Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 603
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8011): 335-340, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658759

RESUMO

Flexible and large-area electronics rely on thin-film transistors (TFTs) to make displays1-3, large-area image sensors4-6, microprocessors7-11, wearable healthcare patches12-15, digital microfluidics16,17 and more. Although silicon-based complementary metal-oxide-semiconductor (CMOS) chips are manufactured using several dies on a single wafer and the multi-project wafer concept enables the aggregation of various CMOS chip designs within the same die, TFT fabrication is currently lacking a fully verified, universal design approach. This increases the cost and complexity of manufacturing TFT-based flexible electronics, slowing down their integration into more mature applications and limiting the design complexity achievable by foundries. Here we show a stable and high-yield TFT platform for the fabless manufacturing of two mainstream TFT technologies, wafer-based amorphous indium-gallium-zinc oxide and panel-based low-temperature polycrystalline silicon, two key TFT technologies applicable to flexible substrates. We have designed the iconic 6502 microprocessor in both technologies as a use case to demonstrate and expand the multi-project wafer approach. Enabling the foundry model for TFTs, as an analogy of silicon CMOS technologies, can accelerate the growth and development of applications and technologies based on these devices.


Assuntos
Silício , Transistores Eletrônicos , Silício/química , Eletrônica/instrumentação , Índio/química , Gálio/química , Óxido de Zinco/química , Desenho de Equipamento , Semicondutores
2.
J Hazard Mater ; 470: 134245, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603910

RESUMO

This study delved into the physiological and molecular mechanisms underlying the mitigation of cadmium (Cd) stress in the model medicinal plant Salvia miltiorrhiza through the application of ZnO quantum dots (ZnO QDs, 3.84 nm). A pot experiment was conducted, wherein S. miltiorrhiza was subjected to Cd stress for six weeks with foliar application of 100 mg/L ZnO QDs. Physiological analyses demonstrated that compared to Cd stress alone, ZnO QDs improved biomass, reduced Cd accumulation, increased the content of photosynthetic pigments (chlorophyll and carotenoids), and enhanced the levels of essential nutrient elements (Ca, Mn, and Cu) under Cd stress. Furthermore, ZnO QDs significantly lowered Cd-induced reactive oxygen species (ROS) content, including H2O2, O2-, and MDA, while enhancing the activity of antioxidant enzymes (SOD, POD, APX, and GSH-PX). Additionally, ZnO QDs promoted the biosynthesis of primary and secondary metabolites, such as total protein, soluble sugars, terpenoids, and phenols, thereby mitigating Cd stress in S. miltiorrhiza. At the molecular level, ZnO QDs were found to activate the expression of stress signal transduction-related genes, subsequently regulating the expression of downstream target genes associated with metal transport, cell wall synthesis, and secondary metabolite synthesis via transcription factors. This activation mechanism contributed to enhancing Cd tolerance in S. miltiorrhiza. In summary, these findings shed light on the mechanisms underlying the mitigation of Cd stress by ZnO QDs, offering a potential nanomaterial-based strategy for enhancing Cd tolerance in medicinal plants.


Assuntos
Cádmio , Pontos Quânticos , Espécies Reativas de Oxigênio , Salvia miltiorrhiza , Óxido de Zinco , Pontos Quânticos/química , Óxido de Zinco/química , Óxido de Zinco/toxicidade , Salvia miltiorrhiza/efeitos dos fármacos , Salvia miltiorrhiza/metabolismo , Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
3.
Int J Nanomedicine ; 19: 3045-3070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559447

RESUMO

Background: Diabetes Mellitus is a multisystem chronic pandemic, wound inflammation, and healing are still major issues for diabetic patients who may suffer from ulcers, gangrene, and other wounds from uncontrolled chronic hyperglycemia. Marshmallows or Althaea officinalis (A.O.) contain bioactive compounds such as flavonoids and phenolics that support wound healing via antioxidant, anti-inflammatory, and antibacterial properties. Our study aimed to develop a combination of eco-friendly formulations of green synthesis of ZnO-NPs by Althaea officinalis extract and further incorporate them into 2% chitosan (CS) gel. Method and Results: First, develop eco-friendly green Zinc Oxide Nanoparticles (ZnO-NPs) and incorporate them into a 2% chitosan (CS) gel. In-vitro study performed by UV-visible spectrum analysis showed a sharp peak at 390 nm, and Energy-dispersive X-ray (EDX) spectrometry showed a peak of zinc and oxygen. Besides, Fourier transforms infrared (FTIR) was used to qualitatively validate biosynthesized ZnO-NPs, and transmission electron microscope (TEM) showed spherical nanoparticles with mean sizes of 76 nm and Zeta potential +30mV. The antibacterial potential of A.O.-ZnO-NPs-Cs was examined by the diffusion agar method against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Based on the zone of inhibition and minimal inhibitory indices (MIC). In addition, an in-silico study investigated the binding affinity of A.O. major components to the expected biological targets that may aid wound healing. Althaea Officinalis, A.O-ZnO-NPs group showed reduced downregulation of IL-6, IL-1ß, and TNF-α and increased IL-10 levels compared to the control group signaling pathway expression levels confirming the improved anti-inflammatory effect of the self-assembly method. In-vivo study and histopathological analysis revealed the superiority of the nanoparticles in reducing signs of inflammation and wound incision in rat models. Conclusion: These biocompatible green zinc oxide nanoparticles, by using Althaea Officinalis chitosan gel ensure an excellent new therapeutic approach for quickening diabetic wound healing.


Assuntos
Althaea , Quitosana , Diabetes Mellitus , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Animais , Ratos , Óxido de Zinco/química , Quitosana/química , Althaea/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização , Anti-Inflamatórios/farmacologia , Inflamação , Flores , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Int J Biol Macromol ; 263(Pt 1): 130694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458284

RESUMO

Zinc oxide (ZnO) has attracted a substantial interest in cancer research owing to their promising utility in cancer imaging and therapy. This study aimed to synthesized ZnO nanoflowers coated with albumin to actively target and the inhibit skin melanoma cells. We synthesized bovine serum albumin (BSA)-coated ZnO nanoflowers (BSA@ZnO NFs) and evaluated it's in vitro and in vivo therapeutic efficacy for skin cancer cells. BSA@ZnO NFs were prepared via single-step reduction method in the presence of plant extract (Heliotropium indicum) act as a capping agent, and further the successful fabrication was established by various physico-chemical characterizations, such as scanning electron microscopy (SEM), Fourier transform infra-red (FT-IR) spectroscopy, and x-rays diffraction (XRD) analysis. The fabricated BSA@ZnO NFs appeared flower like with multiple cone-shaped wings and average hydration size of 220.8 ± 12.6 nm. Further, BSA@ZnO NFs showed enhanced cellular uptake and cytocidal effects against skin cancer cells by inhibiting their growth via oxidative stress compared uncoated ZnO NFs. Moreover, BSA@ZnO NFs showed enhance biosafety, blood circulation time, tumor accumulation and in vivo tumor growth inhibition compared to ZnO NFs. In short, our findings suggesting BSA@ZnO NFs as a promising candidate for various types of cancer treatment along with chemotherapy.


Assuntos
Melanoma , Nanopartículas Metálicas , Neoplasias Cutâneas , Óxido de Zinco , Animais , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Espectroscopia de Infravermelho com Transformada de Fourier , Melanoma/tratamento farmacológico , Soroalbumina Bovina/química , Neoplasias Cutâneas/tratamento farmacológico , Estresse Oxidativo , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/química
5.
Microb Cell Fact ; 23(1): 92, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539154

RESUMO

Excessive consumption of antibiotics is considered one of the top public health threats, this necessitates the development of new compounds that can hamper the spread of infections. A facile green technology for the biosynthesis of Zinc oxide nanoparticles (ZnO NPs) using the methanol extract of Spirulina platensis as a reducing and stabilizing agent has been developed. A bunch of spectroscopic and microscopic investigations confirmed the biogenic generation of nano-scaled ZnO with a mean size of 19.103 ± 5.66 nm. The prepared ZnO NPs were scrutinized for their antibacterial and antibiofilm potentiality, the inhibition zone diameters ranged from 12.57 ± 0.006 mm to 17.33 ± 0.006 mm (at 20 µg/mL) for a variety of Gram-positive and Gram-negative pathogens, also significant eradication of the biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae by 96.7% and 94.8% respectively was detected. The free radical scavenging test showed a promising antioxidant capacity of the biogenic ZnO NPs (IC50=78.35 µg/mL). Furthermore, the anti-inflammatory role detected using the HRBCs-MSM technique revealed an efficient stabilization of red blood cells in a concentration-dependent manner. In addition, the biogenic ZnO NPs have significant anticoagulant and antitumor activities as well as minimal cytotoxicity against Vero cells. Thus, this study offered green ZnO NPs that can act as a secure substitute for synthetic antimicrobials and could be applied in numerous biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Spirulina , Óxido de Zinco , Animais , Chlorocebus aethiops , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Células Vero , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química
6.
Mol Biol Rep ; 51(1): 423, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489102

RESUMO

BACKGROUND: Oral health remains a significant global concern with the prevalence of oral pathogens and the increasing incidence of oral cancer posing formidable challenges. Additionally, the emergence of antibiotic-resistant strains has complicated treatment strategies, emphasizing the urgent need for alternative therapeutic approaches. Recent research has explored the application of plant compounds mediated with nanotechnology in oral health, focusing on the antimicrobial and anticancer properties. METHODS: In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity. RESULTS: ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells. CONCLUSIONS: This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.


Assuntos
Anti-Infecciosos , Benzotiazóis , Carcinoma de Células Escamosas , Curcumina , Nanopartículas Metálicas , Neoplasias Bucais , Ácidos Sulfônicos , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Curcumina/farmacologia , Nanopartículas Metálicas/química , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Biofilmes , Extratos Vegetais/química , Testes de Sensibilidade Microbiana
7.
ACS Appl Bio Mater ; 7(4): 2519-2532, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38530961

RESUMO

A fascinating problem in the fields of nanoscience and nanobiotechnology has recently emerged, and to tackle this, the production of metal oxide nanoparticles using plant extracts offers numerous benefits over traditional physicochemical methods. In the present investigation, ZnO nanoparticles were fabricated from Bauhinia racemosa Lam. (BR) leaves extract with various transition metal (TM) dopants (Ni, Mn, and Co). Plant leaves extract containing metal nitrate solutions were utilized as a precursor to synthesize the pristine and TM-doped ZnO nanoparticles. Structural, functional, optical, and surface properties of the fabricated samples were studied by using physicochemical and photoelectrochemical measurements. The organic pollutants tetracycline (TC), ampicillin (AMP), and amoxicillin (AMX) were used in the photocatalytic degradation assessment of the fabricated samples. Through X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigation, the fabricated nanoparticles wurtzite crystal structure was verified. Moreover, Fourier transform infrared (FT-IR) analysis verified the existence of functional groups in the fabricated nanoparticles. The migration of electrons from the deep donor level and zinc interstitial to the Zn-defect and O-defect is related to the emission peaks seen at 468, 480, 534, and 450 nm in photoluminescence (PL) spectra. Co-ZnO nanoparticles demonstrated potent and excellent photocatalytic degradation performance for TC (91.09%), AMP (87.97%), and AMX (92.42%) antibiotics within 210, 180, and 150 min of visible light irradiation. Co-ZnO nanoparticles also demonstrated strong antimicrobial performance against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Aspergillus flavus, Aspergillus niger, and Bacillus subtilis. Further investigation of in vitro cytotoxic potential against the A549 cell line (IC50 = 24 ± 0.5 µg/mL) utilizing MTT assay and the free radical scavenging performance of Co-ZnO nanoparticles estimated by DPPH assay utilizing l-ascorbic acid as a reference was also performed. Anti-inflammatory potential is also reviewed by comparing it with the standard drug Diclofenac, and the maximum activity was obtained for Ni-ZnO nanoparticles (IC50 = 72.4 µg/mL).


Assuntos
Bauhinia , Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Bauhinia/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Amoxicilina , Tetraciclina , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Sci Rep ; 14(1): 5789, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461344

RESUMO

The production of surface compounds coated with active substances has gained significant attention in recent years. This study investigated the physical, mechanical, antioxidant, and antimicrobial properties of a composite made of starch and zinc oxide nanoparticles (ZnO NPs) containing various concentrations of Ferula gummosa essential oil (0.5%, 1%, and 1.5%). The addition of ZnO NPs improved the thickness, mechanical and microbial properties, and reduced the water vapor permeability of the starch active film. The addition of F. gummosa essential oil to the starch nanocomposite decreased the water vapor permeability from 6.25 to 5.63 g mm-2 d-1 kPa-1, but this decrease was significant only at the concentration of 1.5% of essential oils (p < 0.05). Adding 1.5% of F. gummosa essential oil to starch nanocomposite led to a decrease in Tensile Strength value, while an increase in Elongation at Break values was observed. The results of the antimicrobial activity of the nanocomposite revealed that the pure starch film did not show any lack of growth zone. The addition of ZnO NPs to the starch matrix resulted in antimicrobial activity on both studied bacteria (Staphylococcus aureus and Escherichia coli). The highest antimicrobial activity was observed in the starch/ZnO NPs film containing 1.5% essential oil with an inhibition zone of 340 mm2 on S. aureus. Antioxidant activity increased significantly with increasing concentration of F. gummosa essential oil (P < 0.05). The film containing 1.5% essential oil had the highest (50.5%) antioxidant activity. Coating also improved the chemical characteristics of fish fillet. In conclusion, the starch nanocomposite containing ZnO NPs and F. gummosa essential oil has the potential to be used in the aquatic packaging industry.


Assuntos
Anti-Infecciosos , Ferula , Nanopartículas , Óleos Voláteis , Óxido de Zinco , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antioxidantes/farmacologia , Antioxidantes/química , Staphylococcus aureus , Vapor , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Amido/química , Escherichia coli , Nanopartículas/química
9.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527365

RESUMO

The fruit extract ofBuchanania obovataand the eutectic-based ionic liquid were utilized, in an eco-friendly, inexpensive, simple method, for synthesizing zinc oxide nanoparticles (ZnO NPs). The influence of the reducing, capping and stabilizing agents, in both mediums, on the structure, optical, and morphological properties of ZnO NPs was extensively investigated. The surface plasmon resonance peaks were observed at 340 nm and 320 nm for the fruit-based and the eutectic-based ionic liquid mediums, respectively, indicating the formation of ZnO NPs. XRD results confirmed the wurtzite structure of the ZnO NPs, exhibiting hexagonal phases in the diffraction patterns. The SEM and TEM images display that the biosynthesized ZnO NPs exhibit crystalline and hexagonal shape, with an average size of 40 nm for the fruit-based and 25 nm for the eutectic-based ionic liquid. The Brunauer-Emmett-Teller (BET) surface area analysis, revealed a value ∼13 m2g-1for ZnO NPs synthesized using the fruit extract and ∼29 m2g-1for those synthesized using the eutectic-based ionic liquid. The antibacterial activity of the biosynthesized ZnO NPs was assessed against clinically isolated Gram-negative (E. coli) and Gram-positive (S. aureus) bacterial strains using the inhibition zone method. The ZnO NPs produced from the eutectic-based ionic liquids confirmed superior antibacterial activity against bothS. aureusandE. colicompared to those mediated by the utilized fruit extract. At a concentration of 1000, the eutectic-based ionic liquid mediated ZnO NPs displayed a maximum inhibition zone of 16 mm againstS. aureus, while againstE. coli, a maximum inhibition zone of 15 mm was observed using the fruit extract mediated ZnO NPs. The results of this study showed that the biosynthesized ZnO NPs can be utilized as an efficient substitute to the frequently used chemical drugs and covering drug resistance matters resulted from continual usage of chemical drugs by users.


Assuntos
Líquidos Iônicos , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Líquidos Iônicos/farmacologia , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
10.
Environ Sci Pollut Res Int ; 31(18): 26806-26823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453761

RESUMO

Toxic organic dyes-containing wastewater treatment by adsorption and photocatalytic techniques is widely applied, but adsorbents and photocatalysts are often synthesized through chemical methods, leading to secondary pollution by released chemicals. Here, we report a benign method using Tecoma stans floral extract to produce MgFe2O4/ZnO (MGFOZ) nanoparticles for adsorption and photocatalytic degradation of coomassie brilliant blue (CBB) dye. Green MGFOZ owned a surface area of 9.65 m2/g and an average grain size of 54 nm. This bio-based nanomaterial showed higher removal percentage and better recyclability (up to five cycles) than green MgFe2O4 and ZnO nanoparticles. CBB adsorption by MGFOZ was examined by kinetic and isotherm models with better fittings of Bangham and Langmuir or Temkin. RSM-based optimization was conducted to reach an actual adsorption capacity of 147.68 mg/g. Moreover, MGFOZ/visible light system showed a degradation efficiency of 89% CBB dye after 120 min. CBB adsorption can be controlled by both physisorption and chemisorption while •O2- and •OH radicals are responsible for photo-degradation of CBB dye. This study suggested that MGFOZ can be a promising adsorbent and catalyst for removal of organic dyes in water.


Assuntos
Corantes de Rosanilina , Poluentes Químicos da Água , Óxido de Zinco , Adsorção , Corantes de Rosanilina/química , Óxido de Zinco/química , Poluentes Químicos da Água/química , Catálise , Nanopartículas/química , Extratos Vegetais/química , Corantes/química , Flores/química , Compostos Férricos/química
11.
Int J Biol Macromol ; 263(Pt 2): 130391, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417746

RESUMO

The textiles for medical use and the purification of textile factory effluents have become the most crucial part of the human healthcare sector. In this study bioactive compounds produced by four distinct plant extracts were used for the synthesis of zinc oxide nanoparticles. The four different ZnO nanoparticles were comprehensively characterized by different analytical techniques. XRD analysis revealed the crystalline nature and phase purity of the ZnO nanoparticles. FTIR spectra provided information on the function of plant extracts in the stabilization or capping process. The size distribution and morphological diversity of the nanoparticles were further clarified by SEM and TEM images. The photocatalytic degradation activity of the four ZnO nanoparticles on two different dyes showed that ZnO nanoparticles prepared from A. indica were most effective for the degradation of 98 % and 91 % of Rhodamine B and Alizarin red dye respectively. The selected ZnO nanoparticles from A. indica were used to prepare ZnO-chitosan nanocomposites before coating on cotton fabrics. The hydrophobicity, UV protection factor, and antibacterial activity of ZnO-chitosan nanocomposites, when coated on cotton fabrics, were also examined. The overall results demonstrated the ZnO and ZnO-chitosan nanocomposite prepared in the present study as a promising material for environmental remediation application.


Assuntos
Quitosana , Nanocompostos , Óxido de Zinco , Humanos , Óxido de Zinco/química , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Têxteis , Corantes , Nanocompostos/química , Extratos Vegetais/química
12.
Environ Sci Pollut Res Int ; 31(13): 19123-19147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379040

RESUMO

The sustainable synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extracts has gained significant attention in recent years due to its eco-friendly nature and potential applications in numerous fields. This synthetic approach reduces the reliance on non-renewable resources and eliminates the need for hazardous chemicals, minimizing environmental pollution and human health risks. These ZnO-NPs can be used in environmental remediation applications, such as wastewater treatment or soil remediation, effectively removing pollutants and improving overall ecosystem health. These NPs possess a high surface area and band gap of 3.2 eV, can produce both OH° (hydroxide) and O2-° (superoxide) radicals for the generation of holes (h+) and electrons (e-), resulting in oxidation and reduction of the pollutants in their valence band (VB) and conduction band (CB) resulting in degradation of dyes (95-100% degradation of MB, MO, and RhB dyes), reduction and removal of heavy metal ions (Cu2+, Pb2+, Cr6+, etc.), degradation of pharmaceutical compounds (paracetamol, urea, fluoroquinolone (ciprofloxacin)) using photocatalysis. Here, we review an overview of various plant extracts used for the green synthesis of ZnO NPs and their potential applications in environmental remediation including photocatalysis, adsorption, and heavy metal remediation. This review summarizes the most recent studies and further research perspectives to explore their applications in various fields.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Nanopartículas Metálicas , Metais Pesados , Nanopartículas , Óxido de Zinco , Humanos , Óxido de Zinco/química , Ecossistema , Nanopartículas/química , Corantes/química , Extratos Vegetais/química , Nanopartículas Metálicas/química , Antibacterianos
13.
Sci Rep ; 14(1): 4689, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409460

RESUMO

Antimicrobial resistance is a worldwide health problem that demands alternative antibacterial strategies. Modified nano-composites can be an effective strategy as compared to traditional medicine. The current study was designed to develop a biocompatible nano-drug delivery system with increased efficacy of current therapeutics for biomedical applications. Zinc oxide nanoparticles (ZnO-NPs) were synthesized by chemical and green methods by mediating with Moringa olifera root extract. The ZnO-NPs were further modified by drug conjugation and coating with PEG (CIP-PEG-ZnO-NPs) to enhance their therapeutic potential. PEGylated ZnO-ciprofloxacin nano-conjugates were characterized by Fourier Transform Infrared spectroscopy, X-ray diffractometry, and Scanning Electron Microscopy. During antibacterial screenings chemically and green synthesized CIP-PEG-ZnO-NPs revealed significant activity against clinically isolated Gram-positive and Gram-negative bacterial strains. The sustainable and prolonged release of antibiotics was noted from the CIP-PEG conjugated ZnO-NPs. The synthesized nanoparticles were found compatible with RBCs and Baby hamster kidney cell lines (BHK21) during hemolytic and MTT assays respectively. Based on initial findings a broad-spectrum nano-material was developed and tested for biomedical applications that eradicated Staphylococcus aureus from the infectious site and showed wound-healing effects during in vivo applications. ZnO-based nano-drug carrier can offer targeted drug delivery, and improved drug stability and efficacy resulting in better drug penetration.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Ciprofloxacina/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Microscopia Eletrônica de Varredura , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana
14.
Sci Rep ; 14(1): 4147, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378738

RESUMO

The current study aimed to find an effective, simple, ecological, and nontoxic method for bacterial green synthesis of zinc oxide nanoparticles (ZnONPs) using the bacterial strain Priestia megaterium BASMA 2022 (OP572246). The biosynthesis was confirmed by the change in color of the cell-free supernatant added to the zinc nitrate from yellow to pale brown. The Priestia megaterium zinc oxide nanoparticles (Pm/ZnONPs) were characterized using UV-Vis spectroscopy, high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and zeta potential. The Pm/ZnONPs characterization showed that they have a size ranging between 5.77 and 13.9 nm with a semi-sphere shape that is coated with a protein-carbohydrate complex. An EDX analysis of the Pm/ZnONPs revealed the presence of the shield matrix, which was composed of carbon, nitrogen, oxygen, chlorine, potassium, sodium, aluminum, sulfur, and zinc. The results of the FTIR analysis showed that the reduction and stabilization of the zinc salt solution were caused by the presence of O-H alcohols and phenols, O=C=O stretching of carbon dioxide, N=C=S stretching of isothiocyanate, and N-H bending of amine functional groups. The produced ZnONPs had good stability with a charge of - 16.2 mV, as evidenced by zeta potential analysis. The MTT assay revealed IC50 values of 8.42% and 200%, respectively, for the human A375 skin melanoma and human bone marrow 2M-302 cell lines. These findings revealed that the obtained Pm/ZnONPs have the biocompatibility to be applied in the pharmaceutical and biomedical sectors.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Nanopartículas Metálicas/química , Nanopartículas/química , Linhagem Celular , Extratos Vegetais/química , Bactérias , Zinco , Antibacterianos/química
15.
Environ Sci Pollut Res Int ; 31(9): 13046-13062, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240974

RESUMO

Green synthesis (GS), referred to the synthesis using bioactive agents such as plant materials, microorganisms, and various biowastes, prioritizing environmental sustainability, has become increasingly relevant in international scientific practice. The availability of plant resources expands the scope of new exploration opportunities, including the evaluation of new sources of organic extracts, for instance, to the best of our knowledge, no scientific articles have reported the synthesis of zinc oxide nanoparticles (ZnO NPs) from organic extracts of T. recurvata, a parasitic plant very common in semiarid regions of Mexico.This paper presents a greener and more efficient method for synthesizing ZnO NPs using T. recurvata extract as a reducing agent. The nanoparticles were examined by different techniques such as UV-vis spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and BET surface analysis. The photocatalytic and adsorptive effect of ZnO NPs was investigated against methylene blue (MB) dye in aqueous media under sunlight irradiation considering an equilibrium time under dark conditions. ZnO nanoparticles were highly effective in removing MB under sunlight irradiation conditions, showing low toxicity towards human epithelial cells, making them promising candidates for a variety of applications. This attribute fosters the use of green synthesis techniques for addressing environmental issues.This study also includes the estimation of the supported electric field distributions of ZnO NPs in their individual spherical or rounded shapes and their randomly oriented organization, considering different diameters, by simulating their behavior in the visible wavelength range, observing resonant enhancements due to the strong light-matter interaction around the ZnO NPs boundaries.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Tillandsia , Óxido de Zinco , Humanos , Óxido de Zinco/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Nanopartículas/química , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Antibacterianos/química , Testes de Sensibilidade Microbiana
16.
BMC Complement Med Ther ; 24(1): 20, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178178

RESUMO

Zinc selenide nanoparticles (ZnSe) are semiconductor metals of zinc and selenium. ZnSe NPs are advantageous for biomedical and bio-imaging applications due to their low toxicity. ZnSe NPs can be used as a therapeutic agent by synthesizing those using biologically safe methods. As a novel facet of these NPs, plant-based ZnSe NPs were fabricated from an aqueous extract of Rosmarinus officinalis L. (RO extract). Physiochemical analyses such as UV-visible and FTIR spectroscopy, SEM-EDX and TEM Imaging, XRD and DLS-Zeta potential analyses confirmed the biological fabrication of RO-ZnSe NPs. Additionally, Ro-ZnSe NPs were investigated for their bioactivity. There was an apparent peak in the UV-visible spectrum at 398 nm to confirm the presence of ZnSe NPs. FTIR analysis confirmed RO-extract participation in ZnSe NPs synthesis by identifying putative functional groups associated with biomolecules. TEM and SEM analyses revealed that RO-ZnSe NPs have spherical shapes in the range of 90-100 nm. According to XRD and EDX analysis, RO-ZnSe NPs had a crystallite size of 42.13 nm and contain Se and Zn (1:2 ratio). These NPs demonstrated approximately 90.6% antioxidant and antibacterial activity against a range of bacterial strains at 100 µg/ml. Antibiofilm activity was greatest against Candida glabrata and Pseudomonas aeruginosa at 100 g/ml. Accordingly, the IC50 values for anticancer activity against HTB-9, SW742, and HF cell lines were 14.16, 8.03, and 35.35 g/ml, respectively. In light of the multiple applications for ZnSe NPs, our research indicates they may be an excellent option for biological and therapeutic purposes in treating cancers and infections. Therefore, additional research is required to determine their efficacy.


Assuntos
Nanopartículas Metálicas , Rosmarinus , Óxido de Zinco , Óxido de Zinco/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
17.
Luminescence ; 39(1): e4668, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286596

RESUMO

Curcumin (Cur) is an acidic polyphenol with some effects on α-glucosidase (α-Glu), but Cur has disadvantages such as being a weak target, lacking passing the blood-brain barrier and having low bioavailability. To enhance the curative effect of Cur, the hybrid composed of ZnO nanoparticles decorated on rGO was used to load Cur (ZnO@rGO-Cur). The use of the multispectral method and enzyme inhibition kinetics analysis certify the inhibitory effect and interaction mechanism of ZnO@rGO-Cur with α-Glu. The static quenching of α-Glu with both Cur and ZnO@rGO-Cur is primarily driven by hydrogen bond and van der Waals interactions. The conformation-changing ability by binding to the neighbouring phenolic hydroxyl group of Cur increased their ability to alter the secondary structure of α-Glu, resulting in the inhibition of enzyme activity. The inhibition constant (Ki, Cur > Kis,ZnO@rGO-Cur ) showed that the inhibition effect of ZnO@rGO-Cur on α-Glu was larger than that of Cur. The CCK-8 experiments proved that ZnO@rGO nanocomposites have good biocompatibility. These results suggest that the therapeutic potential of ZnO@rGO-Cur composite is an emerging nanocarrier platform for drug delivery systems for the potential treatment of diabetes mellitus.


Assuntos
Curcumina , Diabetes Mellitus , Nanopartículas , Óxido de Zinco , Humanos , alfa-Glucosidases/efeitos dos fármacos , Curcumina/farmacologia , Curcumina/química , Sistemas de Liberação de Medicamentos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia
18.
Int J Biol Macromol ; 259(Pt 1): 129162, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181910

RESUMO

Dual drug antibacterial wound dressings with biological materials possess crucial wound healing characteristics including biocompatibility, non-toxicity, degradability, mechanical strength and antibacterial properties. The study focusses on fabricating keratin (K)­sodium alginate (A) based wound dressings by loading green synthesized zinc oxide nanoparticles (ZnO NPs) using C. roseus (leaf extract) and M. recutita (Chamomile flower part) herbal drug (CH) as a bioactive dual antibacterial wound dressing for the first time. The optimized ZnO NPs and CH exhibits strong physiochemical and electrostatic interactions (FT-IR, XRD and SEM) on the fabricated K-A-CH-ZnO biopolymeric mats. Moreover, the tiny porous network of the biopolymeric mat enhances thermal stability, hydrophilicity, mechanical strength and explores the water vapor transmission (2538.07 g/m2/day) and oxygen permeability (7.38 ± 0.31 g/m2) to maintain moist environment and cell-material interactions. During enzymatic degradation studies, ZnO NPs and CH of biopolymeric mat not only retains structural integrity but also increases the characteristic of swelling with sustained drug release (57 %) in 144 h which accelerates wound healing process. Also, K-A-CH-ZnO mat exhibited excellent antibacterial effects against B. subtilis and E. coli. Furthermore, NIH 3T3 fibroblast cell behavior using MTT assay and in vivo evaluations of biopolymeric mat depicted enhanced biocompatibility with increased collagen deposition at the wound site as a prominent dual drug medicated antimicrobial wound dressing.


Assuntos
Anti-Infecciosos , Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Queratinas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Alginatos/química , Escherichia coli , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Bandagens
19.
Biomed Mater ; 19(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38215483

RESUMO

With the rise in microbial resistance to traditional antibiotics and disinfectants, there is a pressing need for the development of novel and effective antibacterial agents. Two major approaches being adopted worldwide to overcome antimicrobial resistance are the use of plant leaf extracts and metallic nanoparticles (NPs). However, there are no reports on the antibacterial potential of NPs coated with plant extracts, which may lead to novel ways of treating infections. This study presents an innovative approach to engineer antibacterial NPs by leveraging the inherent antibacterial properties of zinc oxide NPs (ZnO NPs) in combination withAzadirachta indica(AI) leaf extract, resulting in enhanced antibacterial efficacy. ZnO NPs were synthesised by the precipitation method and subsequently coated withAIleaf extract to produce ZnO-AInanocore-shell structures. The structural and morphological characteristics of the bare and leaf extract coated ZnO NPs were analysed by x-ray diffraction and field emission scanning electron microscopy, respectively. The presence of anAIleaf extract coating on ZnO NPs and subsequent formation of ZnO-AInanocore-shell structures was verified through Fourier transform infrared spectroscopy and photoluminescence techniques. The antibacterial efficacy of both ZnO NPs and ZnO-AInanocore-shell particles was evaluated against methicillin-resistantStaphylococcus aureususing a zone of inhibition assay. The results showed an NP concentration-dependent increase in the diameter of the inhibition zone, with ZnO-AInanocore-shell particles exhibiting superior antibacterial properties, owing to the combined effect of ZnO NPs and the poly phenols present inAIleaf extract. These findings suggest that ZnO-AInanocore-shell structures hold promise for the development of novel antibacterial creams and hydrogels for various biomedical applications.


Assuntos
Azadirachta , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Óxido de Zinco , Meticilina , Óxido de Zinco/química , Antibacterianos/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana
20.
Biol Trace Elem Res ; 202(1): 268-290, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37060542

RESUMO

Zinc oxide nanoparticles (ZnO NPs) have involved a lot of consideration owing to their distinctive features. The ZnO NPs can be described as particularly synthesized mineral salts via nanotechnology, varying in size from 1 to 100 nm, while zinc oxide (ZnO), it is an inorganic substrate of zinc (Zn). The Zn is a critical trace element necessary for various biological and physiological processes in the body. Studies have revealed ZnO NPs' efficient immuno-modulatory, growth-promoting, and antimicrobial properties in poultry birds. They offer increased bioavailability as compared to their traditional sources, producing better results in terms of productivity and welfare and consequently reducing ecological harm in the poultry sector. However, they have also been reported for their toxicological effects, which are size, shape, concentration, and exposure route dependent. The investigations done so far have yielded inconsistent results, therefore, a lot of additional studies and research are required to clarify the harmful consequences of ZnO NPs and to bring them to a logical end. This review explores an overview of efficient possible role of ZnO NPs, while comparing them with other nutritional Zn sources, in the poultry industry, primarily as dietary supplements that effect the growth, health, and performance of the birds. In addition to the anti-bacterial mechanisms of ZnO NPs and their promising role as antifungal, and anti-colloidal agent, this paper also covers the toxicological mechanisms of ZnO NPs and their consequent toxicological hazards to vital organs and the reproductive system of poultry birds.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Oligoelementos , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Aves Domésticas , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA