Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2204, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273022

RESUMO

In the present study, ZnO nanoparticles have been synthesized using an aqueous extract of shilajit. The nanoparticles were characterized using different techniques such as UV (ultraviolet-visible spectrophotometer), FTIR (Fourier transform infrared), XRD (X-ray diffraction), particle size analysis, SEM (scanning electron microscope) and EDAX (Energy-dispersive X-ray) analysis. The UV absorption peak at 422.40 nm was observed for ZnO nanoparticles. SEM analysis showed the shape of nanoparticles to be spherical, FTIR spectrum confirmed the presence of zinc atoms, particle size analysis showed the nanoparticle size, EDAX confirmed the purity of ZnO nanoparticles whereas XRD pattern similar to that of JCPDS card for ZnO confirmed the presence of pure ZnO nanoparticles. The in vitro anticancer activity of ZnO nanoparticles against the HeLa cell line showed the IC50 value of 38.60 µg/mL compared to reference standard cisplatin. This finding confirms that ZnO nanoparticles from shilajit extract have potent cytotoxic effect on human cervical cancer cell lines.


Assuntos
Nanopartículas Metálicas , Minerais , Nanopartículas , Resinas Vegetais , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/metabolismo , Células HeLa , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana
2.
Vet Q ; 44(1): 1-7, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38295836

RESUMO

In poultry nutrition, zinc supplementation is typically achieved through the addition of zinc oxide or zinc sulfate to the feed. The alternative approach of organic sources utilizes an organic ligand to bind zinc (Zn), resulting in higher bioavailability. Thus, a study was conducted to assess and compare the impact of a methionine-complexed Zn versus an inorganic Zn on growth, blood biochemical profile, gut histomorphology, and fecal excretion of Zn in broilers. The experimental design included two treatments: the addition of a zinc amino acid complex or zinc oxide to the basal diet. The zinc amino acid complex was supplemented at a dose equivalent to the inorganic zinc (Zn-80), while the organic zinc was provided at levels of 20, 40, and 80 mg/kg to a total of 400 broilers. There were five treatments in total, and each treatment was replicated four times. Broilers supplemented with an organic form of Zn at the level of 80 mg/kg had significantly (p < 0.05) higher body weight gain and lower feed conversion ratio (F/G). Significantly (p < 0.05) higher Zn excretion was recorded in broilers supplemented with inorganic Zn supplementation. Significantly (p < 0.05) higher villus length and width, their ratio, and lower (p < 0.05) crypt depth were observed in birds supplemented with 80 mg/kg organic Zn. From the results of the present study, it was concluded that Zn from an organic source at the rate of 80 mg/kg was superior in terms of growth performance, intestinal histomorphology and less excretion of Zn to the environment in broilers.


Assuntos
Óxido de Zinco , Zinco , Animais , Zinco/farmacologia , Zinco/química , Zinco/metabolismo , Galinhas/metabolismo , Óxido de Zinco/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Metionina/metabolismo , Metionina/farmacologia , Ração Animal/análise
3.
Aquat Toxicol ; 259: 106523, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37058790

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) have many exciting properties that make their use in a continuous increase in various biomedical, industrial, and agricultural applications. This is associated with accumulation in the aquatic ecosystems and fish exposure with consequent deleterious effects. To determine the potential of thymol to counteract the immunotoxic effects of ZnO-NPs, Oreochromis niloticus was exposed to ZnO-NPs (⅕ LC50 =1.14 mg/L, for 28 days) with or without feeding a thymol-incorporated diet (1 or 2 g/kg diet). Our data demonstrated a reduction of aquaria water quality, leukopenia, and lymphopenia with a decrease in serum total protein, albumin, and globulin levels in exposed fish. At the same time, the stress indices (cortisol and glucose) were elevated in response to ZnO-NPs exposure. The exposed fish also revealed a decline in serum immunoglobulins, nitric oxide, and the activities of lysozyme and myeloperoxidase, in addition to reduced resistance to the Aeromonas hydrophila challenge. The RT-PCR analysis showed downregulation of antioxidant (SOD) superoxide dismutase and (CAT) catalase gene expression in the liver tissue with overexpression of the immune-related genes (TNF-α and IL-1ß). Importantly, we found that thymol markedly protected against ZnO-NPs-induced immunotoxicity in fish co-supplemented with thymol (1 or 2 g/kg diet) in a dose-dependent manner. Our data confirm the immunoprotective and antibacterial effects of thymol in ZnO-NPs exposed fish, supporting the potential utility of thymol as a possible immunostimulant agent.


Assuntos
Ciclídeos , Doenças dos Peixes , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Animais , Ciclídeos/metabolismo , Aeromonas hydrophila , Óxido de Zinco/toxicidade , Óxido de Zinco/metabolismo , Timol/toxicidade , Timol/análise , Timol/metabolismo , Ecossistema , Poluentes Químicos da Água/toxicidade , Suplementos Nutricionais/análise , Dieta/veterinária , Antioxidantes/metabolismo , Resistência à Doença , Ração Animal/análise
4.
Ecotoxicol Environ Saf ; 256: 114826, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989561

RESUMO

Aflatoxin B1 (AFB1) is a mycotoxin widely present in animal feed and human food, posing a serious threat to animal and human health. This study was aim to illustrate the mechanism of the protective role of MT against AFB1-induced hepatotoxicity, as well as to explore the feasibility of enhancing the tolerance of poultry to AFB1 by upregulating the expression of hepatic MT. After being exposed to AFB1 (50 ng/kg) primary duckling hepatocytes, the cell viability, the antioxidant index (SOD and GPx) and the mRNA levels of MT downstream genes (PTGR, p53, TrxR, AR and Bcl-2) significantly (p < 0.05) decreased, while the intracellular formation of (AFBO)-DNA adduct content, apoptosis, and MDA content significantly (p < 0.05) increased. Interestingly, overexpression of MT in primary duckling hepatocytes markedly (p < 0.05) reversed the detrimental impact of AFB1 and increased the expression of MT downstream genes. HepG2 cells were applied to study the mechanism how MT works to relieve the hepatic toxicity of AFB1. The ZnO-NPs (20 µg/mL) + AFB1 (20 µg/mL) group significantly (p < 0.05) increased the cell viability, the expression of NRF2, NQO1 and SOD, and expression of MT and MTF-1, as well as significantly (p < 0.05) decreased LDH, ROS and apoptotic rate, comparing with the AFB1 group. While joint treatment with AFB1 and ZnO-NPs, the hepatic toxicity exerted by AFB1 alone was reversed, along with the translocation of MTF-1 from the cytoplasm to the nucleus and upregulated its expression. Duckling trails were further carried out. A total number of 96 1-day-old healthy Cherry Valley commercial ducklings were randomly allocated according to a 2 by 2 factorial arrangement of treatments with the main factors including oral administration of AFB1 (0 vs. 40 µg/kg) and dietary supplementation of ZnO-NPs (0 vs. 60 mg/kg) for 7 days. It showed that AFB1 exposure caused body weight loss (p < 0.05), impaired liver structure and failure in hepatic function (activity of ALT, AST and concentration of TP and GLU) (p < 0.05), and decreases in antioxidant capacity(activity of SOD, CAT and concentration of GSH) (p < 0.05), along with the decrease in hepatic concentration of Zn, increase in expression of apoptosis-related genes and protein CAS3 and mRNA Bcl-2 expression (p < 0.05), and suppressed mRNA levels of antioxidant-related genes MT, SOD1, NRF2, and NQO1 (p < 0.05). In accordance with the cell test, dietary supplementation with ZnO-NPs mitigated the toxicity exerted by AFB1. In conclusion, ZnO-NPs has the protective effects against AFB1-induced hepatocyte injury by activating the expression of MTF-1 and the ectopic induction of MT expression, providing detailed information on the detoxification ability of MT on AFB1.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Óxido de Zinco , Animais , Humanos , Aflatoxina B1/toxicidade , Patos/metabolismo , Óxido de Zinco/metabolismo , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fígado , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Superóxido Dismutase/metabolismo
5.
Clin Ter ; 174(1): 61-66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36655646

RESUMO

Aim: With the characteristics such as low toxicity, high total surface, ability to inhibit the growth of pathogenic microorganisms, zinc oxide nanoparticles (ZnO NPs), as one of the metallic nanoparticles, have been chosen as an antibacterial agent to treat various skin infections. The present study was aimed to determine the antibacterial potential of ZnO NPs on Bacillus subtilis, the Gram-positive bacterium that can cause skin and wound infections. Methods: B. subtilis was exposed to 5 to 150 µg/mL of ZnO NPs for 24 h. The parameters employed to evaluate the antimicrobial potential of ZnO NPs were the growth inhibitory effect on B. subtilis, the surface interaction of ZnO NPs on the bacterial cell wall, and also the morphological alterations in B. subtilis induced by ZnO NPs. Results: The results demonstrated a significant (p <0.05) inhibition of ZnO NPs on B. subtilis growth and it was in a dose-dependent manner for all the tested concentrations of ZnO NPs from 5 to 150 µg/mL at 24 h. Fourier transformed infrared (FTIR) spectrum confirmed the involvement of polysaccharides and polypeptides of bacterial cell wall in surface binding of ZnO NPs on bacteria. The scanning electron microscopy (SEM) was used to visualize the morphological changes, B. subtilis illustrated several surface alterations such as distortion of cell membrane, roughening of cell surface, aggregation and bending of cells, as well as, the cell rupture upon interacting with ZnO NPs for 24 h. Conclusion: The results indicated the potential of ZnO NPs to be used as an antibacterial agent against B. subtilis. The findings of the present study might bring insights to incorporate ZnO NPs as an antibacterial agent in the topical applications against the infections caused by B. subtilis.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Óxido de Zinco/metabolismo , Bacillus subtilis/metabolismo , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Antibacterianos/farmacologia
6.
Protoplasma ; 260(3): 839-851, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36318315

RESUMO

Limited studies have been conducted on the role of microRNAs (miRs) and transcription factors in regulating plant cell responses to nanoparticles. This study attempted to address whether the foliar application of zinc oxide nanoparticles (ZnONPs; 0, 10, 25, and 50 mgL-1) can affect miRs, gene expression, and wheat grain quality. The seedlings were sprayed with ZnONPs (0, 10, 25, and 50 mgL-1) or bulk counterpart (BZnO) five times at 72 h intervals. The application of ZnONPs at 10 mgL-1 increased the number of spikelets and seed weight, while the nano-supplement at 50 mgL-1 was accompanied by severe restriction on developing spikes and grains. ZnONPs, in a dose-dependent manner, transcriptionally influenced miR156 and miR171. The expression of miR171 showed a similar trend to that of miR156. The ZnONPs at optimum concentration upregulated the NAM transcription factor and sucrose transporter (SUT) at transcriptional levels. However, the transcription of both NAM and SUT genes displayed a downward trend in response to the toxic dose of ZnONPs (50 mgL-1). Utilization of ZnONPs increased proline and total soluble phenolic content. Monitoring the accumulation of carbohydrates, including fructan, glucose, fructose, and sucrose, revealed that ZnONPs at 10 mgL-1 modified the source/sink communication and nutrient remobilization. The molecular and physiological data revealed that the expression of miR156 and miR171 is tightly linked to seed grain development, remobilization of carbohydrates, and genes involved in nutrient transportation. This study establishes a novel strategy for obtaining higher yields in crops. This biological risk assessment investigation also displays the potential hazard of applying ZnONPs at the flowering developmental phase.


Assuntos
MicroRNAs , Óxido de Zinco , Carboidratos , Grão Comestível , MicroRNAs/metabolismo , Sementes , Sacarose/metabolismo , Triticum/metabolismo , Óxido de Zinco/metabolismo , Nanopartículas Metálicas , Proteínas Repressoras/metabolismo , Proteínas de Plantas/metabolismo
7.
Tissue Barriers ; 11(3): 2115273, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-35996208

RESUMO

Engineered nanomaterials induce hazardous effects at the cellular and molecular levels. We investigated different mechanisms underlying the neurotoxic potential of zinc oxide nanoparticles (ZnONPs) on cerebellar tissue and clarified the ameliorative role of Quercetin supplementation. Forty adult male albino rats were divided into control group (I), ZnONPs-exposed group (II), and ZnONPs and Quercetin group (III). Oxidative stress biomarkers (MDA & TOS), antioxidant biomarkers (SOD, GSH, GR, and TAC), serum interleukins (IL-1ß, IL-6, IL-8), and tumor necrosis factor alpha (TNF-α) were measured. Serum micro-RNA (miRNA): miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-3p expression levels were quantified by real-time quantitative polymerase-chain reaction (RT-QPCR). Cerebellar tissue sections were stained with Hematoxylin & Eosin and Silver stains and examined microscopically. Expression levels of Calbindin D28k, GFAP, and BAX proteins in cerebellar tissue were detected by immunohistochemistry. Quercetin supplementation lowered oxidative stress biomarkers levels and ameliorated the antioxidant parameters that were decreased by ZnONPs. No significant differences in GR activity were detected between the study groups. ZnONPs significantly increased serum IL-1ß, IL-6, IL-8, and TNF-α which were improved with Quercetin. Serum miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-p expression levels showed significant increase in ZnONPs group, while no significant difference was observed between Quercetin-treated group and control group. ZnONPs markedly impaired cerebellar tissue structure with decreased levels of calbindin D28k, increased BAX and GFAP expression. Quercetin supplementation ameliorated cerebellar tissue apoptosis, gliosis and improved calbindin levels. In conclusion: Quercetin supplementation ameliorated cerebellar neurotoxicity induced by ZnONPs at cellular and molecular basis by different studied mechanisms.Abbreviations: NPs: Nanoparticles, ROS: reactive oxygen species, ZnONPs: Zinc oxide nanoparticles, AgNPs: silver nanoparticles, BBB: blood-brain barrier, ncRNAs: Non-coding RNAs, miRNA: Micro RNA, DMSO: Dimethyl sulfoxide, LPO: lipid peroxidation, MDA: malondialdehyde, TBA: thiobarbituric acid, TOS: total oxidative status, ELISA: enzyme-linked immunosorbent assay, H2O2: hydrogen peroxide, SOD: superoxide dismutase, GR: glutathione reductase, TAC: total antioxidant capacity, IL-1: interleukin-1, TNF: tumor necrosis factor alpha, cDNA: complementary DNA, RT-QPCR: Real-time quantitative polymerase-chain reaction, ABC: Avidin biotin complex technique, DAB: 3', 3-diaminobenzidine, SPSS: Statistical Package for Social Sciences, ANOVA: One way analysis of variance, Tukey's HSD: Tukey's Honestly Significant Difference, GFAP: glial fiberillar acitic protein, iNOS: Inducible nitric oxide synthase, NO: nitric oxide, HO-1: heme oxygenase-1, Nrf2: nuclear factor erythroid 2-related factor 2, NF-B: nuclear factor-B, SCI: spinal cord injury, CB: Calbindin.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Fármacos Neuroprotetores , Óxido de Zinco , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Quercetina/farmacologia , Quercetina/uso terapêutico , Óxido de Zinco/farmacologia , Óxido de Zinco/uso terapêutico , Óxido de Zinco/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Calbindina 1/metabolismo , Peróxido de Hidrogênio/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Prata/metabolismo , Superóxido Dismutase/metabolismo , Cerebelo/metabolismo , MicroRNAs/genética , Biomarcadores
8.
Gene ; 853: 147091, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464168

RESUMO

Management of gastric cancer is still challenging due to resistance to current chemotherapeutics and recurrent disease. Moreover, green- synthesized zinc oxide nanoparticles (ZnO-NPs) using natural resources are one of the most promising therapeutic agents for anticancer therapy. Here we report the facile green synthesis and characterization of ZnO-NPs from Teucrium polium (TP-ZnO-NP) herb extract and the anticancer activities of these nanoparticles on gastric cancer cells. Facile green synthesis of TP-ZnO-NP was achieved using zinc acetate dihydrate. For the characterization of TP-ZnO-NP, UV-vis spectroscopy, FTIR, SEM, XRD and EDX analyses were performed. Antiproliferative and anticancer activities of TP-ZnO-NP were explored using the HGC-27 gastric cancer cell line model. MTT cell viability and colony formation assays were used for the analysis of cell proliferation and migration. Wound healing assay was used to analyze the migration capacities of cells. Annexin V/PI double staining, DNA ladder assay, and Acridine orange/Ethidium bromide staining were performed to analyze the induction of apoptosis. qPCR was used to determine gene expression levels of apoptotic and epithelial to mesenchymal transition marker genes. The aqueous extract of TP served as both a reducing and capping agent for the successful biosynthesis of zinc oxide nanoparticles. Remarkably, synthesized TP-ZnO-NPs were found to have significant antiproliferative and anticancer activities on HGC-27 gastric cancer cells. Collectively, current data suggest that TP-ZnO-NP is a novel and promising anticancer agent for future therapeutic interventions in gastric cancer.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias Gástricas , Teucrium , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Óxido de Zinco/metabolismo , Teucrium/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Transição Epitelial-Mesenquimal , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas/química , Apoptose , Transdução de Sinais , Nanopartículas Metálicas/química
9.
Environ Sci Pollut Res Int ; 30(7): 19313-19325, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36229728

RESUMO

In this study, the manufacture of zinc oxide nanoparticles (ZnO-NPs) was completed via the sol-gel method with Trigonella foenum-graecum L extract for the first time to function as the stabilizing and reducing agent. The obtained product was investigated by various analyzing procedures such as TGA/DTG, FT-IR, UV-Vis, XRD, and EDX/FESEM. The calcination of our product was conducted at temperatures of 400, 500, and 600 °C. In conformity to the XRD pattern, heightening the temperature of calcination caused an enlargement in the size of nanoparticles. The photocatalytic performance of ZnO-NPs was evaluated to degrade methylene blue and Eriochrome black T (EBT) dyes under UV light, which resulted in a degradation percentage of about 96% and 94%, after 90 min, respectively. There has been some evidence suggesting that the green synthesis of ZnO-NPs has increased their use in medicine. The outcomes of examining the cytotoxicity effect of this product against the Huh-7 cell line by the performance of the MTT assay were indicative of an IC50 of around 62.5 µg/mL. Finally, according to the results of the broth microdilution method, which was performed to assess the antibacterial activity of ZnO-NPs towards gram-positive and gram-negative bacteria, the value of MIC was in the range of 31 to 125 µg/mL. The obtained results from biological studies confirm the antibacterial and anticancer properties of ZnO-NPs, which are promising for applying NPs in medical fields.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Trigonella , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/metabolismo , Nanopartículas Metálicas/toxicidade , Antibacterianos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Extratos Vegetais/farmacologia , Testes de Sensibilidade Microbiana
10.
Sci Rep ; 12(1): 18791, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335156

RESUMO

A five weeks biological experiment was planned to investigate the impacts of dietary supplementation with zinc oxide nanoparticles (ZnONPs) synthesized by the endophytic fungus Alternaria tenuissima on productive performance, carcass traits, organ relative weights, serum biochemical parameters, histological alteration in some internal organs and concentration of this element in the serum, liver, thigh and breast muscle in broiler chicks. A total of 108 3-day-old commercial broiler chicks (Cobb 500) were individually weighed and equally distributed in a completely randomized design arrangement according to the dose of ZnONPs supplementation into 3 dietary experimental groups. There were 6 replications having 6 birds per replicate (n = 36/ treatment) for each treatment. The three experiential dietary treatments received corn-soybean meal-based diets enhanced with 0 (control), 40 and 60 mg/kg diet of ZnONPs respectively with feed and water were provided ad libitum consumption through 5 weeks life span. Present results indicated that after 5 weeks of feeding trial and as compared to control, the ZnONPs supplementation groups recorded higher body weight, improved feed consumption, feed conversion ratio and performance index. Serum biochemical analyses revealed that serum cholesterol, triglyceride, low density lipoprotein and uric acid decreased significantly, while high density lipoprotein and liver enzyme concentrations were increased significantly. Meanwhile, zinc accumulation in serum, liver and breast and thigh muscle were linearly increased with increasing zinc supplementation. It could be concluded that supplementation of ZnONPs to broiler diet at 40 or 60 mg/kg improved productive performance, birds' physiological status and the lower levels Zn (40 mg/kg diet) revealed promising results and can be used as an effective feed additive in broilers.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Galinhas/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Zinco/farmacologia , Zinco/metabolismo , Óxido de Zinco/farmacologia , Óxido de Zinco/metabolismo
11.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296460

RESUMO

Rubus fairholmianus (RF) has widely been used to treat various ailments, including pain, diabetes, and cancer. Zinc oxide nanoparticles (ZnO NPs) have drawn attention in modern healthcare applications. Hence, we designed this study to synthesize zinc oxide (ZnO) nanoparticles using R. fairholmianus root extract to investigate its synergistic cytotoxic effect on MCF-7 cells and explore the possible cell death mechanism. ZnO NPs were synthesized via green synthesis using R. fairholmianus root extract, and the effect on MCF-7 cells was determined by looking at cellular morphology, proliferation, cytotoxicity, apoptosis, and reactive oxygen species (ROS). The results showed that cellular proliferation was reduced following treatment with R. fairholmianus capped zinc oxide nanoparticles (RFZnO NPs), while cytotoxicity and ROS were increased. There was also an increase in apoptosis as indicated by the significant increase in cytoplasmic cytochrome c and caspase 3/7 (markers of apoptosis), as well as increased levels of pro-apoptotic proteins (p53, Bax) and decreased levels of anti-apoptotic protein (Bcl-2). In conclusion, these results showed that RFZnO NPs induce apoptosis in breast cancer cells via a mitochondria-mediated caspase-dependent apoptotic pathway and suggest the use of acetone root extract of R. fairholmianus for the treatment of cancer-related ailments.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Nanopartículas , Rubus , Óxido de Zinco , Humanos , Feminino , Óxido de Zinco/farmacologia , Óxido de Zinco/metabolismo , Células MCF-7 , Rubus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Neoplasias da Mama/tratamento farmacológico , Citocromos c/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53 , Acetona , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Extratos Vegetais/farmacologia
12.
Asian Pac J Cancer Prev ; 23(8): 2671-2686, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037121

RESUMO

OBJECTIVE: Croton tiglium L. seeds were studied against colon cancer induced chemically in rats after incorporating silver nanoparticles (Ag-NPs) but the body has no the ability to discrete silver or silver ions. Therefore, the present study was designed to reveal the biological activities of different C. tiglium L. seeds extracts incorporated with zinc oxide nanoparticles (ZnO-NPs). RESULTS: It was found that C. tiglium L. seeds provided with high contents of total protein (27.43 g/100g), carbohydrate (18.29 g/100 g) and lipid (46.31 g/100 g). The chromatographic techniques revealed that concentrations of the predominant compounds increased in all studied extracts (ethanolic, aqueous and petroleum ether) after incorporating ZnO-NPs. The in vitro biological activities showed that the aqueous extract possessed the highest antioxidant and scavenging activities. It exhibited the highest inhibitory effect on α-amylase (41.89%) and acetyl cholinesterase (AChE) (23.00%) in addition to its higher anti-arthritic activity. All the biological activities increased after incorporating ZnO-NPs. It showed the highest cytotoxic activity that increased after incorporating ZnO-NPs against human colon carcinoma (CACO-2) cells. Therefore, this extract was selected for undergoing further studies on CACO-2 cells. The aqueous extract incorporated with ZnO-NPs arrested growth of CACO-2 cells at G2/M and increased percentage of total apoptotic cells and necrosis. The median lethal dose (LD50) showed that the extracts incorporated with ZnO-NPs were safer than the native extracts. CONCLUSION: The study showed that the aqueous extract was the most active extract that consequently exhibited promising biological activities after incorporating ZnO-NPs.


Assuntos
Croton , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Células CACO-2 , Croton/química , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Sementes/química , Prata , Óxido de Zinco/química , Óxido de Zinco/metabolismo , Óxido de Zinco/farmacologia
13.
Chemosphere ; 305: 135510, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35772516

RESUMO

Although the ecological safety of nanomaterials is of widespread concern, their current ambient concentrations are not yet sufficient to cause serious toxic effects. Thus, the nontoxic bioimpact of nanomaterials in wastewater treatment has attracted increasing attention. In this study, the effect of nano zinc oxide (nZnO), one of the most widely used nanomaterials, on the anaerobic biodegradation of methyl orange (MO) by Shewanella oneidensis MR-1 was comprehensively investigated. High-dosage nZnO (>0.5 mg/L) caused severe toxic stress on S. oneidensis MR-1, resulting in the decrease in decolorization efficiency. However, nZnO at ambient concentrations could act as nanostimulants and promote the anaerobic removal of MO by S. oneidensis MR-1, which should be attributed to the improvement of decolorization efficiency rather than cell proliferation. The dissolved Zn2+ was found to contribute to the bioeffect of nZnO on MO decolorization. Further investigation revealed that low-dosage nZnO could promote the cell viability, membrane permeability, anaerobic metabolism, as well as related gene expression, indicating that nZnO facilitated rather than inhibited the anaerobic wastewater treatment under ambient conditions. Thus, this work provides a new insight into the bioeffect of nZnO in actual environment and facilitates the practical application of nanomaterials as nanostimulants in biological process.


Assuntos
Shewanella , Óxido de Zinco , Anaerobiose , Biodegradação Ambiental , Shewanella/metabolismo , Óxido de Zinco/metabolismo , Óxido de Zinco/toxicidade
14.
Sci Rep ; 12(1): 7103, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501374

RESUMO

Direct-seeded rice (DSR) seeds are often exposed to multiple environmental stresses in the field, leading to poor emergence, growth and productivity. Appropriate seed priming agents may help to overcome these challenges by ensuring uniform seed germination, and better seedling stand establishment. To examine the effectiveness of sodium selenite (Na-selenite), sodium selenate (Na-selenate), zinc oxide nanoparticles (ZnO-NPs), and their combinations as priming agents for DSR seeds, a controlled pot experiment followed by a field experiment over two consecutive years was conducted on a sandy clay loam soil (Inceptisol) in West Bengal, India. Priming with combinations of all priming agents had advantages over the hydro-priming treatment (control). All the combinations of the three priming agents resulted in the early emergence of seedlings with improved vigour. In the field experiment, all the combinations increased the plant chlorophyll, phenol and protein contents, leaf area index and duration, crop growth rate, uptake of nutrients (N, P, K, B, Zn and Si), and yield of DSR over the control. Our findings suggest that seed priming with the combination of ZnO-NPs, Na-selenite, and Na-selenate could be a viable option for the risk mitigation in DSR.


Assuntos
Nanopartículas Metálicas , Oryza , Selênio , Óxido de Zinco , Germinação , Plântula , Sementes , Ácido Selênico/metabolismo , Ácido Selênico/farmacologia , Ácido Selenioso/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Zinco/metabolismo , Zinco/farmacologia , Óxido de Zinco/metabolismo , Óxido de Zinco/farmacologia
15.
PLoS One ; 17(1): e0259190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986148

RESUMO

Emergence of multidrug resistant pathogens is increasing globally at an alarming rate with a need to discover novel and effective methods to cope infections due to these pathogens. Green nanoparticles have gained attention to be used as efficient therapeutic agents because of their safety and reliability. In the present study, we prepared zinc oxide nanoparticles (ZnO NPs) from aqueous leaf extract of Acacia arabica. The nanoparticles produced were characterized through UV-Visible spectroscopy, scanning electron microscopy, and X-ray diffraction. In vitro antibacterial susceptibility testing against foodborne pathogens was done by agar well diffusion, growth kinetics and broth microdilution assays. Effect of ZnO NPs on biofilm formation (both qualitatively and quantitatively) and exopolysaccharide (EPS) production was also determined. Antioxidant potential of green synthesized nanoparticles was detected by DPPH radical scavenging assay. The cytotoxicity studies of nanoparticles were also performed against HeLa cell lines. The results revealed that diameter of zones of inhibition against foodborne pathogens was found to be 16-30 nm, whereas the values of MIC and MBC ranged between 31.25-62.5 µg/ml. Growth kinetics revealed nanoparticles bactericidal potential after 3 hours incubation at 2 × MIC for E. coli while for S. aureus and S. enterica reached after 2 hours of incubation at 2 × MIC, 4 × MIC, and 8 × MIC. 32.5-71.0% inhibition was observed for biofilm formation. Almost 50.6-65.1% (wet weight) and 44.6-57.8% (dry weight) of EPS production was decreased after treatment with sub-inhibitory concentrations of nanoparticles. Radical scavenging potential of nanoparticles increased in a dose dependent manner and value ranged from 19.25 to 73.15%. Whereas cytotoxicity studies revealed non-toxic nature of nanoparticles at the concentrations tested. The present study suggests that green synthesized ZnO NPs can substitute chemical drugs against antibiotic resistant foodborne pathogens.


Assuntos
Acacia/metabolismo , Doenças Transmitidas por Alimentos/prevenção & controle , Nanopartículas Metálicas/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Doenças Transmitidas por Alimentos/microbiologia , Química Verde/métodos , Células HeLa , Humanos , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica de Varredura/métodos , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Reprodutibilidade dos Testes , Espectrometria por Raios X/métodos , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X/métodos , Zinco/química , Zinco/metabolismo , Óxido de Zinco/metabolismo
16.
Environ Sci Pollut Res Int ; 28(35): 48517-48534, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33907960

RESUMO

This research was intended to evaluate the antidiabetic effect of single or combined administration of nanoparticles of zinc oxide nanoparticles (ZnONPs), chromium oxide nanoparticles (Cr2O3NPs), and selenium nanoparticles (SeNPs), on genetic and metabolic insult in fructose/streptozotocin diabetic rat model. Type 2 diabetes mellitus was induced by feeding sixty adult male albino rats with a high fructose diet accompanied by a single i.p. injection of streptozotocin (STZ). The rats were divided into 6 groups (10 rats/each) and the doses of nanoparticles were 10 mg/kg b.wt for ZnONPs, 1 mg/kg b.wt for Cr2O3, and 0.4 mg/kg b.wt for SeNPs. The results displayed that diabetes significantly decreased bodyweight, serum insulin, C-peptide, adiponectin levels, erythrocyte glutathione peroxidase, serum superoxide dismutase activities, high-density lipoprotein cholesterol (HDL-C), and total antioxidant capacity while causing a substantial increase in serum glucose, C-reactive protein, atherogenic index, HOMA-IR, malondialdehyde, lipid profile, interleukin-6 levels, and liver function and kidney function parameters. Furthermore, the findings showed a decrease in insulin receptor substrate-1 (IRS-1) hepatic mRNA expression level and peroxisome proliferator-activated receptor (PPAR-γ) adipocyte mRNA expression level in type 2 diabetic rats. DNA damage was confirmed by performing the comet assay. Moreover, histological observation of pancreatic and hepatic tissues was performed, which were consistent with the biochemical results. The present study confirmed that oral administration of ZnONPs, Cr2O3NPs, SeNPs, and their mixture improved all the biochemical and genetic parameters toward normal levels and ameliorated the diabetic consequences that were manifested by restricting cellular DNA damage which maintaining pancreatic and hepatic tissues from oxidative damage. The best reported antidiabetic effect was observed in the mixture administered group.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nanopartículas , Selênio , Óxido de Zinco , Animais , Antioxidantes/metabolismo , Glicemia/metabolismo , Compostos de Cromo , Dano ao DNA , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Frutose/metabolismo , Fígado/metabolismo , Masculino , Estresse Oxidativo , Ratos , Selênio/metabolismo , Estreptozocina/metabolismo , Óxido de Zinco/metabolismo
17.
Molecules ; 26(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567661

RESUMO

The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from Ipomoea obscura (L.) Ker Gawl. aqueous leaf extract. The UV-visible spectral analysis of the ZnO-NPs showed an absorption peak at 304 nm with a bandgap energy of 3.54 eV, which are characteristics of zinc nanoparticles. Moreover, the particles were of nano-size (~24.26 nm) with 88.11% purity and were agglomerated as observed through Scanning Electron Microscopy (SEM). The phyto-fabricated ZnO-NPs offered radical scavenging activity (RSA) in a dose-dependent manner with an IC50 of 0.45 mg mL-1. In addition, the genotoxicity studies of ZnO-NPs carried out on onion root tips revealed that the particles were able to significantly inhibit the cell division at the mitotic stage with a mitotic index of 39.49%. Further, the cytotoxic studies on HT-29 cells showed that the phyto-fabricated ZnO-NPs could arrest the cell division as early as in the G0/G1 phase (with 92.14%) with 73.14% cells showing early apoptotic symptoms after 24 h of incubation. The results of the study affirm the ability of phyto-fabricated ZnO-NPs from aqueous leaf extract of I. obscura is beneficial in the cytotoxic application.


Assuntos
Ipomoea/metabolismo , Nanopartículas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/toxicidade , Química Verde , Células HT29 , Humanos , Testes de Mutagenicidade , Cebolas/efeitos dos fármacos , Cebolas/genética , Picratos/química , Óxido de Zinco/metabolismo , Óxido de Zinco/toxicidade
18.
Micron ; 141: 102964, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33232905

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) were synthesized using a simple, low cost and safe method involving aqueous leaf extracts of Alchornea laxiflora and a zinc precursor salt. The nanoparticles were characterized by ultraviolet-visible (UV-vis), Fourier transform (FT-IR) spectroscopy, Energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Scanning electron microscope (SEM). They were evaluated for their potentials as tyrosinase inhibitors and as catalysts in the degradation of Congo red dye. The UV-vis spectra gave characteristic surface Plasmon bands within the range 276-456 nm. The band gap energies of the ZnO-NPs were of the range, 2.50-3.67 ev. The SEM results showed average sizes of 29 nm and 38 nm for particles obtained using 1 mL and 2 mL of the plant extracts respectively. EDX plot showed the elemental compositions of the nanoparticles with zinc and oxygen being pronounced. The ZnO nanoparticles exhibited good photocatalytic efficiency of 87 % degradation of Congo red (CR) dye molecules in 60 min, They also showed good anti-tyrosinase ability with an IC50 of 66.28 µg/mL. Overall the biogenic ZnO nanoparticles are promising materials for dual applications as photocatalysts in the degradation of Congo red dye and as tyrosinase inhibitors.


Assuntos
Monofenol Mono-Oxigenase/antagonistas & inibidores , Nanopartículas/química , Nanopartículas/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Óxido de Zinco/metabolismo , Biocatálise , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Espectrometria por Raios X
19.
PLoS One ; 15(12): e0243802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33326476

RESUMO

Zinc oxide (ZnO) NP is considered as a nanoscale chemotherapeutic. Thus, the drug delivery of this inorganic NP is of considerable importance. Ras mutations are common in cancer and the activation of this signaling pathway is a hallmark in carcinoma, melanoma and many other aggressive malignancies. Thus, here we examined the binding and delivery of Ras binding domain (RBD), a model cancer-relevant protein and effector of Ras by ZnO NP. Shifts in zeta potential in water, PBS, DMEM and DMEM supplemented with FBS supported NP interaction to RBD. Fluorescence quenching of the NP was concentration-dependent for RBD, Stern-Volmer analysis of this data was used to estimate binding strength which was significant for ZnO-RBD (Kd < 10-5). ZnO NP interaction to RBD was further confirmed by pull-down assay demonstrated by SDS-PAGE analysis. The ability of ZnO NP to inhibit 3-D tumor spheroid was demonstrated in HeLa cell spheroids-the ZnO NP breaking apart these structures revealing a significant (>50%) zone of killing as shown by light and fluorescence microscopy after intra-vital staining. ZnO 100 nm was superior to ZnO 14 nm in terms of anticancer activity. When bound to ZnO NP, the anticancer activity of RBD was enhanced. These data indicate the potential diagnostic application or therapeutic activity of RBD-NP complexes in vivo which demands further investigation.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Nanopartículas , Óxido de Zinco/metabolismo , Óxido de Zinco/farmacologia , Proteínas ras/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Ligação Proteica , Óxido de Zinco/química , Proteínas ras/química
20.
IEEE Trans Nanobioscience ; 19(4): 633-639, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32746333

RESUMO

The evaluation of toxic effects of nanoparticles (NPs) has become an important aspect of Nanotechnology research in the 21st century. The present investigation deals with the green synthesis of biogenic zinc oxide nanoparticles (ZnO-NPs) using Bryophyllum pinnatum leaves, their characterization and evaluation of acute oral toxicity in Wistar rats. The characterization of synthesized ZnO-NPs revealed maximum absorbance at 307 nm on UV-Vis spectrophotometric analysis, NTA showed mean size of particles and mode of the particles distribution as 128.2 nm and 12.6 nm, respectively. Zeta potential was found to be -0.369 mV. The absorbance shown by FTIR at 3469, 1644, 1355 and 887 cm-1 indicates the involvement of biomolecules that are accountable for capping and stabilization of ZnO-NPs. The XRD assessment further demonstrated the crystalline nature of the ZnO-NP. The TEM analysis of the synthesized ZnO-NPs revealed the presence of spherical NPs with the mean size of 3.7 nm. The acute oral toxicity evaluation in rat showed an approximate median lethal dose to be more than 2000 mg/kg body weight. It is thus concluded that biogenic ZnO-NPs showed absence of acute oral toxicity symptoms at the doses employed in the present study.


Assuntos
Química Verde/métodos , Kalanchoe/química , Nanopartículas Metálicas , Óxido de Zinco , Administração Oral , Animais , Feminino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Ratos , Ratos Wistar , Testes de Toxicidade , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/metabolismo , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA