Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Commun ; 15(1): 1659, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395953

RESUMO

Selenium is an essential multifunctional trace element in diverse organisms. The only Se-glycosyltransferase identified that catalyzes the incorporation of selenium in selenoneine biosynthesis is SenB from Variovorax paradoxus. Although the biochemical function of SenB has been investigated, its substrate specificity, structure, and catalytic mechanism have not been elucidated. Here, we reveal that SenB exhibits sugar donor promiscuity and can utilize six UDP-sugars to generate selenosugars. We report crystal structures of SenB complexed with different UDP-sugars. The key elements N20/T23/E231 contribute to the sugar donor selectivity of SenB. A proposed catalytic mechanism is tested by structure-guided mutagenesis, revealing that SenB yields selenosugars by forming C-Se glycosidic bonds via spontaneous deprotonation and disrupting Se-P bonds by nucleophilic water attack, which is initiated by the critical residue K158. Furthermore, we functionally and structurally characterize two other Se-glycosyltransferases, CbSenB from Comamonadaceae bacterium and RsSenB from Ramlibacter sp., which also exhibit sugar donor promiscuity.


Assuntos
Glicosiltransferases , Histidina/análogos & derivados , Compostos Organosselênicos , Selênio , Glicosiltransferases/metabolismo , Açúcares de Uridina Difosfato , Carboidratos , Açúcares , Especificidade por Substrato
2.
Plant Physiol Biochem ; 197: 107643, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36989989

RESUMO

Rhamnosyltransferase (RT) and rhamnose synthase (Rhs) are the key enzymes that are responsible for the biosynthesis of rhamnosides and UDP-l-rhamnose (UDP-Rha) in plants, respectively. How to discover such enzymes efficiently for use is still a problem to be solved. Here, we identified HmF3RT, HmRhs1, and HmRhs2 from Hypericum monogynum, which is abundant in flavonol rhamnosides, with the help of a full-length and high throughput transcriptome sequencing platform. HmF3RT could regiospecifically transfer the rhamnose moiety of UDP-Rha onto the 3-OH position of flavonols and has weakly catalytic for UDP-xylose (UDP-Xyl) and UDP-glucose (UDP-Glc). HmF3RT showed well quercetin substrate affinity and high catalytic efficiency with Km of 5.14 µM and kcat/Km of 2.21 × 105 S-1 M-1, respectively. Docking, dynamic simulation, and mutagenesis studies revealed that V129, D372, and N373 are critical residues for the activity and sugar donor recognition of HmF3RT, mutant V129A, and V129T greatly enhance the conversion rate of catalytic flavonol glucosides. HmRhs1 and HmRhs2 convert UDP-Glc to UDP-Rha, which could be further used by HmF3RT. The HmF3RT and HmRhs1 co-expressed strain RTS1 could produce quercetin 3-O-rhamnoside (quercitrin), kaempferol 3-O-rhamnoside (afzelin), and myricetin 3-O-rhamnoside (myricitrin) at yields of 85.1, 110.7, and 77.6 mg L-1, respectively. It would provide a valuable reference for establishing a better and more efficient biocatalyst for preparing bioactive flavonol rhamnosides by identifying HmF3RT and HmRhs.


Assuntos
Hypericum , Transferases , Flavonóis/metabolismo , Hypericum/enzimologia , Ramnose/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Transferases/química , Transferases/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3208-3214, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35851113

RESUMO

Uridine diphosphate rhamnose(UDP-Rha), a glycoside donor synthesized with the catalysis of rhamnose synthase(RHM), is one of the important elements in the synthesis of rhamnosides. In this study, we cloned a RHM gene from Citrus sinensis(CsRHM) and analyzed its bioinformatic information and functions in vitro. The results showed the gene consisted of an open reading frame of 2 007 bp encoding 668 amino acid residues. The deduced protein had a presumed molecular weight of 75.27 kDa, a theoretical isoelectric point of 6.97, and the characteristic signal sequences(GxxxGxxG/A and YxxxK) of the RHM family. Multiple sequence alignments and the phylogenetic tree demonstrated that CsRHM shared homology with other RHMs. The results of enzymatic reactions in vitro showed that the recombinant protein CsRHM catalyzed the conversion of UDP-Glu to UDP-Rha, with the kinetic parameters V_(max), K_m, K_(cat), and K_(cat)/K_m of 0.373 7 µmol·L~(-1)·min~(-1), 21.29 µmol·L~(-1), 0.24 s~(-1), and 1.13×10~4 s~(-1)·L·mol~(-1), respectively. This study is the first report about CsRHM with validated catalytic function in vitro, which provides a foundation for further research on the biosynthesis of UDP-Rha.


Assuntos
Citrus sinensis , Citrus sinensis/genética , Citrus sinensis/metabolismo , Clonagem Molecular , Filogenia , Ramnose/química , Ramnose/metabolismo , Açúcares de Uridina Difosfato
4.
Plant J ; 104(1): 252-267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32662159

RESUMO

Rhamnogalacturonan-II (RG-II) is structurally the most complex glycan in higher plants, containing 13 different sugars and 21 distinct glycosidic linkages. Two monomeric RG-II molecules can form an RG-II-borate diester dimer through the two apiosyl (Api) residues of side chain A to regulate cross-linking of pectin in the cell wall. But the relationship of Api biosynthesis and RG-II dimer is still unclear. In this study we investigated the two homologous UDP-D-apiose/UDP-D-xylose synthases (AXSs) in Arabidopsis thaliana that synthesize UDP-D-apiose (UDP-Api). Both AXSs are ubiquitously expressed, while AXS2 has higher overall expression than AXS1 in the tissues analyzed. The homozygous axs double mutant is lethal, while heterozygous axs1/+ axs2 and axs1 axs2/+ mutants display intermediate phenotypes. The axs1/+ axs2 mutant plants are unable to set seed and die. By contrast, the axs1 axs2/+ mutant plants exhibit loss of shoot and root apical dominance. UDP-Api content in axs1 axs2/+ mutants is decreased by 83%. The cell wall of axs1 axs2/+ mutant plants is thicker and contains less RG-II-borate complex than wild-type Col-0 plants. Taken together, these results provide direct evidence of the importance of AXSs for UDP-Api and RG-II-borate complex formation in plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Pectinas/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Pólen/metabolismo
5.
Molecules ; 24(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871023

RESUMO

Leishmaniasis is a neglected disease that is caused by different species of the protozoan parasite Leishmania, and it currently affects 12 million people worldwide. The antileishmanial therapeutic arsenal remains very limited in number and efficacy, and there is no vaccine for this parasitic disease. One pathway that has been genetically validated as an antileishmanial drug target is the biosynthesis of uridine diphosphate-glucose (UDP-Glc), and its direct derivative UDP-galactose (UDP-Gal). De novo biosynthesis of these two nucleotide sugars is controlled by the specific UDP-glucose pyrophosphorylase (UGP). Leishmania parasites additionally express a UDP-sugar pyrophosphorylase (USP) responsible for monosaccharides salvage that is able to generate both UDP-Gal and UDP-Glc. The inactivation of the two parasite pyrophosphorylases UGP and USP, results in parasite death. The present study reports on the identification of structurally diverse scaffolds for the development of USP inhibitors by fragment library screening. Based on this screening, we selected a small set of commercially available compounds, and identified molecules that inhibit both Leishmania major USP and UGP, with a half-maximal inhibitory concentration in the 100 µM range. The inhibitors were predicted to bind at allosteric regulation sites, which were validated by mutagenesis studies. This study sets the stage for the development of potent USP inhibitors.


Assuntos
Leishmania major/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , UTP-Glucose-1-Fosfato Uridililtransferase/antagonistas & inibidores , Técnicas Biossensoriais , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Simulação de Acoplamento Molecular , Açúcares de Uridina Difosfato
6.
J Biol Chem ; 293(49): 19047-19063, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30327429

RESUMO

Homogalacturonan (HG) is a pectic glycan in the plant cell wall that contributes to plant growth and development and cell wall structure and function, and interacts with other glycans and proteoglycans in the wall. HG is synthesized by the galacturonosyltransferase (GAUT) gene family. Two members of this family, GAUT1 and GAUT7, form a heteromeric enzyme complex in Arabidopsis thaliana Here, we established a heterologous GAUT expression system in HEK293 cells and show that co-expression of recombinant GAUT1 with GAUT7 results in the production of a soluble GAUT1:GAUT7 complex that catalyzes elongation of HG products in vitro The reaction rates, progress curves, and product distributions exhibited major differences dependent upon small changes in the degree of polymerization (DP) of the oligosaccharide acceptor. GAUT1:GAUT7 displayed >45-fold increased catalytic efficiency with DP11 acceptors relative to DP7 acceptors. Although GAUT1:GAUT7 synthesized high-molecular-weight polymeric HG (>100 kDa) in a substrate concentration-dependent manner typical of distributive (nonprocessive) glycosyltransferases with DP11 acceptors, reactions primed with short-chain acceptors resulted in a bimodal product distribution of glycan products that has previously been reported as evidence for a processive model of GT elongation. As an alternative to the processive glycosyltransfer model, a two-phase distributive elongation model is proposed in which a slow phase, which includes the de novo initiation of HG and elongation of short-chain acceptors, is distinguished from a phase of rapid elongation of intermediate- and long-chain acceptors. Upon reaching a critical chain length of DP11, GAUT1:GAUT7 elongates HG to high-molecular-weight products.


Assuntos
Proteínas de Arabidopsis/metabolismo , Glucuronosiltransferase/metabolismo , Pectinas/biossíntese , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Glucuronosiltransferase/química , Células HEK293 , Humanos , Modelos Biológicos , Estrutura Molecular , Pectinas/química , Eletricidade Estática , Especificidade por Substrato , Açúcares de Uridina Difosfato/metabolismo
7.
J Agric Food Chem ; 66(27): 7139-7149, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29916708

RESUMO

UDP-Rhamnose synthase (RHM), the branch-point enzyme controlling the nucleotide sugar interconversion pathway, converts UDP-d-glucose into UDP-rhamnose. As a rhamnose residue donor, UDP-l-rhamnose is essential for the biosynthesis of pectic polysaccharides and secondary metabolites in plants. In this study, three CsRHM genes from tea plants ( Camellia sinensis) were cloned and characterized. Enzyme assays showed that three recombinant proteins displayed RHM activity and were involved in the biosynthesis of UDP-rhamnose in vitro. The transcript profiles, metabolite profiles, and mucilage location suggest that the three CsRHM genes likely contribute to UDP-rhamnose biosynthesis and may be involved in primary wall formation in C. sinensis. These analyses of CsRHM genes and metabolite profiles provide a comprehensive understanding of secondary metabolite biosynthesis and regulation in tea plants. Moreover, our results can be applied for the synthesis of the secondary metabolite rhamnoside in future studies.


Assuntos
Camellia sinensis/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares de Uridina Difosfato/biossíntese , Camellia sinensis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Metabolismo Secundário , Açúcares de Uridina Difosfato/genética
8.
J Plant Res ; 131(2): 307-317, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29052022

RESUMO

Plant cell walls are composed of polysaccharides such as cellulose, hemicelluloses, and pectins, whose location and function differ depending on plant type. Arabinose is a constituent of many different cell wall components, including pectic rhamnogalacturonan I (RG-I) and II (RG-II), glucuronoarabinoxylans (GAX), and arabinoxyloglucan (AXG). Arabinose is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. The UDP-arabinopyranose mutases (UAMs) have been demonstrated to convert UDP-arabinopyranose (UDP-Arap) to UDP-arabinofuranose (UDP-Araf) in rice (Oryza sativa L.). The UAMs have been implicated in polysaccharide biosynthesis and developmental processes. Arabinose residues could be a component of many polysaccharides, including branched (1→5)-α-arabinans, arabinogalactans in pectic polysaccharides, and arabinoxyloglucans, which are abundant in the cell walls of solanaceous plants. Therefore, to elucidate the role of UAMs and arabinan side chains, we analyzed the UAM RNA interference transformants in tobacco (Nicotiana tabacum L.). The tobacco UAM gene family consists of four members. We generated RNAi transformants (NtUAM-KD) to down-regulate all four of the UAM members. The NtUAM-KD showed abnormal leaf development in the form of a callus-like structure and many holes in the leaf epidermis. A clear reduction in the pectic arabinan content was observed in the tissue of the NtUAM-KD leaf. The arabinose/xylose ratio in the xyloglucan-rich cell wall fraction was drastically reduced in NtUAM-KD. These results suggest that UAMs are required for Ara side chain biosynthesis in both RG-I and AXG in Solanaceae plants, and that arabinan-mediated cell wall networks might be important for normal leaf expansion.


Assuntos
Expressão Gênica , Transferases Intramoleculares/genética , Nicotiana/genética , Folhas de Planta/crescimento & desenvolvimento , Arabinose/metabolismo , Glucanos , Transferases Intramoleculares/metabolismo , Pectinas/metabolismo , Folhas de Planta/metabolismo , Polissacarídeos/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Açúcares de Uridina Difosfato/metabolismo
9.
Plant Cell ; 29(1): 129-143, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062750

RESUMO

UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1 These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Polissacarídeos/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Immunoblotting , Microscopia Confocal , Mutação , Proteínas de Transporte de Nucleotídeos/genética , Pectinas/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Açúcares de Uridina Difosfato/metabolismo
10.
PLoS One ; 11(12): e0168959, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28036352

RESUMO

The onion (Allium cepa L.) is widely planted worldwide as a valuable vegetable crop. The scales of an onion bulb are a modified type of leaf. The one-layer-cell epidermis of onion scales is commonly used as a model experimental material in botany and molecular biology. The lower epidermis (LE) and upper epidermis (UE) of onion scales display obvious differences in microscopic structure, cell differentiation and pigment synthesis; however, associated proteomic differences are unclear. LE and UE can be easily sampled as single-layer-cell tissues for comparative proteomic analysis. In this study, a proteomic approach based on 2-DE and mass spectrometry (MS) was applied to compare LE and UE of fleshy scales from yellow and red onions. We identified 47 differential abundant protein spots (representing 31 unique proteins) between LE and UE in red and yellow onions. These proteins are mainly involved in pigment synthesis, stress response, and cell division. Particularly, the differentially accumulated chalcone-flavanone isomerase and flavone O-methyltransferase 1-like in LE may result in the differences in the onion scale color between red and yellow onions. Moreover, stress-related proteins abundantly accumulated in both LE and UE. In addition, the differential accumulation of UDP-arabinopyranose mutase 1-like protein and ß-1,3-glucanase in the LE may be related to the different cell sizes between LE and UE of the two types of onion. The data derived from this study provides new insight into the differences in differentiation and developmental processes between onion epidermises. This study may also make a contribution to onion breeding, such as improving resistances and changing colors.


Assuntos
Cebolas/metabolismo , Proteínas/metabolismo , Proteoma/metabolismo , Cruzamento/métodos , Liases Intramoleculares/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Proteômica/métodos , Açúcares de Uridina Difosfato/metabolismo
11.
Plant Cell Rep ; 35(11): 2403-2421, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27591771

RESUMO

KEY MESSAGE: The present study first identified the involvement of OcUAXS2 and OcUXS1-3 in anticancer polysaccharides biosynthesis in O. caudatum. UDP-xylose synthase (UXS) and UDP-D-apiose/UDP-D-xylose synthase (UAXS), both capable of converting UDP-D-glucuronic acid to UDP-D-xylose, are believed to transfer xylosyl residue to anticancer polysaccharides biosynthesis in Ornithogalum caudatum Ait. However, the cDNA isolation and functional characterization of genes encoding the two enzymes from O. caudatum has never been documented. Previously, the transcriptome sequencing of O. caudatum was performed in our laboratory. In this study, a total of six and two unigenes encoding UXS and UAXS were first retrieved based on RNA-Seq data. The eight putative genes were then successfully isolated from transcriptome of O. caudatum by reverse transcription polymerase chain reaction (RT-PCR). Phylogenetic analysis revealed the six putative UXS isoforms can be classified into three types, one soluble and two distinct putative membrane-bound. Moreover, the two UAXS isoenzymes were predicted to be soluble forms. Subsequently, these candidate cDNAs were characterized to be bona fide genes by functional expression in Escherichia coli individually. Although UXS and UAXS catalyzed the same reaction, their biochemical properties varied significantly. It is worth noting that a ratio switch of UDP-D-xylose/UDP-D-apiose for UAXS was established, which is assumed to be helpful for its biotechnological application. Furthermore, a series of mutants were generated to test the function of NAD+ binding motif GxxGxxG. Most importantly, the present study determined the involvement of OcUAXS2 and OcUXS1-3 in xylose-containing polysaccharides biosynthesis in O. caudatum. These data provide a comprehensive knowledge for UXS and UAXS families in plants.


Assuntos
Carboxiliases/genética , Genes de Plantas , Família Multigênica , Ornithogalum/enzimologia , Ornithogalum/genética , Transcriptoma/genética , Açúcares de Uridina Difosfato/metabolismo , Uridina Difosfato Xilose/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Compostos de Amônio/farmacologia , Biocatálise/efeitos dos fármacos , Soluções Tampão , Cálcio/farmacologia , Carboxiliases/química , Carboxiliases/metabolismo , Cromatografia Líquida de Alta Pressão , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Ornithogalum/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Temperatura , Transcriptoma/efeitos dos fármacos , Açúcares de Uridina Difosfato/química , Uridina Difosfato Xilose/química
12.
Biochem J ; 439(3): 375-9, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21992098

RESUMO

Plant pyrophosphorylases that are capable of producing UDP-sugars, key precursors for glycosylation reactions, include UDP-glucose pyrophosphorylases (A- and B-type), UDP-sugar pyrophosphorylase and UDP-N-acetylglucosamine pyrophosphorylase. Although not sharing significant homology at the amino acid sequence level, the proteins share a common structural blueprint. Their structures are characterized by the presence of the Rossmann fold in the central (catalytic) domain linked to enzyme-specific N-terminal and C-terminal domains, which may play regulatory functions. Molecular mobility between these domains plays an important role in substrate binding and catalysis. Evolutionary relationships and the role of (de)oligomerization as a regulatory mechanism are discussed.


Assuntos
Nucleotidiltransferases/biossíntese , Nucleotidiltransferases/química , Extratos Vegetais/química , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Homologia Estrutural de Proteína , Açúcares de Uridina Difosfato/biossíntese , Açúcares de Uridina Difosfato/química , Animais , Humanos , Nucleotidiltransferases/fisiologia , Filogenia , Extratos Vegetais/metabolismo , Proteínas de Plantas/fisiologia , UTP-Glucose-1-Fosfato Uridililtransferase/biossíntese , UTP-Glucose-1-Fosfato Uridililtransferase/química , UTP-Glucose-1-Fosfato Uridililtransferase/fisiologia , Açúcares de Uridina Difosfato/fisiologia
13.
Carbohydr Res ; 344(9): 1072-8, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19375693

RESUMO

The conversion of UDP-alpha-d-glucuronic acid to UDP-alpha-d-xylose and UDP-alpha-d-apiose by a bifunctional potato enzyme UDP-apiose/UDP-xylose synthase was studied using real-time nuclear magnetic resonance (NMR) spectroscopy. UDP-alpha-d-glucuronic acid is converted via the intermediate uridine 5'-beta-l-threo-pentapyranosyl-4''-ulose diphosphate to UDP-alpha-d-apiose and simultaneously to UDP-alpha-d-xylose. The UDP-alpha-d-apiose that is formed is unstable and is converted to alpha-d-apio-furanosyl-1,2-cyclic phosphate and UMP. High-resolution real-time NMR spectroscopy is a powerful tool for the direct and quantitative characterization of previously undetected transient and labile components formed during a complex enzyme-catalyzed reaction.


Assuntos
Carboxiliases/metabolismo , Biocatálise , Carboxiliases/química , Carboxiliases/genética , Clonagem Molecular , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solanum tuberosum/enzimologia , Fatores de Tempo , Uridina Difosfato Ácido Glucurônico/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Xilose/análogos & derivados , Xilose/metabolismo
14.
Biosci Biotechnol Biochem ; 71(3): 761-71, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17341835

RESUMO

UDP-sugar pyrophosphorylase catalyzes the conversion of various monosaccharide 1-phosphates to the respective UDP-sugars in the salvage pathway. Using the genomic database, we cloned a putative gene for UDP-sugar pyrophosphorylase from Arabidopsis. Although relatively stronger expression was detected in the vascular tissue of leaves and the pollen, AtUSP is expressed in most cell types of Arabidopsis, indicating a housekeeping function in nucleotide sugar metabolism. Recombinant AtUSP expressed in Escherichia coli exhibited broad specificity toward monosaccharide 1-phosphates, resulting in the formation of various UDP-sugars such as UDP-glucose, -galactose, -glucuronic acid, -xylose and -L-arabinose. A loss-of-function mutation in the AtUSP gene caused by T-DNA insertion completely abolished male fertility. These results indicate that AtUSP functions as a UDP-sugar pyrophosphorylase in the salvage pathway, and that the generation of UDP-sugars from monosaccharide 1-phosphates catalyzed by AtUSP is essential for pollen development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Nucleotidiltransferases/fisiologia , Açúcares de Uridina Difosfato/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Dados de Sequência Molecular , Mutação , Nucleotidiltransferases/genética , Folhas de Planta/fisiologia , Pólen/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
J Biol Chem ; 281(19): 13708-13716, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16549428

RESUMO

D-apiose serves as the binding site for borate cross-linking of rhamnogalacturonan II (RG-II) in the plant cell wall, and biosynthesis of D-apiose involves UDP-D-apiose/UDP-D-xylose synthase catalyzing the conversion of UDP-D-glucuronate to a mixture of UDP-D-apiose and UDP-D-xylose. In this study we have analyzed the cellular effects of depletion of UDP-D-apiose/UDP-D-xylose synthases in plants by using virus-induced gene silencing (VIGS) of NbAXS1 in Nicotiana benthamiana. The recombinant NbAXS1 protein exhibited UDP-D-apiose/UDP-D-xylose synthase activity in vitro. The NbAXS1 gene was expressed in all major plant organs, and an NbAXS1-green fluorescent protein fusion protein was mostly localized in the cytosol. VIGS of NbAXS1 resulted in growth arrest and leaf yellowing. Microscopic studies of the leaf cells of the NbAXS1 VIGS lines revealed cell death symptoms including cell lysis and disintegration of cellular organelles and compartments. The cell death was accompanied by excessive formation of reactive oxygen species and by induction of various protease genes. Furthermore, abnormal wall structure of the affected cells was evident including excessive cell wall thickening and wall gaps. The mutant cell walls contained significantly reduced levels of D-apiose as well as 2-O-methyl-L-fucose and 2-O-methyl-D-xylose, which serve as markers for the RG-II side chains B and A, respectively. These results suggest that VIGS of NbAXS1 caused a severe deficiency in the major side chains of RG-II and that the growth defect and cell death was likely caused by structural alterations in RG-II due to a D-apiose deficiency.


Assuntos
Carbono-Nitrogênio Ligases/deficiência , Parede Celular/metabolismo , Nicotiana/citologia , Nicotiana/enzimologia , Pectinas/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Xilose/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Morte Celular , Inativação Gênica , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
16.
Appl Environ Microbiol ; 71(8): 4339-44, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16085822

RESUMO

Phosphorus is an essential component of macromolecules, like DNA, and central metabolic intermediates, such as sugar phosphates, and bacteria possess enzymes and control mechanisms that provide an optimal supply of phosphorus from the environment. UDP-sugar hydrolases and 5' nucleotidases may play roles in signal transduction, as they do in mammals, in nucleotide salvage, as demonstrated for UshA of Escherichia coli, or in phosphorus metabolism. The Corynebacterium glutamicum gene ushA was found to encode a secreted enzyme which is active as a 5' nucleotidase and a UDP-sugar hydrolase. This enzyme was synthesized and secreted into the medium when C. glutamicum was starved for inorganic phosphate. UshA was required for growth of C. glutamicum on AMP and UDP-glucose as sole sources of phosphorus. Thus, in contrast to UshA from E. coli, C. glutamicum UshA is an important component of the phosphate starvation response of this species and is necessary to access nucleotides and related compounds as sources of phosphorus.


Assuntos
5'-Nucleotidase/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Fosfatos/metabolismo , Diester Fosfórico Hidrolases/genética , 5'-Nucleotidase/química , 5'-Nucleotidase/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Açúcares de Uridina Difosfato/metabolismo
17.
Appl Microbiol Biotechnol ; 63(2): 200-6, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12827320

RESUMO

Corynebacterium glutamicum CCTCC M201005 produces a novel polygalacturonic acid bioflocculant, REA-11, consisting of galacturonic acid as the main structural unit. A biosynthetic pathway of REA-11 in C. glutamicum CCTCC M201005 was proposed. Evidence for the biosynthetic pathway was provided by: (1) analyzing the response upon addition of UDP-glucose to the culture medium; (2) detecting the presence of several key intermediates in the pathway; and (3) correlating the activities of several key enzymes involved in the pathway with the yields of polygalacturonic acid. The production of polygalacturonic acid was improved by 24%, while the activities of UDP-galactose epimerase and UDP-galactose dehydrogenase were improved by 200% and 50%, respectively, upon addition of 100 microM UDP-glucose. In addition, the key intermediates in the proposed biosynthetic pathway, such as UDP-glucose, UDP-galactose, and UDP-glucuronic acid, were detected in cell-free extracts. Furthermore, the activities of UDP-glucose pyrophosphorylase (R2=0.97), UDP-galactose epimerase (R2=0.75) and UDP-galactose dehydrogenase (R2=0.89) were well correlated with the yields of polygalacturonic acid when different sugars were used as sole carbon sources. Therefore, the biosynthetic pathway of REA-11 in C. glutamicum CCTCC M201005 starts from phosphate-1-glucose, which was then converted to UDP-glucose by UDP-pyrophosphorylase. Predominantly, the UDP-glucose was converted to UDP-galactose by UDP-galactose epimerase; the latter was further converted to UDP-galacturonic acid by UDP-galactose dehydrogenase, which was presumably polymerized to polygalacturonic acid bioflocculant REA-11 by an unknown glucosyltransferase and a polymerase.


Assuntos
Corynebacterium/metabolismo , Corynebacterium/fisiologia , Pectinas/metabolismo , Corynebacterium/enzimologia , Corynebacterium/crescimento & desenvolvimento , Meios de Cultura , Floculação , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Glucose/metabolismo , Açúcares de Uridina Difosfato/metabolismo
18.
Cancer Lett ; 100(1-2): 37-40, 1996 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-8620451

RESUMO

A plasma membrane preparation from human amnion (WISH) cells contained uridine diphosphate sugars and methyl-uridine diphosphate (mUDP) sugars. The synthesis of mUDP-glucose, mUDP-mannose, and mUDP-fucose by the membrane preparation occurred when supplemented with uridine-5'-diphosphate-glucose and S-adenosyl-L-methionine. It is suggested that this newly recognized route for fucose biosynthesis might be employed by certain transformed cells, and may partly account for the methionine dependence of certain human tumors. Additionally, it is suggested that, in colon cancer, a deficiency of folic acid and methionine might affect mUDP-sugar biosynthesis rather than the methylation of DNA.


Assuntos
Âmnio/metabolismo , S-Adenosilmetionina/metabolismo , Açúcares de Uridina Difosfato/biossíntese , Células 3T3/metabolismo , Âmnio/citologia , Âmnio/ultraestrutura , Animais , Membrana Celular/metabolismo , Fucose/biossíntese , Fucose/metabolismo , Humanos , Manose/metabolismo , Camundongos , Uridina Difosfato Glucose/biossíntese
19.
Anal Biochem ; 225(2): 296-304, 1995 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-7762795

RESUMO

Pectins are complex polysaccharides that contain 1,4-linked alpha-D-galactosyluronic acid residues found in the primary wall of all higher plant cells. The pectic polysaccharides play critical roles in cell wall structure and in plant growth and development. As a first step in studying pectin biosynthesis a method was developed to routinely generate and purify UDP-[U-14C]galacturonic acid (UDP-[14C]GalA), the nucleotide sugar substrate for homogalacturonan biosynthesis. UDP-[14C]GalA was enzymatically synthesized by 4-epimerization of commercially available UDP-[U-14C]glucuronic acid (UDP-[14C]GlcA) using a particulate preparation from radish roots. The resulting mixture of UDP-[14C]GalA and UDP-[14C]GlcA was separated by high-performance anion-exchange chromatography using a Dionex CarboPac PA1 anion-exchange column. The UDP-sugars were detected by their absorbance at 262 nm or by pulsed amperometric detection following postcolumn addition of NaOH. The yield of UDP-[14C]GalA obtained using this procedure was 16% of the starting UDP-[14C]GlcA. Establishment of a reliable method to synthesize and purify UDP-[14C]GalA will facilitate the identification and purification of the galacturonosyltransferase(s) involved in pectin biosynthesis.


Assuntos
Pectinas/biossíntese , Açúcares de Uridina Difosfato/síntese química , Açúcares de Uridina Difosfato/isolamento & purificação , Ânions , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Extratos Vegetais , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo , Uridina Difosfato N-Acetilglicosamina/química , Açúcares de Uridina Difosfato/metabolismo , Uridina Difosfato Xilose/química , Verduras/química
20.
Biochem Mol Med ; 54(1): 43-52, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7551816

RESUMO

Spatially localized 31P NMR spectroscopy was used to assay in vivo the liver of intact rats fed orotic acid (OA) in a diet which produces hepatic steatosis. Twenty-three sets of multiple volume spectra were obtained from twenty-one 265- to 315-g female rats after 0-9 days of feeding either a 1% OA/64% sucrose diet (12 rats) or a 65% sucrose control diet (9 rats). The intensity of the in vivo diphosphodiester resonance ascribed to UDP-hexos(amin)es increased and the phosphomonoester resonance decreased in intensity prior to fatty infiltration. High resolution NMR spectroscopy of extracts of these livers indicated that the UDP-hexos(amin)e peak included four different UDP-sugars including UDP-N-acetylglucosamine (UDP-glcNAc), and that lower phosphocholine (P-Cho) accounted for the lower phosphomonoester resonance in vivo. Increased UDP-glcNAc is thought to reflect impaired lipoprotein glycosylation as a mechanism for hepatic steatosis in orotic acid feeding. P-Cho deficiency has been shown to be due to an increased rate of phosphatidylcholine synthesis. Low P-Cho concentration has been shown to be associated with lipid accumulation in a choline-deficient diet, but was not previously associated with hepatic steatosis in OA feeding. Changes in phosphorus metabolites were observed 2 days prior to development of fatty liver. HPLC assay of uridine nucleotides showed a good correlation between magnetic resonance spectroscopy and HPLC quantitation. In this study there were two biochemical correlates of impaired hepatic lipid secretion detectable by in vivo assay with 31P NMR spectroscopy. This method has application for noninvasive assays in ornithine transcarbamylase-deficient patients.


Assuntos
Ácido Orótico/administração & dosagem , Açúcares de Uridina Difosfato/metabolismo , Uridina/metabolismo , Animais , Dieta , Feminino , Fígado/metabolismo , Fígado/ultraestrutura , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Músculos/metabolismo , Ácido Orótico/metabolismo , Fósforo/análise , Ratos , Ratos Sprague-Dawley , Pele/metabolismo , Nucleotídeos de Uracila/análise , Uridina Trifosfato/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA