apparent nutrient digestibility. There was no interaction effect of dietary buffer use and Mg source, while buffer improved total tract apparent digestibility of the dry matter and fiber components; CaMg(OH)2 increased the ruminal concentration of butyrate and the abundance of butyrate-producing bacteria. In summary, we conclude that using CaMg(OH)2 can improve ruminal fermentation regardless of buffer use, which indicates that we can take advantage of the mineral formulation in the diet to modulate the ruminal microbiota composition.


Assuntos
Lactação , Microbiota , Gravidez , Feminino , Bovinos , Animais , Magnésio/análise , Magnésio/metabolismo , Magnésio/farmacologia , Fermentação , Óxido de Magnésio/análise , Óxido de Magnésio/metabolismo , Óxido de Magnésio/farmacologia , Detergentes/análise , Detergentes/metabolismo , Detergentes/farmacologia , RNA Ribossômico 16S/metabolismo , Digestão , Leite/metabolismo , Dieta/veterinária , Butiratos/análise , Zea mays/metabolismo , Lactatos/análise , Lactatos/metabolismo , Lactatos/farmacologia , Rúmen/metabolismo
3.
Adv Healthc Mater ; 11(8): e2102439, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34859964

RESUMO

The boosting exploitation of graphene oxide (GO) increases exposure risk to human beings. However, as primary defender in the first immune line, neutrophils' mechanism of defensive behavior toward GO remains unclear. Herein, we discovered that neutrophils recognize and defensively degrade GO in a lateral dimension dependent manner. The micrometer-sized GO (mGO) induces NETosis by releasing neutrophil extracellular traps (NETs), while nanometer-sized GO (nGO) elicits neutrophil degranulation. The two neutrophils' defensive behaviors are accompanied with generation of reactive oxygen species and activation of p-ERK and p-Akt kinases. However, mGO-induced NETosis is NADPH oxidase (NOX)-independent while nGO-triggered degranulation is NOX-dependent. Furthermore, myeloperoxidase (MPO) is determinant mediator despite distinct neutrophil phenotypes. Neutrophils release NETs comprising of MPO upon activated with mGO, while MPO is secreted via nGO-induced degranulation. Moreover, the binding energy between MPO and GO is calculated to be 69.8728 kJ mol-1 , indicating that electrostatic interactions mainly cause the spontaneous binding process. Meanwhile, the central enzymatic biodegradation occurs at oxygenic active sites and defects on GO. Mass spectrometry analysis deciphers the degradation products are biocompatible molecules like flavonoids and polyphenols. This study provides fundamental evidence and practical guidance for nanotechnology based on GO, including vaccine adjuvant, implantable devices, and energy storage.


Assuntos
Armadilhas Extracelulares , Luta Romana , Grafite , Óxido de Magnésio/metabolismo , Neutrófilos , Espécies Reativas de Oxigênio/metabolismo
4.
Molecules ; 26(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641609

RESUMO

In recent years, the interest in the health-promoting effects of hop prenylflavonoids, especially its estrogenic effects, has grown. Unfortunately, one of the most potent phytoestrogens identified so far, 8-prenylnaringenin, is only a minor component of hops, so its isolation from hop materials for the production of estrogenically active food supplements has proved to be problematic. The aim of this study was to optimize the conditions (e.g., temperature, the length of the process and the amount of the catalyst) to produce 8-prenylnaringenin-rich material by the magnesium oxide-catalyzed thermal isomerization of desmethylxanthohumol. Under these optimized conditions, the yield of 8-prenylnaringenin was 29 mg per 100 gDW of product, corresponding to a >70% increase in its content relative to the starting material. This process may be applied in the production of functional foods or food supplements rich in 8-prenylnaringenin, which may then be utilized in therapeutic agents to help alleviate the symptoms of menopausal disorders.


Assuntos
Flavanonas/metabolismo , Flavonoides/metabolismo , Fitoestrógenos/metabolismo , Preparações de Plantas/metabolismo , Propiofenonas/metabolismo , Cerveja/análise , Catálise , Suplementos Nutricionais/análise , Flavanonas/química , Flavonoides/química , Humanos , Humulus/química , Óxido de Magnésio/química , Óxido de Magnésio/metabolismo , Fitoestrógenos/química , Extratos Vegetais/metabolismo , Preparações de Plantas/química , Propiofenonas/química , Temperatura
5.
J Hazard Mater ; 380: 120878, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31336269

RESUMO

In this work, biological synthesis of MgO/perlite nanocomposites (NCs) besides their effects on morphology and secondary metabolite profiles of Melissa officinalis plant organ cultures were evaluated. MgO NPs were immobilized on the surface of nanoperlite using M. officinalis extract as a capping agent. The as-synthesized MgO/perlite NCs were characterized by using FTIR, XRD, SEM, EDS and DLS. The average particle size of nanoperlite and MgO/perlite NCs was about 10 and 30 nm, respectively. Morphological observations showed that nanoperlite and MgO/perlite NCs had no effect on root number, as well as root and shoot length. None of the applied concentrations of perlite and MgO/perlite NCs could significantly increase the growth parameters in comparison to the control, except for 150 mg/L of nanoperlite which caused an increase in the shoot number. Although, the contents of chlorophyll and carotenoids were not affected, the maximum content of volatile compounds obtained at 100 of MgO/perlite NCs. Rosmarinic acid was detected in shoots, which treated with 25-100 mg/L of perlite and 25, 50 and 150 mg/L of MgO/perlite NCs. Our results provided the evidence that nanoperlite and MgO/perlite NCs at specific levels may act as a novel elicitor for in vitro biosynthesis of valuable secondary metabolites.


Assuntos
Óxido de Alumínio/metabolismo , Óxido de Magnésio/metabolismo , Melissa/metabolismo , Nanocompostos , Dióxido de Silício/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Melissa/crescimento & desenvolvimento
6.
Arch Toxicol ; 93(6): 1491-1500, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30989313

RESUMO

Nanoparticles (NPs) are increasingly used in different consumer-related areas, for instance in food packaging or as additives, because of their enormous potential. Magnesium oxide (MgO) is an EU-approved food additive (E number 530). It is commonly used as a drying agent for powdered foods, for colour retention or as a food supplement. There are no consistent results regarding the effects of oral MgO NP uptake. Consequently, the aim of this study was to examine the effects of MgO NPs in the HT29 intestinal cell line. MgO NP concentrations ranged from 0.001 to 100 µg/ml and incubation times were up to 24 h. The cytotoxic and genotoxic potential were investigated. Apoptotic processes and cell cycle changes were analysed by flow cytometry. Finally, oxidative stress was examined. Transmission electron microscopy indicated that there was no cellular uptake. MgO NPs had no cytotoxic or genotoxic effects in HT29 cells and they did not induce apoptotic processes, cell cycle changes or oxidative stress.


Assuntos
Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Óxido de Magnésio/metabolismo , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos
7.
Nutrients ; 10(7)2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018220

RESUMO

Introduction: Magnesium is an essential mineral involved in a range of key biochemical pathways. Several magnesium supplements are present on the market and their degree of bioavailability differs depending on the form of magnesium salt used. Aquamin-Mg is a natural source of magnesium, containing 72 additional trace minerals derived from the clean waters off the Irish coast. However, the in vitro bioaccessibility and bioavailability of Aquamin-Mg in comparison with other supplement sources of magnesium has yet to be tested. Method: Aquamin-Mg, magnesium chloride (MgCl2) and magnesium oxide (MgO) were subjected to gastrointestinal digestion according to the harmonized INFOGEST in vitro digestion method and in vitro bioavailability tested using the Caco-2 cell model. Magnesium concentration was measured by atomic absorption spectrophotometry (AAS). Results: Magnesium recovery from both Aquamin-Mg and MgCl2 was greater than for MgO. Magnesium from all three sources was transported across the epithelial monolayer with Aquamin-Mg displaying a comparable profile to the more bioavailable MgCl2. Conclusions: Our data support that magnesium derived from a marine-derived multimineral product is bioavailable to a significantly greater degree than MgO and displays a similar profile to the more bioavailable MgCl2 and may offer additional health benefits given its multimineral profile.


Assuntos
Suplementos Nutricionais , Digestão , Enterócitos/metabolismo , Absorção Intestinal , Magnésio/metabolismo , Minerais/metabolismo , Modelos Biológicos , Células CACO-2 , Polaridade Celular , Humanos , Irlanda , Cloreto de Magnésio/metabolismo , Óxido de Magnésio/metabolismo , Valor Nutritivo , Concentração Osmolar , Reprodutibilidade dos Testes , Espectrofotometria Atômica
8.
Tijdschr Diergeneeskd ; 117(4): 105-8, 1992 Feb 15.
Artigo em Holandês | MEDLINE | ID: mdl-1536033

RESUMO

Magnesium (Mg) is often added to the feed of cattle to meet the dietary requirements of this element. Magnesium oxide (MgO) is usually used. However, if the supplemented MgO does not dissolve in the rumen, it will not be effective. The solubility of eight preparations of MgO was measured with three different in vitro methods. Particle size and origin varied among the eight preparations. Solubility in vitro ranged from hardly soluble (MgO-C) to highly soluble (MgO-A). In an experiment with four cows with rumen fistulas (4 x 4), the solubility of the MgO preparations in vitro was found to parallel their solubility in the rumen and their urinary excretion. It was concluded that not only the amount of MgO added to the ration is important but also the solubility of the MgO.


Assuntos
Ração Animal , Bovinos/metabolismo , Óxido de Magnésio/metabolismo , Animais , Fístula Gástrica , Técnicas In Vitro , Óxido de Magnésio/administração & dosagem , Tamanho da Partícula , Rúmen/metabolismo , Solubilidade
9.
Magnes Res ; 4(3-4): 177-84, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-1799552

RESUMO

The low milk fat syndrome most commonly occurs in dairy cows fed diets with a high ratio of carbohydrate to roughage. It is characterized by markedly depressed yields of milk fat. Rumen buffers, such as sodium bicarbonate (NaHCO3) and magnesium oxide (MgO), are known to correct the milk fat depression observed on restricted roughage rations, although by apparently different mechanisms. The mode of action of NaHCO3 can be explained by control of the proportion of ruminal propionate via control of rumen pH. Cows fed diets supplement with NaHCO3 showed increased feed intake and improved digestibility of dry matter or fibre. The mechanism by which Mg increases milk fat concentration may operate at both rumen and tissue level. Most studies with MgO have suggested that it acts as a buffer or neutralizer in either the rumen or the intestine. During digestion, the addition of MgO increases digestibility of dry matter, as does NaHCO3. Among many different tissue effects, MgO supplementation increases triglyceride uptake by the mammary gland. Feeding MgO tends to increase lipoprotein lipase activity in the mammary gland and to decrease the linoleic acid content of milk fat. The percentage uptake of triglycerides from lipoproteins and milk fat by the mammary gland was greater in cows fed MgO-supplemented rations than in cows fed restricted roughage rations. Triglyceride-rich lipoprotein concentrations are uniquely low in cow plasma compared to other species, but still account for a major portion of the arteriovenous difference in plasma lipids across the mammary gland.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Lactação/metabolismo , Lipídeos/deficiência , Óxido de Magnésio/metabolismo , Leite/química , Ração Animal , Animais , Soluções Tampão , Bovinos , Dietoterapia , Eucariotos , Feminino , Alimentos Fortificados , Lipase Lipoproteica/metabolismo , Lipoproteínas/metabolismo , Óxido de Magnésio/farmacologia , Glândulas Mamárias Animais/metabolismo , Leite/efeitos dos fármacos , Leite/fisiologia , Rúmen/metabolismo , Síndrome , Triglicerídeos/metabolismo
10.
J Dairy Sci ; 72(11): 2968-80, 1989 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-2625487

RESUMO

Two Mg balance trials were conducted with wethers to compare relative bioavailability of Mg in several Mg oxides with that of reagent grade sulfate as determined by different methods. In Experiment 1,600 ppm Mg as sulfate or four feed grade oxides varying in origin and particle size were added to a semi-purified basal diet (200 ppm Mg). Diets were fed at 800 g/d to 30 crossbred wethers during the 14-d trial and fecal and urinary collections were made during the last 7 d. In Experiment 2, the basal corn-soybean meal-cottonseed hull diet (1387 ppm Mg) was supplemented with 0, 700, 1400, or 2100 ppm added Mg as reagent grade sulfate or 1400 ppm Mg as three of the oxides from Experiment 1 and fed at 1000 g/d to 35 wethers. Urine was collected daily for 10 d and feces were collected on d 7 through 10. In Experiments 1 and 2, absorption of Mg from the oxide of brine origin and larger particle size distribution was lower than that from sulfate, but there was no difference in absorption for sheep fed oxides derived from sea water or calcined magnesite. In Experiment 2, urinary Mg excretion on d 4 and 5 of the collection was lower for sheep fed the brine oxide than for those fed sulfate or oxide from calcined magnesite. Urinary Mg excretion on d 4 and 5 following addition of 1400 ppm Mg to practical diets could be used to predict bioavailability of Mg.


Assuntos
Óxido de Magnésio/metabolismo , Magnésio/farmacocinética , Ovinos/metabolismo , Ração Animal , Animais , Disponibilidade Biológica , Dieta , Fezes/análise , Alimentos Fortificados , Absorção Intestinal , Magnésio/análise , Magnésio/urina , Óxido de Magnésio/administração & dosagem , Masculino , Distribuição Aleatória , Análise de Regressão , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA