Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(2): 1276-1291, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38179648

RESUMO

Microorganisms rely on diverse ion transport and trace elements to sustain growth, development, and secondary metabolism. Manganese (Mn2+) is essential for various biological processes and plays a crucial role in the metabolism of human cells, plants, and yeast. In Aspergillus flavus, we confirmed that Pmr1 localized in cis- and medial-Golgi compartments was critical in facilitating Mn2+ transport, fungal growth, development, secondary metabolism, and glycosylation. In comparison to the wild type, the Δpmr1 mutant displayed heightened sensitivity to environmental stress, accompanied by inhibited synthesis of aflatoxin B1, kojic acid, and a substantial reduction in pathogenicity toward peanuts and maize. Interestingly, the addition of exogenous Mn2+ effectively rectified the developmental and secondary metabolic defects in the Δpmr1 mutant. However, Mn2+ supplement failed to restore the growth and development of the Δpmr1Δgdt1 double mutant, which indicated that the Gdt1 compensated for the functional deficiency of pmr1. In addition, our results showed that pmr1 knockout leads to an upregulation of O-glycosyl-N-acetylglucose (O-GlcNAc) and O-GlcNAc transferase (OGT), while Mn2+ supplementation can restore the glycosylation in A. flavus. Collectively, this study indicates that the pmr1 regulates Mn2+ via Golgi and maintains growth and metabolism functions of A. flavus through regulation of the glycosylation.


Assuntos
ATPases Transportadoras de Cálcio , Proteínas de Saccharomyces cerevisiae , Humanos , ATPases Transportadoras de Cálcio/metabolismo , Aflatoxina B1/metabolismo , Aspergillus flavus/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682696

RESUMO

Identification of alternative attenuation targets of Mycobacterium tuberculosis (Mtb) is pivotal for designing new candidates for live attenuated anti-tuberculosis (TB) vaccines. In this context, the CtpF P-type ATPase of Mtb is an interesting target; specifically, this plasma membrane enzyme is involved in calcium transporting and response to oxidative stress. We found that a mutant of MtbH37Rv lacking ctpF expression (MtbΔctpF) displayed impaired proliferation in mouse alveolar macrophages (MH-S) during in vitro infection. Further, the levels of tumor necrosis factor and interferon-gamma in MH-S cells infected with MtbΔctpF were similar to those of cells infected with the parental strain, suggesting preservation of the immunogenic capacity. In addition, BALB/c mice infected with Mtb∆ctpF showed median survival times of 84 days, while mice infected with MtbH37Rv survived 59 days, suggesting reduced virulence of the mutant strain. Interestingly, the expression levels of ctpF in a mouse model of latent TB were significantly higher than in a mouse model of progressive TB, indicating that ctpF is involved in Mtb persistence in the dormancy state. Finally, the possibility of complementary mechanisms that counteract deficiencies in Ca2+ transport mediated by P-type ATPases is suggested. Altogether, our results demonstrate that CtpF could be a potential target for Mtb attenuation.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Cálcio , ATPases Transportadoras de Cálcio , Membrana Celular/patologia , Camundongos , Tuberculose/microbiologia , Virulência/genética
3.
Plant Physiol ; 185(4): 1966-1985, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33575795

RESUMO

Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here, we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single-gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, Pathogenesis-related1 (PR1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7 mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Desenvolvimento Vegetal , Pólen/genética
4.
Mol Biol Rep ; 47(12): 9521-9530, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33211294

RESUMO

Codeine (3-methylmorphine) is a known analgesic, antitussive, and antidiarrheal drug that is often abused for recreational purposes. It is metabolized in the liver via the cytochrome P450 system and thus hypothesized to induce hepatic injury especially when misused. Thus, the present study aimed at investigating changes in liver function, hepatic enzyme biomarker, proton pumps, antioxidant status, free radicals and TNF-α levels, as well as caspase 3 activities and hepatic DNA fragmentation after 6 weeks of oral codeine administration. Twenty-one male rabbits were randomized into 3 groups (n = 7). The control group had 1 ml of normal saline, while the low-dose and high-dose codeine groups received 4 and 10 mg/kg b.w of codeine respectively daily. The codeine-treated animals had significantly lower levels of serum proteins, increased activities of hepatic enzyme biomarkers and caspase 3, raised hepatic concentrations of free radicals and TNF-α, as well as increased hepatic DNA fragmentation. Codeine treatment also led to a significant decline in hepatic weight, activities of hepatic enzymatic antioxidant, Na+-K+-ATPase and Ca2+-ATPase. These alterations were more pronounced in high-dose codeine treated animals than in the low-dose group. Histopathological study showed moderate fatty degeneration of hepatic parenchyma, infiltration of the portal tract by inflammatory cells with dense collagen fibre deposition in codeine-treated animals. The present study revealed that codeine induced liver injury and hepatic DNA damage via caspase 3-dependent signaling by suppressing hepatic antioxidant status and enhancing free radical and TNF-α generation.


Assuntos
Analgésicos Opioides/efeitos adversos , Apoptose/efeitos dos fármacos , Caspase 3/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Codeína/efeitos adversos , Animais , Apoptose/genética , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Caspase 3/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fragmentação do DNA , Esquema de Medicação , Regulação da Expressão Gênica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Masculino , Óxido Nítrico/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo , Coelhos , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Biochimie ; 174: 159-170, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32335229

RESUMO

TMEM165 is a Golgi protein whose deficiency causes a Congenital Disorder of Glycosylation (CDG). We have demonstrated that Mn2+ supplementation could suppress the glycosylation defects observed in TMEM165-deficient cells and that TMEM165 was a Mn2+-sensitive protein. In the Golgi, the other transmembrane protein capable to regulate Mn2+/Ca2+ homeostasis is SPCA1, encoded by the ATP2C1 gene. A loss of one copy of the ATP2C1 gene leads to Hailey-Hailey Disease (HHD), an acantholytic skin disorder in Humans. Our latest results suggest an unexpected functional link between SPCA1 and TMEM165. In order to clarify this link in case of partial SPCA1 deficiency, HHD fibroblasts were used to assess TMEM165 expression, subcellular localization and Mn2+-induced degradation. No differences were observed regarding TMEM165 expression and localization in HHD patients' fibroblasts compared to control fibroblasts. Nevertheless, we demonstrated both for fibroblasts and keratinocytes that TMEM165 expression is more sensitive to MnCl2 exposure in HHD cells than in control cells. We linked, using ICP-MS and GPP130 as a Golgi Mn2+ sensor, this higher Mn2+-induced sensitivity to a cytosolic Mn accumulation in MnCl2 supplemented HHD fibroblasts. Altogether, these results link the function of SPCA1 to the stability of TMEM165 in a pathological context of Hailey-Hailey disease.


Assuntos
Antiporters/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Pênfigo Familiar Benigno/metabolismo , Linhagem Celular , Fibroblastos/patologia , Humanos , Queratinócitos/patologia , Manganês/metabolismo
6.
Biochem J ; 476(21): 3281-3293, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31652305

RESUMO

TMEM165 was highlighted in 2012 as the first member of the Uncharacterized Protein Family 0016 (UPF0016) related to human glycosylation diseases. Defects in TMEM165 are associated with strong Golgi glycosylation abnormalities. Our previous work has shown that TMEM165 rapidly degrades with supraphysiological manganese supplementation. In this paper, we establish a functional link between TMEM165 and SPCA1, the Golgi Ca2+/Mn2+ P-type ATPase pump. A nearly complete loss of TMEM165 was observed in SPCA1-deficient Hap1 cells. We demonstrate that TMEM165 was constitutively degraded in lysosomes in the absence of SPCA1. Complementation studies showed that TMEM165 abundance was directly dependent on SPCA1's function and more specifically its capacity to pump Mn2+ from the cytosol into the Golgi lumen. Among SPCA1 mutants that differentially impair Mn2+ and Ca2+ transport, only the Q747A mutant that favors Mn2+ pumping rescues the abundance and Golgi subcellular localization of TMEM165. Interestingly, the overexpression of SERCA2b also rescues the expression of TMEM165. Finally, this paper highlights that TMEM165 expression is linked to the function of SPCA1.


Assuntos
Antiporters/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Antiporters/genética , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte de Cátions/genética , Citosol/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Manganês/metabolismo , Mutação , Proteólise , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
7.
Fitoterapia ; 138: 104195, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31175953

RESUMO

We investigated the transdermal drug permeation enhancement properties and associated mechanisms of white mustard (Sinapis alba L.) seed volatile oil (SVO). Using gas chromatography-mass spectrometry, we showed that SVO was composed primarily of allylisothiocyanate and isothiocyanatocyclopropane. Compared with azone, SVO had better penetration-enhancing effects on three model drugs (5-Fluorouracil, Osthole, and Paeonol), with each having different oil-water partition coefficients. Histopathology showed that SVO did not induce skin irritation when the concentration was lower than 2% (v/v), and it induced less irritation than azone. According to attenuated total reflection-Fourier transform infrared spectroscopy and transmission electron microscopy, SVO induced skin lipid structural disorder and increased the distance between the stratum corneum, which is beneficial to the penetration of drugs. Cellular experiments showed that SVO inhibited Ca2+-ATPase activity, increased intracellular Ca2+ concentration, and changed the membrane potential in HaCaT cells, which promoted drug transfer into the skin. Our findings reveal that SVO is a safe and efficient natural product that has great potential as skin penetration enhancer.


Assuntos
Óleos Voláteis/farmacologia , Sementes/química , Sinapis/química , Pele/efeitos dos fármacos , Administração Cutânea , Animais , ATPases Transportadoras de Cálcio/metabolismo , Linhagem Celular , Humanos , Masculino , Potenciais da Membrana , Microscopia Eletrônica de Transmissão , Ratos Sprague-Dawley , Pele/ultraestrutura , Absorção Cutânea , Testes de Toxicidade
8.
Sci Rep ; 9(1): 7408, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092832

RESUMO

Oxidative stress is implicated in both hypo- and hyper-thyroid conditions. In the present study an attempt has been made to elucidate possible interaction between vitamin E or/and curcumin (two established antioxidants) with active portion (redox signaling intervening region) of nuclear factor erythroid 2-related factor 2 (NRF2) as a mechanism to alleviate oxidative stress in rat heart under altered thyroid states. Fifty Wistar strain rats were divided into two clusters (Cluster A: hypothyroidism; Cluster B: hyperthyroidism). The hypo- (0.05% (w/v) propylthiouracil in drinking water) and hyper- (0.0012% (w/v) T4 in drinking water) thyroid rats in both clusters were supplemented orally with antioxidants (vitamin E or/and curcumin) for 30 days. Interactive least count difference and principal component analyses indicated increase in lipid peroxidation, reduced glutathione level, alteration in the activities and protein expression of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase under altered thyroid states. However, the expression of stress survival molecules; nuclear factor κB (NFκB) and the serine-threonine kinase B (Akt), in hyper-thyroidism only points towards different mechanisms responsible for either condition. Co-administration of vitamin E and curcumin showed better result in attenuating expression of mammalian target for rapamycin (mTOR), restoration of total protein content and biological activity of Ca2+ ATPase in hyperthyroid rats, whereas, their individual treatment showed partial restoration. Since NRF2 is responsible for activation of antioxidant response element and subsequent expression of antioxidant enzymes, possible interactions of both vitamin E or/and curcumin with the antioxidant enzymes, NRF2 and its regulator Kelch ECH associating protein (KEAP1) were studied in silico. For the first time, a modeled active portion of the zipped protein NRF2 indicated its interaction with both vitamin E and curcumin. Further, curcumin and vitamin E complex showed in silico interaction with KEAP1. Reduction of oxidative stress by curcumin and/or vitamin E may be due to modulation of NRF2 and KEAP1 function in rat heart under altered thyroid states.


Assuntos
Antioxidantes/farmacologia , Curcumina/farmacologia , Coração/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Vitamina E/farmacologia , Animais , Western Blotting , ATPases Transportadoras de Cálcio/metabolismo , Hipertireoidismo/metabolismo , Hipotireoidismo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
9.
Food Chem ; 294: 316-325, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126469

RESUMO

The present study studied the effects of fish gelatin (FG) incorporated with grape seed extract (GSE) through vacuum impregnation (VI) on refrigerated tilapia (Oreochromis niloticus) fillets over 12 days. The VI of FG-GSE significantly improved the quality of the fish by decreasing drip loss, texture changes, and microbial survival. It also delayed protein oxidation by inhibiting the formation of disulphide bonds and carbonyl groups, and maintaining a higher sulfhydryl content and Ca2+-ATPase activity. Regarding myofibril degradation, FG-GSE maintained their secondary structure by increasing the ratio of α-helices and ß-sheets (70.88-75.51%). Atomic force microscopy further revealed that the FG-GSE coating preserved the myofibril nanostructure by maintaining their length, width, and height. Overall, the synergistic effects of VI with 3% FG and 0.9% GSE suggested a promising approach for fillet preservation.


Assuntos
Proteínas de Peixes/química , Gelatina/química , Extrato de Sementes de Uva/química , Animais , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Peixes/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Dureza , Microscopia de Força Atômica , Miofibrilas/metabolismo , Oxirredução , Estrutura Secundária de Proteína , Alimentos Marinhos/análise , Compostos de Sulfidrila/metabolismo , Tilápia/metabolismo , Vácuo
10.
Plant Biol (Stuttg) ; 21(5): 862-872, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30924996

RESUMO

Calcium (Ca) signalling has an essential role in regulating plant responses to various abiotic stresses. This study applied Ca in various forms (Ca acetate and CaCl2 ) and concentrations to reduce cadmium (Cd) concentration in rice and propose a possible mechanism through which Ca acts to control the Cd concentration in rice. The results showed that supplementation of Cd-contaminated soil with Ca acetate reduced the Cd concentration in rice after exposure for 7 days in both hydroponic and soil conditions. The possible involvement of the auto-inhibited Ca2+ -ATPase gene (ACA) might act to control the primary signal of the Cd stress response. The messages from ACA3 and ACA13 tended to up-regulate the low-affinity cation transporter (OsLCT1) and down-regulate Cd uptake and the Cd translocation transporter, including the genes, natural resistance-associated macrophage protein 5 (Nramp5) and Zn/Cd-transporting ATPase 2 (HMA2), which resulted in a reduction in the Cd concentration in rice. After cultivation for 120 days, the application of Ca acetate into Cd-contaminated soil inhibited Cd uptake of rice. Increasing the Ca acetate concentration in the soil lowered the Cd concentration in rice shoots and grains. Moreover, Ca acetate maintained rice productivity and quality whereas both aspects decreased under Cd stress.


Assuntos
Acetatos/farmacologia , Cádmio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfatases/metabolismo , Cádmio/toxicidade , Cálcio/metabolismo , Compostos de Cálcio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/enzimologia
11.
Ecotoxicol Environ Saf ; 165: 261-269, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30205327

RESUMO

Calcium (Ca) is one of essential elements for plant growth and development, and also plays a role in regulating plant cell physiology and cellular response to the environment. Here, we studied whether calcium played a role in enhancing tolerance of plants to acid rain stress by hydroponics and simulating acid rain stress. Our results show that acid rain (pH 4.5/pH 3.0) caused decreases in dry weight biomass, chlorophyll content and uptake of nutrients elements (NO3-, P, K, Mg, Zn and Mo) and an increase in membrane permeability of root. However, all parameters in soybean treated with exogenous calcium (5 mM) and acid rain at pH 4.5 were closed to the control levels. In addition, exogenous calcium (5 mM) alleviated the inhibition induced by pH 3.0 acid rain on the activity of plasma membranes H+-ATPase and the expression of GmPHA1 at transcriptional level, being benefiting to maintaining uptake of nutrients (NO3-, P, K, Mg, and Zn), and then lower the decrease in dry weight biomass and chlorophyll content. After a 5-day recovery (without acid rain stress), all parameters in soybean treated with acid rain at pH 3.0 and exogenous calcium were still worse than those of the control, but obviously better than those treated with acid rain at pH 3.0. Higher activity of plasma membrane H+-ATPase in soybean treated with acid rain at pH 3.0 and exogenous calcium was good to uptake of nutrients and promoted the recovery of soybean growth, compared with soybean treated with acid rain at pH 3.0. In conclusion, exogenous calcium could alleviate the inhibition caused by acid rain on soybean growth by increasing the activity of plasma membrane H+-ATPase for providing driving force to nutrient absorption, and its regulating effect was limited by intensity of acid rain. Furthermore, the application of exogenous calcium can be one of ways to alleviate the damage caused by acid rain to plants.


Assuntos
Chuva Ácida/toxicidade , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/farmacologia , Glycine max/efeitos dos fármacos , Glycine max/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Clorofila/metabolismo , Magnésio/metabolismo , Molibdênio/metabolismo , Nitratos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Potássio/metabolismo , ATPases Translocadoras de Prótons/genética , Plântula/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Zinco/metabolismo
12.
Int J Mol Sci ; 19(6)2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925776

RESUMO

The term orthodisease defines human disorders in which the pathogenic gene has orthologs in model organism genomes. Yeasts have been instrumental for gaining insights into the molecular basis of many human disorders, particularly those resulting from impaired cellular metabolism. We and others have used yeasts as a model system to study the molecular basis of Hailey-Hailey disease (HHD), a human blistering skin disorder caused by haploinsufficiency of the gene ATP2C1 the orthologous of the yeast gene PMR1. We observed that K. lactis cells defective for PMR1 gene share several biological similarities with HHD derived keratinocytes. Based on the conservation of ATP2C1/PMR1 function from yeast to human, here we used a yeast-based assay to screen for molecules able to influence the pleiotropy associated with PMR1 deletion. We identified six compounds, Kaempferol, Indirubin, Lappaconite, Cyclocytidine, Azomycin and Nalidixic Acid that induced different major shape phenotypes in K. lactis. These include mitochondrial and the cell-wall morphology-related phenotypes. Interestingly, a secondary assay in mammalian cells confirmed activity for Kaempferol. Indeed, this compound was also active on human keratinocytes depleted of ATP2C1 function by siRNA-treatment used as an in-vitro model of HHD. We found that Kaempferol was a potent NRF2 regulator, strongly inducing its expression and its downstream target NQO1. In addition, Kaempferol could decrease oxidative stress of ATP2C1 defective keratinocytes, characterized by reduced NRF2-expression. Our results indicated that the activation of these pathways might provide protection to the HHD-skin cells. As oxidative stress plays pivotal roles in promoting the skin lesions of Hailey-Hailey, the NRF2 pathway could be a viable therapeutic target for HHD.


Assuntos
Produtos Biológicos/farmacologia , Quempferóis/farmacologia , Kluyveromyces/efeitos dos fármacos , Pênfigo Familiar Benigno/terapia , Produtos Biológicos/uso terapêutico , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/genética , Linhagem Celular , Parede Celular/efeitos dos fármacos , Proteínas Fúngicas/genética , Pleiotropia Genética , Humanos , Quempferóis/uso terapêutico , Queratinócitos/efeitos dos fármacos , Kluyveromyces/genética , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pênfigo Familiar Benigno/genética , Cultura Primária de Células
13.
Int J Mol Sci ; 19(6)2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29914054

RESUMO

Calcium plays an important role in plant growth, development, and response to environmental stimuli. Copines are conserved plasma membrane-localized calcium-binding proteins which regulate plant immune responses and development. In this study, we found that copine proteins BON2 and BON3, the paralogs of BON1, physically interact with calcium pumps ACA8 and ACA10 in Arabidopsis. Notably, ACA9, the closest homologue of ACA8 and ACA10 functioning in pollen tube growth, interacts with all three copines. This is consistent with the protein⁻protein interactions between the two protein families, the aca8, aca10, aca8/aca10, bon1/2/3 mutants as well as aca9 mutant exhibited defects on pollen germination and seed production. Taken together, plasma membrane-localized interacting calcium pumps and copines coordinately control pollen tube growth, likely through manipulating calcium efflux.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Germinação , Infertilidade das Plantas , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte/genética , Pólen/genética , Pólen/crescimento & desenvolvimento
14.
PLoS One ; 13(6): e0198467, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29939985

RESUMO

The effect of microchip pulsed electric field (MPEF) treatment on lethal and sublethal injury of Pichia rhodanensis (P. rhodanensis) were employed under 100-500 V for 20-100 pulses and the underlying mechanism of MPEF treatment was investigated as well. A 6.48 log10 reduction of P. rhodanensis was achieved at 500V for 80 pulse. The fluorescent staining with Propidium Iodide (PI) verified that the rate of sublethal injury cells maximum up to 27.2% under 200 V. MPEF can cause the damage of cell morphology and ultrastructure, meanwhile causing a decrease in cellular enzymes, antioxidant enzyme activity and cell membrane fluidity. The leakage of intracellular compounds (protein, nucleic acid, K+, Mg2+) and Ca2+-ATPase gradually increased as the growth of voltage, especially the proportion of protein in the supernatants increased from 2.0% to 26.4%. Flow cytometry analysis showed that MPEF has significant effect on membrane potential, but no obvious influence on non-specific esterase. MPEF can cause the changing of the secondary structure of protein, at the same time, double helix structure of DNA became loose and unwinding. These results provide a theoretical guidance for the widespread using of MPEF technology in the application of a non-thermal processing technique for food.


Assuntos
Membrana Celular/ultraestrutura , DNA Fúngico/química , Conservação de Alimentos/instrumentação , Proteínas Fúngicas/química , Pichia/ultraestrutura , ATPases Transportadoras de Cálcio , Membrana Celular/química , Estimulação Elétrica , Eletricidade , Citometria de Fluxo , Conservação de Alimentos/métodos , Potenciais da Membrana , Análise em Microsséries , Conformação Molecular , Pichia/fisiologia , Estrutura Secundária de Proteína
15.
Zhongguo Zhong Yao Za Zhi ; 43(4): 731-735, 2018 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29600647

RESUMO

The aim of this research is to investigate the effects of paeoniflorin and menthol on the physiological function of Calu-3 cell membrane during the transport of puerarin. Calu-3 cell was used as the in vitro cell model to simulate nasal mucosa tissues, and the cell membrane fluidity, Na⁺-K⁺-ATPase activity and Ca²âº-ATPase activity were detected by fluorescence recovery after photobleaching(FRAP) and ultramicro enzyme activity testing, in order to explore the mechanism of compatible drugs on promoting puerarin transport. The results showed that when puerarin associated with low, middle and high concentration of menthol or both paeoniflorin and menthol, the fluorescence recovery rate was increased significantly, while Na⁺-K⁺-ATPase activity had no significant change and Ca²âº-ATPase activity was enhanced significantly as compared with puerarin alone. Therefore, it was concluded that menthol had the abilit of promoting the transport and the mechanism might be related to increasing membrane fluidity and activating Ca²âº-ATPase.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Glucosídeos/química , Isoflavonas/metabolismo , Fluidez de Membrana , Mentol/química , Monoterpenos/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Linhagem Celular Tumoral , Membrana Celular , Humanos
16.
Zhongguo Zhong Yao Za Zhi ; 43(4): 786-793, 2018 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29600656

RESUMO

This study aimed to observe the general state and changes in pathophysiological indexes of multiple cerebral infarction rat model with Qi-deficienty and Blood-stasis syndrome. Rats were randomly divided into 4 groups(with 30 in each group): the normal group, the sham group, the model group and the Yiqi Huoxue recipe group. Rats in the model group and Yiqi Huoxue group were provided with interruptable sleep deprivation for 7 days before the multiple cerebral infarction operation, and followed by another 4 weeks of sleep deprivation; rats in the Yiqi Huoxue group were intragastrically administrated with drug at a dose of 26 g·kg⁻¹, once a day for 4 weeks. The general state was observed, and the pathophysiological indexes were measured at 48 h, 2 weeks and 4 weeks after administration. The results showed that rats in the normal group and the sham group represented a good general state and behaviors, with a normal morphological structure of brain tissues; rats in the model group featured yellow fur, depression, accidie, loose stools and movement disorder, with obvious brain histomorphological damage, which became aggravated with the increase of modeling time; rats in the Yiqi Huoxue group showed release in the general state and above indexes. Compared with the sham group at three time points, rats in the model group showed decrease in body weight, exhaustive swimming time and RGB value of tongue surface image, and increase in whole blood viscosity of the shear rate under 5, 60 and 150 S⁻¹, reduction in cerebral cortex Na⁺-K⁺-ATPase, Ca²âº-ATPase activity and contents of 5-HT, rise in TXB2 levels and decline in 6-keto-PGF1a in serum(P<0.05, P<0.01). Compared with the model group, rats in the Yiqi Huoxue group showed alleviations in the above indexes at 2 w and 4 w(P<0.05, P<0.01). The results showed that the characterization and pathophysiological indexes in the multiple cerebral infarction rat model with Qi-deficiency and blood-stasis syndrome were deteriorated; Yiqi Huoxue recipe could significantly alliviate the abnormal conditions, which suggested of the model was stable and reliable and the pathophysiologic evolutionary mechanism might be related to energy metabolism dysfunction, vasoactive substance abnormality and changes in neurotransmitters.


Assuntos
Infarto Cerebral/fisiopatologia , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo Energético , Animais , ATPases Transportadoras de Cálcio/metabolismo , Medicina Tradicional Chinesa , Qi , Ratos , ATPase Trocadora de Sódio-Potássio/metabolismo
17.
Biol Trace Elem Res ; 183(2): 296-304, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28856574

RESUMO

The aim of this experiment is to explore the effects of aluminum chloride (AlCl3) on the ATPase enzymes and gonadotropin receptors in the testes. Eighty male Wistar rats were orally exposed to 0 mg/kg body weight (BW) (control group, CG), 64 mg/kg BW (low-dose group, LG), 128 mg/kg BW (mid-dose group, MG), or 256 mg/kg BW (high-dose group, HG) for 120 days. The microstructure and ultrastructure of testes; the activities of Na+-K+-ATPase, Mg2+-ATPase, and Ca2+-ATPase; and the mRNA and protein expressions of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptors (LHR) in the testes were examined. The results showed that the testes histological structure were damaged; the activities of Na+-K+-ATPase, Mg2+-ATPase, and Ca2+-ATPase, the mRNA and protein expressions of FSHR and LHR in the testes were all decreased in the rats with AlCl3 exposure. It indicates that AlCl3 causes the dysfunction of testes in rats.


Assuntos
Compostos de Alumínio/toxicidade , ATPase de Ca(2+) e Mg(2+)/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Cloretos/toxicidade , Receptores da Gonadotropina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Cloreto de Alumínio , Animais , Masculino , Ratos , Ratos Wistar , Receptores do FSH/metabolismo
18.
Artigo em Chinês | WPRIM | ID: wpr-771667

RESUMO

This study aimed to observe the general state and changes in pathophysiological indexes of multiple cerebral infarction rat model with Qi-deficienty and Blood-stasis syndrome. Rats were randomly divided into 4 groups(with 30 in each group): the normal group, the sham group, the model group and the Yiqi Huoxue recipe group. Rats in the model group and Yiqi Huoxue group were provided with interruptable sleep deprivation for 7 days before the multiple cerebral infarction operation, and followed by another 4 weeks of sleep deprivation; rats in the Yiqi Huoxue group were intragastrically administrated with drug at a dose of 26 g·kg⁻¹, once a day for 4 weeks. The general state was observed, and the pathophysiological indexes were measured at 48 h, 2 weeks and 4 weeks after administration. The results showed that rats in the normal group and the sham group represented a good general state and behaviors, with a normal morphological structure of brain tissues; rats in the model group featured yellow fur, depression, accidie, loose stools and movement disorder, with obvious brain histomorphological damage, which became aggravated with the increase of modeling time; rats in the Yiqi Huoxue group showed release in the general state and above indexes. Compared with the sham group at three time points, rats in the model group showed decrease in body weight, exhaustive swimming time and RGB value of tongue surface image, and increase in whole blood viscosity of the shear rate under 5, 60 and 150 S⁻¹, reduction in cerebral cortex Na⁺-K⁺-ATPase, Ca²⁺-ATPase activity and contents of 5-HT, rise in TXB2 levels and decline in 6-keto-PGF1a in serum(<0.05, <0.01). Compared with the model group, rats in the Yiqi Huoxue group showed alleviations in the above indexes at 2 w and 4 w(<0.05, <0.01). The results showed that the characterization and pathophysiological indexes in the multiple cerebral infarction rat model with Qi-deficiency and blood-stasis syndrome were deteriorated; Yiqi Huoxue recipe could significantly alliviate the abnormal conditions, which suggested of the model was stable and reliable and the pathophysiologic evolutionary mechanism might be related to energy metabolism dysfunction, vasoactive substance abnormality and changes in neurotransmitters.


Assuntos
Animais , Ratos , ATPases Transportadoras de Cálcio , Metabolismo , Infarto Cerebral , Medicamentos de Ervas Chinesas , Farmacologia , Metabolismo Energético , Medicina Tradicional Chinesa , Qi , ATPase Trocadora de Sódio-Potássio , Metabolismo
19.
Mol Vis ; 23: 638-648, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28943754

RESUMO

PURPOSE: Rat pups treated with sodium selenite are typically used as an in vivo model to mimic age-related nuclear cataract. Reactive oxygen species (ROS) production, lipid peroxidation, reduction of antioxidant enzymes, crystalline proteolysis, and apoptosis are considered factors that contribute to pathogenesis of age-related nuclear cataract. In the present study, we investigated whether Pinus densiflora bark extract has potential to prevent cataract formation and elucidated the underlying mechanism. METHODS: Sprague Dawley rats were divided into six groups (n=10). Group 1 rat pups (the control) were treated with only normal saline. The rat pups in groups 2 to 6 were given a subcutaneous injection with sodium selenite (18 µmol/kg bodyweight) on postnatal (P) day 10. Group 3 rat pups (the positive control) were given gastric intubation with curcumin (80 mg/kg bodyweight) on P9, P10, and P11. The rat pups in groups 4 to 6 were given gastric intubation with P. densiflora bark extract 40 mg/kg, 80 mg/kg, and 120 mg/kg, respectively, on P9, P10, and P11. RESULTS: This study showed that P. densiflora bark extract dose-dependently prevented cataract formation. Water-soluble protein, glutathione, superoxide dismutase, glutathione peroxidase, and catalase activity levels were found to be high, and conversely, water-insoluble protein, malondialdehyde, and Ca2+-ATPase were found to be low in the groups treated with P. densiflora bark extract compared to group 2. Real-time PCR analysis showed αA-crystalline, lens-specific m-calpain (Lp84), lens-specific intermediates (filensin and phakinin), and antiapoptotic factor (Bcl-2) were downregulated, and the apoptotic factors (caspase-3 and Bax) and plasma membrane Ca2+-ATPase (PMCA-1) were upregulated in group 2 compared to group 1. P. densiflora bark extract regulated the imbalance of these genes. The increased cleavage form of caspase-3 was lowered in the groups treated with P. densiflora bark extract. In conclusion, P. densiflora bark extract prevented selenite-induced cataract formation via regulating antioxidant enzymes, inhibiting m-calpain-induced proteolysis, and apoptosis, and thus, maintained the transparency of the lens. CONCLUSIONS: These results suggested that P. densiflora bark extract could be a new agent for preventing age-related nuclear cataract.


Assuntos
Catarata/prevenção & controle , Cristalino/efeitos dos fármacos , Fitoterapia , Pinus , Casca de Planta/química , Extratos Vegetais/uso terapêutico , Animais , ATPases Transportadoras de Cálcio/metabolismo , Catalase/metabolismo , Catarata/induzido quimicamente , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Cristalino/metabolismo , Cristalino/patologia , Malondialdeído/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Selenito de Sódio/toxicidade , Superóxido Dismutase/metabolismo
20.
PLoS Genet ; 13(7): e1006892, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28692648

RESUMO

Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system. Compared to wild-type animals, mutant adult animals developed significantly higher systemic Mn levels, and Mn accumulated in the brain and liver of mutant embryos in response to exogenous Mn. Interestingly, slc30a10 mutants developed neurological deficits in adulthood, as well as environmental Mn-induced manganism in the embryonic stage; moreover, mutant animals had impaired dopaminergic and GABAergic signaling. Finally, mutant animals developed steatosis, liver fibrosis, and polycythemia accompanied by increased epo expression. This phenotype was rescued partially by EDTA- CaNa2 chelation therapy and iron supplementation. Interestingly, prior to the onset of slc30a10 expression, expressing ATP2C1 (ATPase secretory pathway Ca2+ transporting 1) protected mutant embryos from Mn exposure, suggesting a compensatory role for Atp2c1 in the absence of Slc30a10. Notably, expressing either wild-type or mutant forms of SLC30A10 was sufficient to inhibit the effect of ATP2C1 in response to Mn challenge in both zebrafish embryos and HeLa cells. These findings suggest that either activating ATP2C1 or restoring the Mn-induced trafficking of ATP2C1 can reduce Mn accumulation, providing a possible target for treating HMDPC.


Assuntos
ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte de Cátions/genética , Homeostase/genética , Manganês/metabolismo , Doenças Metabólicas/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions/deficiência , Genótipo , Células HeLa , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Mutação , Peixe-Zebra/genética , Transportador 8 de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA