Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542218

RESUMO

This study addresses the pressing issues of energy production and consumption, in line with global sustainable development goals. Focusing on the potential of alcohols as "green" alternatives to traditional fossil fuels, especially in biofuel applications, we investigate the thermochemical properties of three alcohols (n-propanol, n-butanol, n-pentanol) blended with sunflower oil. The calorimetric analysis allows for the experimental determination of excess enthalpies in pseudo-binary mixtures at 303.15 K, revealing similarities in the trends of the curves (dependence on concentrations) but with different values for the excess enthalpies for each mixture. Despite the structural differences of the alcohols studied, the molar excess enthalpy values exhibit uniformity, suggesting consistent mixing behavior. The peak values of excess enthalpies for systems with sunflower oil and n-propanol, n-butanol and n-pentanol are, respectively, 3255.2 J/mole, 3297.4 J/mole and 3150.1 J/mole. Both the NRTL and Redlich-Kister equations show satisfactory agreement with the obtained values.


Assuntos
Álcoois , Biocombustíveis , Pentanóis , Álcoois/química , Óleo de Girassol , 1-Propanol , 1-Butanol
2.
BMC Complement Med Ther ; 24(1): 122, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486187

RESUMO

BACKGROUND: The Convolvulus genus is distributed all over the world and has a long history in traditional medicine. As nanotechnology expands its reach into areas like drug delivery and biomedicine, this study intends to assess the potential of Convolvulus arvensis L. extracts as anti-bacterial, anti-inflammatory and anti-cancer agents, along with chemical profiling of the methanolic (MeOH) extract active ingredients. METHODS: The chemical composition of an 85% MeOH extract was investigated by liquid chromatography with an electrospray source connected to mass spectrometry (LC-ESI-MS). Both the 85% MeOH extract and n-butanol fraction of C. arvensis were loaded for the first time on alginate/chitosan nanoparticles. The 85% MeOH extract, n-butanol fraction and their loaded nanoparticles were tested for their cytotoxicity, anticancer, anti-inflammatory and antibacterial activity (against pathogenic bacteria, E. coli and S. aureus). RESULTS: The chemical investigation of 85% MeOH extract of C. arvensis underwent LC-ESI-MS analysis, revealing twenty-six phenolic substances, of which 16 were phenolic acids, 6 were flavonoids, 1 glycolipid, 1 sesquiterpene and 2 unknown compounds. The FT-IR spectra confirmed the encapsulation of the 85% MeOH extract and n-butanol fraction onto alginate/chitosan nanoparticles and small size obtained by TEM maintained them nontoxic and enhanced their anti-inflammatory activity (the IC50 was decreased from 1050 to 175 µg/ml). The anti-cancer activity against HepG2 was increased and the cell viability was decreased from 28.59 ± 0.52 to 20.80 ± 0.27 at a maximum concentration of 1000 µg/ml. In addition, the MIC of encapsulated extracts was decreased from 31.25 to7.78 µg/ml in E. coli (Gm-ve) and from 15.56 to 7.78 µg/ml in S. aureus (Gm + ve) bacteria. CONCLUSION: Both alginate and chitosan are excellent natural polymers for the encapsulation process, which affects positively on the bioactive constituents of C. arvensis extracts and improves their biological properties.


Assuntos
Anti-Infecciosos , Quitosana , Convolvulus , 1-Butanol , Quitosana/farmacologia , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Alginatos , Anti-Inflamatórios , Metanol , Extratos Vegetais/farmacologia
3.
Sci Rep ; 14(1): 5751, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459108

RESUMO

L. edodes (L. edodes) is the most consumed mushroom in the world and has been well known for its therapeutic potential as an edible and medicinal candidate, it contains dietary fibers, vitamins, proteins, minerals, and carbohydrates. In the current study butanolic extract of mushroom was used to form semisolid butanol extract. The current study aimed to explore biometabolites that might have biological activities in n-butanol extract of L. edodes using FT-IR and GC-MS and LC-MS. The synergistic properties of bioactive compounds were futher assessed by performing different biological assays such as antioxidant, anti-inflammatory and antidiabetic. FTIR spectra showed different functional groups including amide N-H group, Alkane (C-H stretching), and (C = C stretching) groups at different spectrum peaks in the range of 500 cm-1 to 5000 cm-1 respectively. GC-MS profiling of n-butanol extract depicted 34 potent biomolecules among those dimethyl; Morphine, 2TMS derivative; Benzoic acid, methyl ester 1-(2-methoxy-1-methylethoxy)-2-propanol were spotted at highest range. Results indicate that L. edodes n-butanol extract showed a maximum anti-inflammatory potential 91.4% at 300 mg/mL. Antioxidant activity was observed by measuring free radical scavenging activity which is 64.6% at optimized concentration along with good antidiabetic activity. In-silico study executed the biopotential of active ingredient morphine which proved the best docking score (- 7.0 kJ/mol) against aldose reductase. The in-silico drug design analysis was performed on biometabolites detected through GC-MS that might be a potential target for sulfatase-2 to treat ruminated arthritis. Morphine binds more strongly (- 7.9 kJ/mol) than other bioactive constituents indicated. QSAR and ADMET analysis shown that morphine is a good candidates against ruminated arthritis. The current study showed that L. edodes might be used as potent drug molecules to cure multiple ailments. As mushrooms have high bioactivity, they can be used against different diseases and to develop antibacterial drugs based on the current situation in the world in which drug resistance is going to increase due to misuse of antibiotics so new and noval biological active compounds are needed to overcome the situation.


Assuntos
1-Butanol , Artrite , Humanos , Butanóis , Espectroscopia de Infravermelho com Transformada de Fourier , Antioxidantes/química , Antibacterianos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Hipoglicemiantes/farmacologia , Derivados da Morfina , Extratos Vegetais/química
4.
Environ Sci Pollut Res Int ; 31(12): 18593-18613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349492

RESUMO

The adverse effects of arsenic-chelating drugs make it essential to replace invasive chelating therapy with non-invasive oral therapy for arsenic poisoning. The goal of the current investigation was to determine whether the uterine damage caused by arsenization could be repaired by the n-butanol fraction of Moringa oleifera seed (NB). The rats were orally administered with arsenic (10 mg/kg BW) for the initial 8 days, followed by NB (50 mg/kg) for the next 8 days without arsenic. The probable existence of different components in NB was evaluated by HPLC-MS. Pro and anti-inflammatory indicators were assessed by RT-PCR and western blot. ESR-α was detected via immunostaining. Arsenic-exposed rats had significantly increased lipid peroxidation and decreased antioxidant enzyme activity, which were markedly reduced after NB treatment. Weaker ESR-α expression and distorted uterine histomorphology following arsenication were retrieved significantly by NB. Meaningful restoration by NB was also achieved for altered mRNA and protein expression of various inflammatory and apoptotic indicators. Molecular interaction predicted that glucomoringin and methyl glucosinolate of moringa interact with the catalytic site of caspase-3 in a way that limits its activity. However, NB was successful in restoring the arsenic-mediated uterine hypofunction. The glucomoringin and methyl glucosinolate present in n-butanol fraction may play a critical role in limiting apoptotic event in the arsenicated uterus.


Assuntos
Arsênio , Moringa oleifera , Moringa , Feminino , Ratos , Animais , Arsênio/toxicidade , Estresse Oxidativo , 1-Butanol , Glucosinolatos/farmacologia , Antioxidantes/metabolismo , Moringa oleifera/metabolismo , Extratos Vegetais/farmacologia , Sementes/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 49(2): 471-486, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403323

RESUMO

This study combined network pharmacology, molecular docking, and in vitro experiments to explore the potential mechanism of the active components of the n-butanol fraction of Wenxia Formula(NWXF) combined with gefitinib(GEF) in treating non-small cell lung cancer(NSCLC). Ultra-performance liquid chromatography-quadrupole Orbitrap mass spectrometry(UPLC-Q-Orbitrap MS) was employed to detect the main chemical components of NWXF. The active components of NWXF were retrieved from SwissADME, and the candidate targets of these active components were retrieved from SwissTargetPrediction. Online Mendelian Inheritance in Man(OMIM) and GeneCards were searched for the targets of NSCLC. Cytoscape 3.9.0 and STRING were employed to build the protein-protein interaction(PPI) network with the common targets shared by NWXF and NSCLC. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment were performed in DAVID to predict the potential mechanisms. Finally, molecular docking between the main active ingredients and key targets was conducted in SYBYL-X 2.0. The methyl thiazolyl tetrazolium(MTT) assay was employed to evaluate the inhibitory effects of NWXF and/or GEF on the proliferation of human non-small cell lung cancer cells(A549 and PC-9). Additionally, the impact of NWXF on human embryonic lung fibroblast cells(MRC-5) was assessed. The effectiveness of the drug combination was evaluated based on the Q value. The terminal-deoxynucleoitidyl transferase mediated nick-end labeling(TUNEL) assay was employed to examine the apoptosis of A549 and PC-9 cells treated with NWXF and/or GEF. Quantitative real-time PCR(qRT-PCR) was employed to measure the mRNA levels of epidermal growth factor receptor(EGFR), c-Jun N-terminal kinase(JNK), and Bcl2-associated X protein(Bax) in the A549 and PC-9 cells treated with NWXF and/or GEF. Western blot was employed to determine the protein levels of EGFR, p-EGFR, JNK, p-JNK, and Bax in the A549 and PC-9 cells treated with NWXF and/or GEF. A total of 77 active components, 488 potential targets, and 49 key targets involved in the treatment of NSCLC with NWXF were predicted. The results of GO annotation showed that NWXF may treat NSCLC by regulating the biological processes such as cell proliferation, apoptosis, and protein phosphorylation. KEGG enrichment revealed that the key targets of NWXF in treating NSCLC were enriched in the mitogen-activated protein kinase(MAPK), phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT), hypoxia-inducible factor-1(HIF-1), and microRNA-related signaling pathways. Molecular docking results showed that 91.9% of the docking scores were greater than 5, indicating the strong binding capability between main active components and key targets. The cell experiments demonstrated that NWXF combined with GEF synergistically inhibited the proliferation, promoted the apoptosis, decreased p-EGFR/EGFR and p-JNK/JNK values, down-regulated the mRNA levels of EGFR and JNK, and up-regulated the mRNA and protein levels of Bax in A549 and PC-9 cells. In conclusion, NWXF combined with GEF can regulate the EGFR/JNK pathway to promote the apoptosis of NSCLC cells, thus treating NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Gefitinibe/farmacologia , 1-Butanol , Proteína X Associada a bcl-2 , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB , RNA Mensageiro , Medicamentos de Ervas Chinesas/farmacologia
6.
J Microbiol Biotechnol ; 34(1): 94-102, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282409

RESUMO

Plants contain a large number of phytochemical components, many of which are known as bioactive compounds and responsible for the expression of various pharmacological activities. The extract of Sonneratia caseolaris fruit collected in Vietnam was investigated for its total phenolic and total flavonoid contents using methanol solvent and different fractions of S. caseolaris fruits (hexane, ethyl acetate, n-butanol, and aqueous). GC-MS analysis was conducted to identify the bioactive chemical constituents occurring in the active extract. Further, the antibacterial activity was tested in vitro on bacterial isolates, namely Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, using the disc diffusion method on tryptic soya agar (TSA) medium. The methanol extract showed high total flavonoid (82.3 ± 0.41 mg QE/g extract) and phenolic (41.0 ± 0.34 mg GAE/g extract) content. GC-MS of the methanol extract and different fractions of S. caseolaris fruits detected 20 compounds, principally fatty alcohols, fatty acids, phenols, lipids, terpenes derivatives, and carboxylic acids derivatives. A 50 mg/ml concentration of methanol extract had the strongest antibacterial activity on E. coli, S. aureus, and B. subtilis. Furthermore, ethyl acetate, aqueous, and n-butanol fractions inhibited S. aureus and B. subtilis the most. The results of the present study suggested that the fruits of S. caseolaris are rich sources of phenolic compounds that can contribute to safe and cost-effective treatments.


Assuntos
Acetatos , Frutas , Polifenóis , Polifenóis/análise , Polifenóis/farmacologia , Frutas/química , Extratos Vegetais/química , Metanol/química , Cromatografia Gasosa-Espectrometria de Massas , Staphylococcus aureus , Vietnã , 1-Butanol/farmacologia , Escherichia coli , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Antibacterianos/análise , Fenóis/farmacologia , Flavonoides/farmacologia
7.
Fitoterapia ; 173: 105825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219843

RESUMO

Vulvovaginal candidiasis (VVC) caused by Candida glabrata (C. glabrata) is more persistent and resistant to treatment than when caused by Candida albicans (C. albicans) and has been on the rise in recent years. The n-butanol extract of Pulsatilla Decoction (BEPD) has been shown to be effective in treating VVC caused by C. glabrata, but the underlying mechanism of action remains unclear. In this study, the experimenter conducted in vitro and in vivo experiments to explore the effects of BEPD on the virulence factors of C. glabrata, as well as its efficacy, with a focus on possible immunological mechanism in VVC caused by C. glabrata. The contents of Anemoside B4, Epiberberine, Berberine, Aesculin, Aesculetin, Phellodendrine and Jatrorrhizine in BEPD, detected by high-performance liquid chromatography, were 31,736.64, 13,529.66, 105,143.72, 19,406.20, 4952.67, 10,317.03, 2489.93 µg/g, respectively. In vitro experiments indicated that BEPD moderately inhibited the growth of C. glabrata, its adhesion, and biofilm formation, and affected the expression of efflux transporters in the biofilm state. In vivo experiments demonstrated that BEPD significantly reduced vaginal inflammatory manifestation and the release of proinflammatory cytokines and LDH in mice with VVC caused by C. glabrata. Moreover, it inhibited the Phosphorylation of EGFR, ERK, P38, P65, and C-Fos proteins. The results suggested that although BEPD moderately inhibits the growth and virulence factors of C. glabrata in vitro, it can significantly reduce vaginal inflammation by down-regulating the EGFR/MAPK signaling pathway in mice with VVC infected by C. glabrata.


Assuntos
Candidíase Vulvovaginal , Pulsatilla , Feminino , Humanos , Animais , Camundongos , Candidíase Vulvovaginal/tratamento farmacológico , Candida glabrata , 1-Butanol/farmacologia , Fatores de Virulência/farmacologia , Butanóis/farmacologia , Vagina , Estrutura Molecular , Candida albicans , Extratos Vegetais/farmacologia , Receptores ErbB/farmacologia , Antifúngicos/farmacologia
8.
Biomed Chromatogr ; 38(3): e5809, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38109869

RESUMO

Polygonum cognatum Meisn. (Polygonaceae) is used both as food and as a folk medicine to treat diabetes. This study aimed to evaluate the effect of the extracts, along with isolated compounds, from P. cognatum aerial parts on diabetes. In vitro studies were conducted using an α-glucosidase inhibitory assay, while in vivo antidiabetic studies were carried out on streptozotocin-induced diabetic rats. Effective extracts were subjected to isolation studies, and structures of the compounds were elucidated by spectroscopic methods. The ethyl acetate and n-butanol extracts had the highest effect in both in vitro and in vivo experiments. They also decreased aspartate transaminase, alanine transaminase and malondialdehyde levels, while increasing glutathione and superoxide dismutase activity in rats. From the active extracts, 11 phenolic compounds were isolated and characterized. Among the isolated compounds, quercetin was found to be the most active according to α-glucosidase inhibitory activity studies. This study provided scientific evidence for the traditional use of P. cognatum as a folk medicine for treating diabetes. The findings suggest that the ethyl acetate and n-butanol extracts, as well as quercetin, have the potential for development as antidiabetic agents.


Assuntos
Acetatos , Diabetes Mellitus Experimental , Polygonum , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antioxidantes/farmacologia , Polygonum/química , Diabetes Mellitus Experimental/tratamento farmacológico , Quercetina , 1-Butanol , alfa-Glucosidases , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia
9.
Int J Pharm ; 647: 123507, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37848166

RESUMO

In the present study, various surfactants were combined with insulin (INS), bovine serum albumin (BSA) and horseradish peroxidase (HRP) via hydrophobic ion pairing to increase lipophilicity and facilitate incorporation into self-emulsifying drug delivery systems (SEDDS). Lipophilicity of model proteins was successfully increased, achieving log Dn-butanol/water values up to 3.5 (INS), 3.2 (BSA) and 1.2 (HRP). Hereby, key factors responsible for complex formation were identified. In particular, surfactants with branched alkyl chains or chain lengths greater than C12 showed favorable properties for hydrophobic ion pairs (HIP). Furthermore, flexibility of the carbon chain resulted in higher lipophilicity and suitability of polar head groups of surfactants for HIP decreased in the rank order sulfonate > sulfosuccinate > phosphate = sulfate > carbonate > phosphonic acids = sulfobetaines. Stability studies of formed HIP complexes were performed in various gastrointestinal fluids and their solubility was determined in commonly used SEDDS excipients. Formed complexes were stable in simulated gastrointestinal fluids and could be incorporated into SEDDS formulations (C1: 10% caprylocaproyl polyoxyl-8 glycerides, 20% PEG-40 hydrogenated castor oil, 20% medium-chain triglycerides, 50% n-butanol; C2: 10% caprylocaproyl polyoxyl-8 glycerides, 20% PEG-40 hydrogenated castor oil, 20% medium-chain triglycerides, 40% n-butanol, 10% 1,2-butanediol), resulting in suitable payloads of up to 11.9 mg/ml for INS, 1.0 mg/ml for BSA and 1.6 mg/ml for HRP.


Assuntos
1-Butanol , Óleo de Rícino , Emulsões/química , Tensoativos/química , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Soroalbumina Bovina/química , Glicerídeos/química , Insulina/química , Triglicerídeos
10.
World J Microbiol Biotechnol ; 39(12): 345, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843704

RESUMO

Macroalgae has the potential to be a precious resource in food, pharmaceutical, and nutraceutical industries. Therefore, the present study was carried out to identify and quantify the phyco-chemicals and to assess the nutritional profile, antimicrobial, antioxidant, and anti-diabetic properties of Nitella hyalina extracts. Nutritional composition revealed0.05 ± 2.40% ash content, followed by crude protein (24.66 ± 0.95%), crude fat (17.66 ± 1.42%), crude fiber (2.17 ± 0.91%), moisture content (15.46 ± 0.48%) and calculated energy value (173.50 ± 2.90 Kcal/100 g). 23 compounds were identified through GC-MS analysis in ethyl acetate extract, with primary compounds being Palmitic acid, methyl ester, (Z)-9-Hexadecenoic acid, methyl ester, and Methyl tetra decanoate. Whereas 15 compounds were identified in n-butanol extract, with the major compounds being Tetra decanoic acid, 9-hexadecanoic acid, Methyl pentopyranoside, and undecane. FT-IR spectroscopy confirmed the presence of alcoholic phenol, saturated aliphatic compounds, lipids, carboxylic acid, carbonyl, aromatic components, amine, alkyl halides, alkene, and halogen compounds. Moreover, n-butanol contains 1.663 ± 0.768 mg GAE/g, of total phenolic contents (TPC,) and 2.050 ± 0.143 QE/g of total flavonoid contents (TFC), followed by ethyl acetate extract, i.e. 1.043 ± 0.961 mg GAE/g and 1.730 ± 0.311 mg QE/g respectively. Anti-radical scavenging effect in a range of 34.55-46.35% and 35.39-41.79% was measured for n-butanol and ethyl acetate extracts, respectively. Antimicrobial results declared that n-butanol extract had the highest growth inhibitory effect, followed by ethyl acetate extract. Pseudomonas aeruginosa was reported to be the most susceptible strain, followed by Staphylococcus aureus and Escherichia coli, while Candida albicans showed the least inhibition at all concentrations. In-vivo hypoglycemic study revealed that both extracts exhibited dose-dependent activity. Significant hypoglycemic activity was observed at a dose of 300 mg/kg- 1 after 6 h i.e. 241.50 ± 2.88, followed by doses of 200 and 100 mg/kg- 1 (245.17 ± 3.43 and 250.67 ± 7.45, respectively) for n-butanol extract. In conclusion, the macroalgae demonstrated potency concerning antioxidant, antimicrobial, and hypoglycemic properties.


Assuntos
Anti-Infecciosos , Nitella , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , 1-Butanol , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Ésteres
11.
Front Biosci (Landmark Ed) ; 28(8): 184, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37664939

RESUMO

BACKGROUND: A previously unstudied medicinal plant, Leucophyllum frutescens (Berland.) I.M. Johnst. (Scrophulariaceae) was investigated to evaluate its potential in preventing and treating neurodegenerative diseases, including Alzheimer's disease. METHODS: Methanolic leaf extract (MELE) and its fractions (HELE, CHLE, and BULE) were evaluated for their polyphenolic content and antioxidant activity by five different methods, including in vitro enzyme inhibition assays, which are clinically linked to neurodegenerative diseases. The potentially active n-butanol fraction (BULE) was further evaluated for its neuroprotective effects using an albino rat animal model and phytoconstituents profiling using Liquid chromatography with tandem mass spectrometry (LC-MS/MS), and in silico molecular docking by Maestro® Schrödinger. RESULTS: The n-butanol fraction (BULE) in the hydroalcoholic leaf extract exhibited the highest total phenolic content (230.435 ± 1.575 mg gallic acid equivalent gm-1± SD). The chloroform leaf extract exhibited the highest total flavonoid content (293.343 ± 3.756 mg quercetin equivalent gm-1± SD) as well as the highest antioxidant content, which was equivalent to Trolox, with five assay methods. Similarly, the chloroform and n-butanol fractions from the hydroalcoholic leaf extract significantly inhibited human acetylcholinesterase and butyrylcholinesterase with their IC50 values of 12.14 ± 0.85 and 129.73 ± 1.14 µg∙mL-1, respectively. The in vivo study revealed that BULE exhibited a significant neuroprotective effect at doses of 200 and 400 mg/kg/day in an aluminum chloride-induced neurodegenerative albino rat model. The LC-MS/MS analysis of BULE tentatively confirmed the presence of biologically active secondary metabolites, such as theobromine, propyl gallate, quercetin-3-O-glucoside, myricetin-3-acetylrhamnoside, isoquercitrin-6'-O-malonate, diosmetin-7-O-glucuronide-3'-O-pentose, pinoresinol diglucoside, asarinin, eridictoyl, epigallocatechin, methyl gallate derivative, and eudesmin. The results from the computational molecular docking of the identified secondary metabolites revealed that diosmetin-7-O-glucuronide-3'-O-pentose had the highest binding affinity to human butyrylcholinesterase, while isoquercetin-6'-O-malonate had the highest to human acetylcholinesterase, and pinoresinol diglucoside to human salivary alpha-amylase. CONCLUSIONS: The present study concluded a need for further exploration into this medicinal plant, including the isolation of the bioactive compounds responsible for its neuroprotective effects.


Assuntos
Fármacos Neuroprotetores , Scrophulariaceae , Ratos , Animais , Humanos , Antioxidantes/farmacologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase , Cloreto de Alumínio , Butirilcolinesterase , 1-Butanol , Clorofórmio , Cromatografia Líquida , Glucuronídeos , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Hipocampo , Extratos Vegetais/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-37619519

RESUMO

Vaccariae Semen, derived from the dried ripe seed of Vaccaria segetalis (Neck.) Garcke, has various therapeutic characteristics in traditional Chinese medicine (TCM), containing promoting blood circulation and unblocking meridians. It exhibits significant anti-cancer activity and is therapeutically utilized to treat and reduce chemotherapy adverse effects in cancer patients, notably those with lung cancer. However, the active ingredients responsible for its anti-lung cancer efficacy remain unknown. In this study, we used A549 cell fishing in conjunction with UHPLC-LTQ Orbitrap MS to screen for anti-lung cancer active components in Vaccariae Semen. The cell counting Kit-8 (CCK-8) assay revealed that the n-butanol extract substantially reduced A549 cell growth. Through the cell fishing assay, we found 14 A549 cell-binding compounds in the n-butanol extract, all of which were identified as triterpenoid saponins. The total saponins of Vaccariae Semen were subsequently purified using macroporous adsorption resin (MAR), and they showed a significant inhibitory effect on the proliferation of A549 lung cancer cells, as well as alterations in cell morphology, apoptosis, and fragmentation. In conclusion, saponins were discovered as the key active components responsible for the anti-lung cancer activity of Vaccariae Semen.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , 1-Butanol , Células A549 , Cromatografia Líquida de Alta Pressão , Neoplasias Pulmonares/tratamento farmacológico , Sementes
13.
Sci Total Environ ; 902: 166014, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541498

RESUMO

Waste plant resource provides a new sustainable feedstock for the biolubricant, and purification of the effective components in biomass oil is vital to improve the performance of biolubricant. In this work, the crude extract of the aerial part of Codonopsis pilosula was divided into four different parts by petroleum ether, ethyl acetate, n-butanol and water, respectively. Their thermal stability, lubricating performances and mechanisms have been systematically investigated. In the four extracts, the petroleum ether extract displays the best thermal stability and lubricating performance over the entire test conditions, and other three extracts are confronted with lubrication failure at high loads and elevated temperatures. Triterpenoid saponin, typical for n-butanol extract exhibit the best lubricity at room temperature, followed by the fatty acid derivatives as phosphatidylcholine; flavonoid, and sugar exhibit poor lubricity. At high temperature, only the petroleum ether extract retains the good lubricity.


Assuntos
Codonopsis , Lubrificação , 1-Butanol , Extratos Vegetais
14.
J Food Sci ; 88(9): 3649-3665, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477272

RESUMO

Plant constituents are of great interest in the food processing industry as potential natural preservative agents for controlling foodborne pathogens. In this study, the 95% EtOH/H2 O extract of Ginkgo biloba leaves was separated using polarity extraction solvents with petroleum ether (PE), ethyl acetate (EA), n-butanol (nB), and water (W) by the principle of similarity and compatibility. Through TLC and NMR analysis of these extracts, it can be concluded that the main component of PE extract were organic acids, for EA extract were flavonoids, for nB extract were phenylpropanoids, and water extract were oligosaccharides. Twelve monomer compounds were separated from the extracts to verify the composition of each extraction stage. Results of morphological and molecular identification revealed that Monilinia fructicola and Rhizopus stolonifer were the main fungi causing peach rot. After evaluating the antifungal activity and peach quality of the four extract/sodium alginate coatings, it was found that the n-butanol extract/sodium alginate coating containing phenylpropanoids had the lowest decay index and the best preservation effect, providing a sustainable alternative to reduce the harm to the environment of synthetic preservatives. PRACTICAL APPLICATION: The abuse of synthetic preservatives poses a threat to the ecological environment and physical health. Therefore, this study developed sodium alginate coating of Ginkgo biloba leaves extract containing phenylpropanoids, which has good effects on the preservation of peaches. The agent is a promising environmentally friendly alternative for synthetic preservatives.


Assuntos
Ginkgo biloba , Prunus persica , Ginkgo biloba/química , Extratos Vegetais/química , Prunus persica/microbiologia , Alginatos/análise , Frutas/microbiologia , 1-Butanol/análise , Solventes , Água/análise , Folhas de Planta/química
15.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446686

RESUMO

In this study, we investigated in vitro the potential of Trichoderma harzianum to produce bioactive secondary metabolites that can be used as alternatives to synthetic compounds. The study focused on analyzing two extracts of T. harzianum using ethyl acetate and n-butanol solvents with different polarities. The extracts were examined using phytochemical analysis to determine the content of polyphenols, flavonoids, tannins, and alkaloids. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis were used to profile volatile organic metabolites (VOCs) present in the extracts. Furthermore, the extracts were tested for their antifungal ability using the poison food technique. For measuring antioxidant activity, the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) test was used. Trichoderma harzianum was shown to have a significantly high content of tannins and alkaloids, with a noticeable difference between the two extracts. GC-MS analysis identified 33 potential compounds with numerous benefits that could be used in agriculture and the medicinal industry. Moreover, strong antifungal activity was identified against Sclerotinia sclerotiorum by 94.44%, Alternaria sp. by 77.04%, and Fusarium solani by 51.48; similarly, the IC50 of antioxidant activity was estimated for ethyl acetate extract by 71.47% and n-butanol extract by 56.01%. This leads to the conclusion that Trichoderma harzianum VOCs play a significant role as an antifungal and antioxidant agent when taking into account the advantageous bioactive chemicals noted in the extracts. However, to our knowledge, this is the first study in Algeria presenting detailed phytochemical analysis and GC-MS profiling of Trichoderma harzianum for two extracts, ethyl acetate and n-butanol.


Assuntos
Antifúngicos , Trichoderma , Antifúngicos/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , 1-Butanol , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo , Taninos/metabolismo , Extratos Vegetais/química , Trichoderma/metabolismo
16.
J Ethnopharmacol ; 316: 116689, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37315642

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine has accumulated valuable experience in the treatment of inflammatory diseases caused by Ferroptosis. Jing Jie and Fang Feng are two warm acrid exterior-resolving medicinal herbs that play an important role in the prevention and treatment of inflammatory diseases. The pairing of the two forms a drug pair (Jing-Fang) that shows significant advantages in fighting oxidative stress and inflammation. Whereas, the underlying mechanism needs to be further improved. AIM OF THE STUDY: In this study, the anti-inflammatory effect of Jing-Fang n-butanol extract (JFNE) and its isolate C (JFNE-C) on LPS-induced RAW264.7 cells and the regulation effect on ferroptosis were investigated, and also the mechanism of STAT3/p53/SLC7A11 signal pathway-related to ferroptosis. MATERIALS AND METHODS: Jing-Fang n-butanol extract (JFNE) and its active isolate (JFNE-C) were extracted and isolated. LPS-induced inflammation model in RAW264.7 cells was established to assess the anti-inflammatory effect and ferroptosis mechanism of JFNE and JFNE-C. The levels of interleukin 6 (IL-6), interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were measured. The activity levels of antioxidant substances such as glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were measured. Flow cytometry, immunofluorescence and transmission electron microscopy were used to assess ROS level, ferrous iron content and mitochondrial morphological changes. Through administration of Ferrostatin-1 (Fer-1), an ferroptosis inhibitor, to verify the role of JFNE and JFNE-C in regulating ferroptosis in resistance to the inflammatory response. Western blotting was used to determine whether the JFNE and JFNE-C exerted effectiveness by modulating the STAT3/p53/SLC7A11 signaling pathway. In addition, the important role of STAT3/p53/SLC7A11 signaling pathway in drug regulation of ferroptosis and inflammatory response was further validated by administration of S3I-201 (STAT3 inhibitor). Finally, high performance liquid chromatography-mass spectrometry (HPLC-MS) was used to determine the major active components of JFNE and JFNE-C. RESULTS: The results showed that treated with JFNE-C significantly reduced the contents of interleukin 6 (IL-6), interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) in the supernatant of LPS-induced RAW264.7 cells. The pretreatment with JFNE and JFNE-C significantly decreased intracellular oxidative stress levels, including reductions of ROS and MDA levels, and increases of GSH-Px, SOD and GSH levels. In addition, JFNE and JFNE-C obviously reduced intracellular ferrous iron level, and JFNE-C was effective in alleviating mitochondrial damage which includes mitochondrial shrinkage, increase of mitochondrial membrane density and reduction and absence of cristae. Further results indicated that JFNE-C showed a reduction of p53 and p-p53 protein levels in LPS-induced RAW264.7 cells, while significantly increasing the protein expression levels of STAT3, p-STAT3, SLC7A11 and GPX4. Besides, JFNE-C contains key active substances such as 5-O-Methylvisammioside, Hesperidin and Luteolin. Remarkably, this is different from JFNE, which is rich in nutrients such as sucrose, choline and various amino acids. CONCLUSION: These results suggest that JFNE and JFNE-C may exert anti-inflammatory effect through activating the STAT3/p53/SLC7A11 signaling pathway to inhibit ferroptosis.


Assuntos
1-Butanol , Ferroptose , Humanos , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Butanóis , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transdução de Sinais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Superóxido Dismutase/metabolismo
17.
PLoS One ; 18(6): e0287147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310979

RESUMO

OBJECTIVE: To identify the most effective fraction of Nanocnide lobata in the treatment of burn and scald injuries and determine its bioactive constituents. METHODS: Chemical identification methods were used to analyze solutions extracted from Nanocnide lobata using petroleum ether, ethyl acetate, n-butanol using a variety of color reactions. The chemical constituents of the extracts were identified by ultra-performance liquid chromatography (UPLC)-mass spectrometry (MS). A total of 60 female mice were randomly divided into the following 6 groups: the petroleum ether extract-treated group; the ethyl acetate extract-treated group; the n-butanol extract-treated group; the model group; the control group; and the positive drug group. The burn/scald model was established using Stevenson's method. At 24 hours after modeling, 0.1 g of the corresponding ointment was evenly applied to the wound in each group. Mice in the model group did not undergo treatment, while those in the control group received 0.1 g of Vaseline. Wound characteristics, including color, secretions, hardness, and swelling, were observed and recorded. Photos were taken and the wound area calculated on the 1st, 5th, 8th, 12th, 15th, 18th and 21st days. Hematoxylin-eosin (HE) staining was utilized to observe the wound tissue of mice on the 7th, 14th, and 21st days. An enzyme-linked immunosorbent assay (ELISA) kit was used to measure the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-10, vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-ß1. RESULTS: The chemical constituents of Nanocnide lobata mainly include volatile oils, coumarins, and lactones. UPLC-MS analysis revealed 39 main compounds in the Nanocnide lobata extract. Among them, ferulic acid, kaempferitrin, caffeic acid, and salicylic acid have been confirmed to exhibit anti-inflammatory and antioxidant activity related to the treatment of burns and scalds. HE staining revealed a gradual decrease in the number of inflammatory cells and healing of the wounds with increasing time after Nanocnide lobata extract administration. Compared with the model group, the petroleum ether extract-treated group showed significant differences in the levels of TNF-α (161.67±4.93, 106.33±3.21, 77.67±4.04 pg/mL) and IL-10 (291.77±4.93, 185.09±9.54, 141.33±1.53 pg/mL) on the 7th, 14th, and 21st days; a significant difference in the content of TGF-ß1 (75.68±3.06 pg/mL) on the 21st day; and a significant difference in the level of VEGF (266.67±4.73, 311.33±10.50 pg/mL) on the 7th and 14th days respectively. CONCLUSION: Petroleum ether Nanocnide lobata extract and the volatile oil compounds of Nanocnide lobata might be effective drugs in the treatment of burn and scald injuries, as they exhibited a protective effect on burns and scalds by reducing the expression of TNF-α, IL-10 and TGF-ß1 and increasing the expression of VEGF. In addition, these compounds may also exert pharmacological effects that promote wound tissue repair, accelerate wound healing, and reduce scar tissue proliferation, inflammation and pain.


Assuntos
Queimaduras , Interleucina-10 , Feminino , Animais , Camundongos , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular , 1-Butanol , Cromatografia Líquida , Fator de Necrose Tumoral alfa , Espectrometria de Massas em Tandem , Queimaduras/tratamento farmacológico
18.
Mar Drugs ; 21(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37233467

RESUMO

Seaweed has been known to possess beneficial effects forhuman health due to the presence of functional bioactive components. The n-butanol and ethyl acetate extracts of Dictyota dichotoma showed ash (31.78%), crude fat (18.93%), crude protein (14.5%), and carbohydrate (12.35%) contents. About 19 compounds were identified in the n-butanol extract, primarily undecane, cetylic acid, hexadecenoic acid, Z-11-, lageracetal, dodecane, and tridecane, whereas 25 compounds were identified in the ethyl acetate extract, mainly tetradecanoic, hexadecenoic acid, Z-11-, undecane, and myristic acid. FT-IR spectroscopy confirmed the presence of carboxylic acid, phenols, aromatics, ethers, amides, sulfonates, and ketones. Moreover, total phenolic contents (TPC) and total flavonoid contents (TFC) in ethyl acetate extract were 2.56 and 2.51 mg GAE/g and in n-butanol extract were 2.11 and 2.25 mg QE/g, respectively. Ethyl acetate and n-butanol extracts at a high concentration of 100 mg mL-1 showed 66.64 and 56.56 % inhibition of DPPH, respectively. Antimicrobial activity revealed that Candida albicans was the most susceptible microorganism, followed by Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, whereas Pseudomonas aeruginosa showed the least inhibition at all concentrations. The in vivo hypoglycemic study revealed that both extracts exhibited concentration-dependent hypoglycemic activities. In conclusion, this macroalgae exhibited antioxidant, antimicrobial, and hypoglycemic potentials.


Assuntos
Anti-Infecciosos , Phaeophyceae , Alga Marinha , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , 1-Butanol , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
19.
J Ethnopharmacol ; 314: 116631, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172920

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Eucalyptus maculata Hook from the Myrtaceae family is a native Australian plant that is frequently cultivated in Egypt. Many Eucalyptus species, including E. maculata, were widely used by the Dharawal, the indigenous Australian people, for their anti-inflammatory properties. AIM OF THE STUDY: The purpose of this study was to determine the anti-inflammatory activity of the ethanol extract of E. maculata resin exudate, its methylene chloride and n-butanol fractions, as well as the isolated compounds. MATERIALS AND METHODS: the ethanol extract was partitioned by methylene chloride, and n-butanol saturated with water. The fractions were chromatographed to isolate pure compounds. In-vivo anti-inflammatory activity of the ethanol extract, the fractions at a dose of 200 mg/kg, and the isolated compounds (20 mg/kg) was estimated using carrageenan-induced rat paws edema method against indomethacin (20 mg/kg). The activity was supported by histopathological and biochemical parameters. RESULTS: Three isolated compounds were identified as aromadendrin (C1), 7-O-methyl aromadendrin (C2), and naringenin (C3). Our findings demonstrated that the tested fractions significantly reduced the paw edema starting from the 3rd to the 5th hour as compared to the positive control, compounds C2 and C3 showed the greatest significant reduction in paw edema. The ethanol extract, fractions, C2, and C3 demonstrated an anti-inflammatory potential through reducing the levels of TNF-α, IL-6, and PGE2, as well as COX-2 protein expression compared to the negative control. These results were supported by molecular docking, which revealed that the isolated compounds had high affinity to target COX-1 and COX-2 active sites with docking scores ranging from -7.3 to -9.6 kcal mol-1 when compared to ibubrofen (-7.8 and -7.4 kcal mol-1, respectively). Molecular dynamics simulations were also performed and confirmed the docking results. CONCLUSION: The results supported the traditional anti-inflammatory potency of E. maculata Hook, and the biochemical mechanisms underlying this activity were highlighted, opening up new paths for the development of potent herbal anti-inflammatory medicine. Finally, our findings revealed that E. maculata resin constituents could be considered as promising anti-inflammatory drug candidates.


Assuntos
Eucalyptus , Myrtaceae , Ratos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Ciclo-Oxigenase 2/genética , Simulação de Acoplamento Molecular , 1-Butanol , Cloreto de Metileno/efeitos adversos , Ratos Sprague-Dawley , Austrália , Carragenina , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Etanol/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Expressão Gênica
20.
Steroids ; 196: 109245, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37141980

RESUMO

Cassia occidentalis L., from Fabaceae family phytochemical screening, revealed several biologically active principles mainly flavonoids and anthraquinones. GLC analysis of the lipoidal matter afforded 12 hydrocarbons: 9-dodecyl-tetradecahydro-anthracene (48.97 %), 9-dodecyl-tetradecahydro-phenanthrene (14.43 %), and 6 sterols/triterpenes: isojaspisterol (11.99%) and fatty acids were palmitic acid (50 %), and Linoleic acid (16.06%). Column chromatography led to the isolation of fifteen compounds (1-15), elucidated using spectroscopic evidence. First report of undecanoic acid (4) from the family Fabaceae, while p-dimethyl amino-benzaldehyde (15) was first time isolated from a natural origin. Eight compounds isolated for the first time from C. occidentalis L.; ß-amyrin (1), ß-sitosterol (2), stigmasterol (3), camphor (5), lupeol (6), chrysin (7), pectolinargenin (8), and 1, 2, 5-trihydroxy anthraquinone (14) besides five known compounds previously isolated; apigenin (9), kaempferol (10), chrysophanol (11), physcion (12), and aloe-emodin (13). In-vivo evaluation of anti-inflammatory and analgesic effects of C. occidentalis L. extracts where the n-butanol and total extracts showed the highest activities. The percentage of the inhibitory effect of the n-butanol extract was 29.7 at a dose of 400 mg/Kg. Furthermore, identified phytoconstituents were docked into the active sites of enzymes nAChRs, COX-1, and COX-2 to evaluate binding affinity. Phyto-compounds Physcion, aloe-emodin, and chrysophanol were found to have a good affinity for targeted receptors compared to co-crystalized inhibitors, validating the analgesic and anti-inflammatory effects of the phytochemicals.


Assuntos
Emodina , Senna , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Senna/química , 1-Butanol , Egito , Antraquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Analgésicos/farmacologia , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA