Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; 17(15): 1055-1075, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066036

RESUMO

Aim: To formulate and assess the oral anti-obesity effect of polymeric-based pterostilbene (PS)-loaded nanoparticles. Methods: Pterostilbene-hydroxypropyl ß-cyclodextrin inclusion complex loaded in chitosan nanoparticles (PS/HPßCD-NPs) were prepared and characterized in vitro. Cytotoxicity, pharmacokinetics and anti-obesity effects were assessed on Caco-2 cell line and high-fat-diet-induced obesity rat model, respectively. In vivo assessment included histological examination, protein and gene expression of obesity biomarkers in adipose tissues. Results: Safe PS/HPßCD-NPs were successfully prepared with improved bioavailability compared with free PS. PS/HPßCD-NPs showed an improved anti-obesity effect, as supported by histological examination, lipid profile, UCP1 gene expression and protein expression of SIRT1, COX2, IL-6 and leptin. Conclusion: Orally administered PS nanoparticles represent a new and promising anti-obesity strategy owing to the sustainable weight loss and minimal side effects; this may be of great socio-economic impact.


Weight gain or obesity represents a major health risk and leads to diseases including cancer and heart disease. Most anti-obesity medications have significant side effects, and there are notable challenges concerning their availability in the body to produce an effect. Pterostilbene is a herbal drug with beneficial anti-obesity effects. However, it has problems such as poor solubility which restrict its use. The aim of the study was to formulate pterostilbene in a nano-based delivery system and fully characterize its anti-obesity effect when given orally. We evaluated the safety and anti-obesity effects of pterostilbene nanoparticles in cells and in obese rats fed on a high-fat diet. We also looked at how the body absorbs, distributes and gets rid of these nanoparticles. The prepared nanoparticles were nontoxic, with an improved anti-obesity effect; they decreased cholesterol levels and helped in changing white fat (which stores fat) to brown fat (which burns calories). We conclude that the developed pterostilbene nanoparticles, given orally, are a new and promising anti-obesity strategy given their long-lasting effect on weight loss and the minimal side effects. This may be of great economic and societal impact.


Assuntos
Quitosana , Nanopartículas , Animais , Ratos , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Células CACO-2 , Ciclo-Oxigenase 2 , Suplementos Nutricionais , Interleucina-6 , Leptina/genética , Leptina/uso terapêutico , Lipídeos/uso terapêutico , Obesidade/tratamento farmacológico , Sirtuína 1/uso terapêutico
2.
Circulation ; 142(5): 483-498, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32354235

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a severe aortic disease with a high mortality rate in the event of rupture. Pharmacological therapy is needed to inhibit AAA expansion and prevent aneurysm rupture. Transcription factor EB (TFEB), a master regulator of autophagy and lysosome biogenesis, is critical to maintain cell homeostasis. In this study, we aim to investigate the role of vascular smooth muscle cell (VSMC) TFEB in the development of AAA and establish TFEB as a novel target to treat AAA. METHODS: The expression of TFEB was measured in human and mouse aortic aneurysm samples. We used loss/gain-of-function approaches to understand the role of TFEB in VSMC survival and explored the underlying mechanisms through transcriptome and functional studies. Using VSMC-selective Tfeb knockout mice and different mouse AAA models, we determined the role of VSMC TFEB and a TFEB activator in AAA in vivo. RESULTS: We found that TFEB is downregulated in both human and mouse aortic aneurysm lesions. TFEB potently inhibits apoptosis in VSMCs, and transcriptome analysis revealed that TFEB regulates apoptotic signaling pathways, especially apoptosis inhibitor B-cell lymphoma 2. B-cell lymphoma 2 is significantly upregulated by TFEB and is required for TFEB to inhibit VSMC apoptosis. We consistently observed that TFEB deficiency increases VSMC apoptosis and promotes AAA formation in different mouse AAA models. Furthermore, we demonstrated that 2-hydroxypropyl-ß-cyclodextrin, a clinical agent used to enhance the solubility of drugs, activates TFEB and inhibits AAA formation and progression in mice. Last, we found that 2-hydroxypropyl-ß-cyclodextrin inhibits AAA in a VSMC TFEB-dependent manner in mouse models. CONCLUSIONS: Our study demonstrated that TFEB protects against VSMC apoptosis and AAA. TFEB activation by 2-hydroxypropyl-ß-cyclodextrin may be a promising therapeutic strategy for the prevention and treatment of AAA.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Aneurisma da Aorta Abdominal/prevenção & controle , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Modelos Animais de Doenças , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Aminopropionitrilo/toxicidade , Aneurisma Roto/etiologia , Angiotensina II/toxicidade , Animais , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Apoptose/efeitos dos fármacos , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/deficiência , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Colesterol/metabolismo , Regulação para Baixo , Avaliação Pré-Clínica de Medicamentos , Mutação com Ganho de Função , Regulação da Expressão Gênica , Vetores Genéticos/toxicidade , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Transcriptoma/efeitos dos fármacos
3.
Lipids Health Dis ; 18(1): 146, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31248418

RESUMO

BACKGROUND: Niemann-Pick disease type C1 (NPC1) is an autosomal-recessive lipid-storage disorder with an estimated minimal incidence of 1/120,000 live births. Besides other neuronal and visceral symptoms, NPC1 patients develop spleen dysfunction, isolated spleno- or hepatosplenomegaly and infections. The mechanisms of splenomegaly and alterations of lipid metabolism-related genes in NPC1 disease are still poorly understood. METHODS: Here, we used an NPC1 mouse model to study a splenoprotective effect of a treatment with miglustat, 2-hydroxypropyl-ß-cyclodextrin and allopregnanolone and showed that this treatment has a positive effect on spleen morphology and lipid metabolism. RESULTS: Disease progress can be halted and blocked at the molecular level. Mutant Npc1 (Npc1-/-) mice showed increased spleen weight and increased lipid accumulation that could be avoided by our treatment. Also, FACS analyses showed that the increased number of splenic myeloid cells in Npc1-/- mice was normalized by the treatment. Treated Npc1-/- mice showed decreased numbers of cytotoxic T cells and increased numbers of T helper cells. CONCLUSIONS: In summary, the treatment promotes normal spleen morphology, stabilization of lipid homeostasis and blocking of inflammation, but alters the composition of T cell subtypes.


Assuntos
1-Desoxinojirimicina/análogos & derivados , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Pregnanolona/uso terapêutico , Baço/metabolismo , 1-Desoxinojirimicina/uso terapêutico , Animais , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Genótipo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Doença de Niemann-Pick Tipo C , Baço/efeitos dos fármacos
4.
Naunyn Schmiedebergs Arch Pharmacol ; 392(5): 573-583, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30613838

RESUMO

Herein, it was investigated whether a complex of lidocaine with 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) would present a better antinociceptive profile in vivo when compared with plain lidocaine in models of orofacial pain. Plain lidocaine (LDC) and complexed lidocaine (LDC:HP-ß-CD) were initially evaluated in vitro to determine the release rate of the two formulations. Subsequently, the effect of both formulations was evaluated in independent groups of rats submitted to the orofacial formalin test, induction of facial heat hyperalgesia by capsaicin and carrageenan, and induction of facial heat and mechanical hyperalgesia by constriction of the infraorbital nerve. LDC:HP-ß-CD led to a reduction in the lidocaine release assessed in the in vitro release assay compared to plain LDC. Both formulations presented an antinociceptive effect in all models, but LDC:HP-ß-CD showed a better effect in the second phase of the formalin response, in carrageenan-induced heat hyperalgesia, and in the heat hyperalgesia associated to infraorbital nerve constriction. Our results show that complexation improved in vivo antinociceptive effects of LDC, but further studies are necessary to elucidate what properties contribute to the better effect of the complexed formulation on this models and/or what characteristics of the pain model facilitate the action of the complexed formulation.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Hiperalgesia/tratamento farmacológico , Lidocaína/uso terapêutico , Dor/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/química , Analgésicos , Animais , Capsaicina , Carragenina , Modelos Animais de Doenças , Formaldeído , Temperatura Alta , Lidocaína/química , Masculino , Ratos Wistar
5.
PLoS One ; 13(7): e0199012, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29965997

RESUMO

Most breast cancer deaths are caused by metastasis and treatment options beyond radiation and cytotoxic drugs, which have severe side effects, and hormonal treatments, which are or become ineffective for many patients, are urgently needed. This study reanalyzed existing data from three genome-wide association studies (GWAS) using a novel computational biostatistics approach (muGWAS), which had been validated in studies of 600-2000 subjects in epilepsy and autism. MuGWAS jointly analyzes several neighboring single nucleotide polymorphisms while incorporating knowledge about genetics of heritable diseases into the statistical method and about GWAS into the rules for determining adaptive genome-wide significance. Results from three independent GWAS of 1000-2000 subjects each, which were made available under the National Institute of Health's "Up For A Challenge" (U4C) project, not only confirmed cell-cycle control and receptor/AKT signaling, but, for the first time in breast cancer GWAS, also consistently identified many genes involved in endo-/exocytosis (EEC), most of which had already been observed in functional and expression studies of breast cancer. In particular, the findings include genes that translocate (ATP8A1, ATP8B1, ANO4, ABCA1) and metabolize (AGPAT3, AGPAT4, DGKQ, LPPR1) phospholipids entering the phosphatidylinositol cycle, which controls EEC. These novel findings suggest scavenging phospholipids as a novel intervention to control local spread of cancer, packaging of exosomes (which prepare distant microenvironment for organ-specific metastases), and endocytosis of ß1 integrins (which are required for spread of metastatic phenotype and mesenchymal migration of tumor cells). Beta-cyclodextrins (ßCD) have already been shown to be effective in in vitro and animal studies of breast cancer, but exhibits cholesterol-related ototoxicity. The smaller alpha-cyclodextrins (αCD) also scavenges phospholipids, but cannot fit cholesterol. An in-vitro study presented here confirms hydroxypropyl (HP)-αCD to be twice as effective as HPßCD against migration of human cells of both receptor negative and estrogen-receptor positive breast cancer. If the previous successful animal studies with ßCDs are replicated with the safer and more effective αCDs, clinical trials of adjuvant treatment with αCDs are warranted. Ultimately, all breast cancer are expected to benefit from treatment with HPαCD, but women with triple-negative breast cancer (TNBC) will benefit most, because they have fewer treatment options and their cancer advances more aggressively.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Endocitose/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , alfa-Ciclodextrinas/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Transportador 1 de Cassete de Ligação de ATP/genética , Aciltransferases/genética , Adenosina Trifosfatases/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Transferência de Fosfolipídeos/genética , Monoéster Fosfórico Hidrolases/genética , Polimorfismo de Nucleotídeo Único/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , alfa-Ciclodextrinas/metabolismo
6.
Int J Mol Sci ; 19(4)2018 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29587349

RESUMO

Niemann-Pick-disease type C1 (NPC1) is an autosomal-recessive cholesterol-storage disorder. Besides other symptoms, NPC1 patients develop liver dysfunction and hepatosplenomegaly. The mechanisms of hepatomegaly and alterations of lipid metabolism-related genes in NPC1 disease are still poorly understood. Here, we used an NPC1 mouse model to study an additive hepatoprotective effect of a combination of 2-hydroxypropyl-ß-cyclodextrin (HPßCD), miglustat and allopregnanolone (combination therapy) with the previously established monotherapy using HPßCD. We examined transgene effects as well as treatment effects on liver morphology and hepatic lipid metabolism, focusing on hepatic cholesterol transporter genes. Livers of Npc1-/- mice showed hepatic cholesterol sequestration with consecutive liver injury, an increase of lipogenetic gene expression, e.g., HMG-CoA, a decrease of lipolytic gene expression, e.g., pparα and acox1, and a decrease of lipid transporter gene expression, e.g., acat1, abca1 and fatp2. Both, combination therapy and monotherapy, led to a reduction of hepatic lipids and an amelioration of NPC1 liver disease symptoms. Monotherapy effects were related to pparα- and acox1-associated lipolysis/ß-oxidation and to fatp2-induced fatty acid transport, whereas the combination therapy additionally increased the cholesterol transport via abca1 and apoE. However, HPßCD monotherapy additionally increased cholesterol synthesis as indicated by a marked increase of the HMG-CoA and srebp-2 mRNA expression, probably as a result of increased hepatocellular proliferation.


Assuntos
1-Desoxinojirimicina/análogos & derivados , 2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Hepatomegalia/tratamento farmacológico , Hepatomegalia/etiologia , Fígado/patologia , Doença de Niemann-Pick Tipo C/complicações , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Pregnanolona/administração & dosagem , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Animais , Colesterol/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Pregnanolona/uso terapêutico , Proteínas/genética , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA