Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 564, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964203

RESUMO

BACKGROUND: Justicia L. is the largest genus in Acanthaceae Juss. and widely distributed in tropical and subtropical regions of the world. Previous phylogenetic studies have proposed a general phylogenetic framework for Justicia based on several molecular markers. However, their studies were mainly focused on resolution of phylogenetic issues of Justicia in Africa, Australia and South America due to limited sampling from Asia. Additionally, although Justicia plants are of high medical and ornamental values, little research on its genetics was reported. Therefore, to improve the understanding of its genomic structure and relationships among Asian Justicia plants, we sequenced complete chloroplast (cp.) genomes of 12 Asian plants and combined with the previously published cp. genome of Justicia leptostachya Hemsl. for further comparative genomics and phylogenetic analyses. RESULTS: All the cp. genomes exhibit a typical quadripartite structure without genomic rearrangement and gene loss. Their sizes range from 148,374 to 151,739 bp, including a large single copy (LSC, 81,434-83,676 bp), a small single copy (SSC, 16,833-17,507 bp) and two inverted repeats (IR, 24,947-25,549 bp). GC contents range from 38.1 to 38.4%. All the plastomes contain 114 genes, including 80 protein-coding genes, 30 tRNAs and 4 rRNAs. IR variation and repetitive sequences analyses both indicated that Justicia grossa C. B. Clarke is different from other Justicia species because its lengths of ndhF and ycf1 in IRs are shorter than others and it is richest in SSRs and dispersed repeats. The ycf1 gene was identified as the candidate DNA barcode for the genus Justicia. Our phylogenetic results showed that Justicia is a polyphyletic group, which is consistent with previous studies. Among them, J. grossa belongs to subtribe Tetramerinae of tribe Justicieae while the other Justicia members belong to subtribe Justiciinae. Therefore, based on morphological and molecular evidence, J. grossa should be undoubtedly recognized as a new genus. Interestingly, the evolutionary history of Justicia was discovered to be congruent with the morphology evolution. CONCLUSION: Our study not only elucidates basic features of Justicia whole plastomes, but also sheds light on interspecific relationships of Asian Justicia plants for the first time.


Assuntos
Acanthaceae , Genoma de Cloroplastos , Genomas de Plastídeos , Justicia , Justicia/genética , Acanthaceae/genética , Filogenia , Genoma de Cloroplastos/genética , Genômica
2.
Sci Rep ; 12(1): 1683, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102225

RESUMO

Thunbergia coccinea Wall. ex D. Don being a rare, ornamental and medicinal plant of India, is needed to propagate for conserving the germplasm and analyzing its phytochemical compounds in the future. A reliable protocol for direct in vitro propagation using nodal shoot meristem of T. coccinea as explant was standardized. The highest number of shoots per explant (22.17 ± 0.54) with maximum shoot length (2.36 ± 0.28) in cm was obtained in Murashige and Skoog (MS) medium supplemented with 9.70 µM of 6-furfurylaminopurine (Kinetin) and 0.053 µM of α-naphthaleneacetic acid (NAA) combination, among all the different plant growth regulators (PGR's) and concentrations tested. The aforesaid PGR's combination was optimum for axillary shoot bud induction and multiplication in T. coccinea. The best rooting was observed on the half-strength MS medium fortified with 2.68 µM NAA with the highest number of roots per shoot (3.75 ± 0.12) and maximum length (5.22 ± 0.32) in cm. All the in vitro raised plantlets were acclimatized in sterile sand and soil mixture (1:1) with a survival rate of 70% on earthen pots under greenhouse conditions. PCR-based RAPD (Random Amplified Polymorphic DNA) and ISSR (Inter-Simple Sequence Repeat) molecular markers were employed to determine the genetic homogeneity amongst the plantlets. Twelve (12) RAPD and nine (9) ISSR primers developed a total of 104 and 91 scorable bands, respectively. The band profiles of micropropagated plantlets were monomorphic to the mother, donor in vivo plant, and similarity values varied from 0.9542-1.000. The dendrogram generated through UPGMA (unweighted pair group method with arithmetic mean) showed 99% similarities amongst all tested plants confirming the genetic uniformity of in vitro raised plants.


Assuntos
Acanthaceae/genética , DNA de Plantas/genética , Genes de Plantas , Genoma de Planta , Meristema/genética , Repetições de Microssatélites , Técnica de Amplificação ao Acaso de DNA Polimórfico , Acanthaceae/efeitos dos fármacos , Acanthaceae/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Instabilidade Genômica , Genótipo , Cinetina/farmacologia , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Ácidos Naftalenoacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia
3.
Plant J ; 104(4): 864-879, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32981147

RESUMO

Natural plant dyes have been developed and used across many traditional societies worldwide. The blue pigment indigo has seen widespread usage across South America, Egypt, Europe, India and China for thousands of years, mainly extracted from indigo-rich plants. The utilization and genetic engineering of indigo in industries and ethnobotanical studies on the effects of cultural selection on plant domestication are limited due to lack of relevant genetic and genomic information of dye plants. Strobilanthes cusia (Acanthaceae) is a typical indigo-rich plant important to diverse ethnic cultures in many regions of Asia. Here we present a chromosome-scale genome for S. cusia with a genome size of approximately 865 Mb. About 79% of the sequences were identified as repetitive sequences and 32 148 protein-coding genes were annotated. Metabolic analysis showed that the main indigoid pigments (indican, indigo and indirubin) were mainly synthesized in the leaves and stems of S. cusia. Transcriptomic analysis revealed that the expression level of genes encoding metabolic enzymes such as monooxygenase, uridine diphosphate-glycosyltransferase and ß-glucosidase were significantly changed in leaves and stems compared with root tissues, implying their participation in indigo biosynthesis. We found that several gene families involved in indigo biosynthesis had undergone an expansion in number, with functional differentiation likely facilitating indigo biosynthesis in S. cusia. This study provides insight into the physiological and molecular bases of indigo biosynthesis, as well as providing genomic data that provide the basis for further study of S. cusia cultivation by Asia's traditional textile producers.


Assuntos
Acanthaceae/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Índigo Carmim/metabolismo , Acanthaceae/química , Acanthaceae/fisiologia , Evolução Molecular , Perfilação da Expressão Gênica , Indóis/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/fisiologia , Caules de Planta/química , Caules de Planta/genética , Caules de Planta/fisiologia , Plantas Medicinais
4.
Biomed Res Int ; 2019: 4370258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467890

RESUMO

The complete chloroplast genome of J. flava, an endangered medicinal plant in Saudi Arabia, was sequenced and compared with cp genome of three Acanthaceae species to characterize the cp genome, identify SSRs, and also detect variation among the cp genomes of the sampled Acanthaceae. NOVOPlasty was used to assemble the complete chloroplast genome from the whole genome data. The cp genome of J. flava was 150, 888bp in length with GC content of 38.2%, and has a quadripartite structure; the genome harbors one pair of inverted repeat (IRa and IRb 25, 500bp each) separated by large single copy (LSC, 82, 995 bp) and small single copy (SSC, 16, 893 bp). There are 132 genes in the genome, which includes 80 protein coding genes, 30 tRNA, and 4 rRNA; 113 are unique while the remaining 19 are duplicated in IR regions. The repeat analysis indicates that the genome contained all types of repeats with palindromic occurring more frequently; the analysis also identified total number of 98 simple sequence repeats (SSR) of which majority are mononucleotides A/T and are found in the intergenic spacer. The comparative analysis with other cp genomes sampled indicated that the inverted repeat regions are conserved than the single copy regions and the noncoding regions show high rate of variation than the coding region. All the genomes have ndhF and ycf1 genes in the border junction of IRb and SSC. Sequence divergence analysis of the protein coding genes showed that seven genes (petB, atpF, psaI, rpl32, rpl16, ycf1, and clpP) are under positive selection. The phylogenetic analysis revealed that Justiceae is sister to Ruellieae. This study reported the first cp genome of the largest genus in Acanthaceae and provided resources for studying genetic diversity of J. flava as well as resolving phylogenetic relationships within the core Acanthaceae.


Assuntos
Acanthaceae/genética , Evolução Molecular , Genoma de Cloroplastos/genética , Justicia/genética , Acanthaceae/classificação , Cloroplastos/genética , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Filogenia , Sequenciamento Completo do Genoma
5.
PLoS One ; 13(7): e0199788, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975733

RESUMO

Baphicacanthus cusia (Nees) Bremek is an herb widely used for the clinical treatment of colds, fever, and influenza in Traditional Chinese Medicine. The roots, stems and leaves can be used as natural medicine, in which indigo and indirubin are two main active ingredients. In this study, quantification of indigo, indirubin, indican and adenosine among various tissues of B. cusia was conducted using HPLC-DAD. Leaves have significantly higher contents than stems and roots (380.66, 315.15, 20,978.26, 4323.15 µg/g in leaves, 306.36, 71.71, 3,056.78, 139.45 µg/g in stems, and 9.31, 7.82, 170.45, 197.48 µg/g in roots, respectively). De novo transcriptome sequencing of B. cusia was performed for the first time. The sequencing yielded 137,216,248, 122,837,394 and 140,240,688 clean reads from leaves, stems and roots respectively, which were assembled into 51,381 unique sequences. A total of 33,317 unigenes could be annotated using the databases of Nr, Swiss-Prot, KEGG and KOG. These analyses provided a detailed view of the enzymes involved in indican backbone biosynthesis, such as cytochrome P450, UDP-glycosyltransferase, glucosidase and tryptophan synthase. Analysis results showed that tryptophan synthase was the candidate gene involved in the tissue-specific biosynthesis of indican. We also detected sixteen types of simple sequence repeats in RNA-Seq data for use in future molecular mark assisted breeding studies. The results will be helpful in further analysis of B. cusia functional genomics, especially in increasing biosynthesis of indican through biotechnological approaches and metabolic regulation.


Assuntos
Acanthaceae/genética , Regulação da Expressão Gênica de Plantas , Indicã/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Acanthaceae/crescimento & desenvolvimento , Acanthaceae/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo
6.
BMC Complement Altern Med ; 17(1): 437, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28859638

RESUMO

BACKGROUND: A variety of plants in Acanthaceae have long been used in traditional Thai ailment and commercialised with significant economic value. Nowadays medicinal plants are sold in processed forms and thus morphological authentication is almost impossible. Full identification requires comparison of the specimen with some authoritative sources, such as a full and accurate description and verification of the species deposited in herbarium. Intake of wrong herbals can cause adverse effects. Identification of both raw materials and end products is therefore needed. METHODS: Here, the potential of a DNA-based identification method, called Bar-HRM (DNA barcoding coupled with High Resolution Melting analysis), in raw material species identification is investigated. DNA barcode sequences from five regions (matK, rbcL, trnH-psbA spacer region, trnL and ITS2) of Acanthaceae species were retrieved for in silico analysis. Then the specific primer pairs were used in HRM assay to generate unique melting profiles for each plants species. RESULTS: The method allows identification of samples lacking necessary morphological parts. In silico analyses of all five selected regions suggested that ITS2 is the most suitable marker for Bar-HRM in this study. The HRM analysis on dried samples of 16 Acanthaceae medicinal species was then performed using primer pair derived from ITS2 region. 100% discrimination of the tested samples at both genus and species level was observed. However, two samples documented as Clinacanthus nutans and Clinacanthus siamensis were recognised as the same species from the HRM analysis. Further investigation reveals that C. siamensis is now accepted as C. nutans. CONCLUSIONS: The results here proved that Bar-HRM is a promising technique in species identification of the studied medicinal plants in Acanthaceae. In addition, molecular biological data is currently used in plant taxonomy and increasingly popular in recent years. Here, DNA barcode sequence data should be incorporated with morphological characters in the species identification.


Assuntos
Acanthaceae/classificação , Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/genética , Plantas Medicinais/classificação , Acanthaceae/genética , Plantas Medicinais/genética , Tailândia
7.
Ann Bot ; 119(7): 1143-1155, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334177

RESUMO

Background and Aims: The serial homology of floral structures has made it difficult to assess the relative contributions of selection and constraint to floral integration. The interpretation of floral integration may also be clouded by the tacit, but largely untested, assumption that genetic and environmental perturbations affect trait correlations in similar ways. In this study, estimates of both the genetic and environmental correlations between components of the hawkmoth pollination syndrome are presented for chasmogamous flowers of Ruellia humilis , including two levels of control for serial homology. Methods: A greenhouse population for quantitative genetic analysis was generated by a partial diallel cross between field-collected plants. An average of 634 chasmogamous flowers were measured for each of eight floral traits that contribute to the hawkmoth syndrome. Genetic correlations (across parents) and environmental correlations (across replicate flowers) were estimated by restricted maximum likelihood. Key Results: Stigma height, anther height and floral tube length were very tightly integrated in their responses to both genetic and environmental perturbations. The inclusion of floral disc width as a control for serial homology suggests this integration is an adaptive response to correlational selection imposed by pollinators. In contrast, integration of non-homologous traits was low. Furthermore, when comparisons between the dimensions of serially homologous structures were excluded, the genetic and environmental correlation matrices showed little congruence. Conclusions: The results suggest that hawkmoths have imposed strong correlational selection on floral traits involved in the deposition and removal of pollen, and that this is a consequence of stabilizing selection on the relative positions of stigmas and anthers in the face of substantial flower size variation. Low integration of other floral traits, and conflicting patterns of genetic and environmental correlations among these traits, suggest weak or no correlational selection within the range of variability expressed within a population.


Assuntos
Acanthaceae/fisiologia , Flores/fisiologia , Mariposas , Polinização , Seleção Genética , Acanthaceae/genética , Animais , Cruzamentos Genéticos , Pólen
8.
BMC Complement Altern Med ; 15: 162, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-26024888

RESUMO

BACKGROUND: Nowadays, medicinal plants are used as a popular alternative to synthetic drugs. Many medicinal plant products have now been commercialized throughout various markets. These products are commonly sold in processed or modified forms such as powders, dried material and capsules, making it almost impossible to accurately identify the constituent species. The herbal plant known as 'Rang Chuet' in Thai has been widely used as remedies for various ailments. However, two medicinal plants species, Thunbergia laurifolia and Crotalaria spectabilis share this name. Duo to the similarity in nomenclature, the commercial products labeled as 'Rang Chuet' could be any of them. Recently, the evidence of hepatotoxic effects linked to use of C. spectabilis were reported and is now seriously concern. There is a need to find an approach that could help with species identification of these herbal products to ensure the safety and efficacy of the herbal drug. METHODS: Here DNA barcoding was used in combination with High Resolution Melting analysis (Bar-HRM) to authenticate T. laurifolia species. Four DNA barcodes including matK, rbcL, rpoC and trnL were selected for use in primers design for HRM analysis to produce standard melting profiles of the selected species. Commercial products labeled as 'Rang Chuet' were purchased from Thai markets and authentication by HRM analyses. RESULTS: Melting data from the HRM assay using the designed primers showed that the two 'Rang Chuet' species could easily be distinguished from each other. The melting profiles of the all four region amplicons of each species are clearly separated in all three replicates. The method was then applied to authenticate products in powdered form. HRM curves of all ten test samples indicated that three of the tested products did not only contain the T. laurifolia species. CONCLUSION: The herbal drugs derived from different plants must be distinguished from each other even they share the same vernacular name. The Bar-HRM method developed here proved useful in the identification and authentication of herbal species in processed samples. In the future, species authentication through Bar-HRM could be used to promote consumer trust, as well as raising the quality of herbal products.


Assuntos
Acanthaceae/genética , Crotalaria/genética , Código de Barras de DNA Taxonômico/métodos , DNA de Plantas , Contaminação de Medicamentos , Preparações de Plantas/análise , Plantas Medicinais/genética , Humanos
9.
PLoS One ; 10(5): e0128476, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26011474

RESUMO

Medicinal plants are used as a popular alternative to synthetic drugs, both in developed and developing countries. The economic importance of the herbal and natural supplement industry is increasing every year. As the herbal industry grows, consumer safety is one issue that cannot be overlooked. Herbal products in Thai local markets are commonly sold without packaging or labels. Plant powders are stored in large bags or boxes, and therefore buying local herbal products poses a high risk of acquiring counterfeited, substituted and/or adulterated products. Due to these issues, a reliable method to authenticate products is needed. Here DNA barcoding was used in combination with High Resolution Melting analysis (Bar-HRM) to authenticate three medicinal Acanthaceae species (Acanthus ebracteatus, Andrographis paniculata and Rhinacanthus nasutus) commonly used in Thailand. The rbcL barcode was selected for use in primers design for HRM analysis to produce standard melting profiles of the selected species. Melting data from the HRM assay using the designed rbcL primers showed that the three chosen species could be distinguished from each other. HRM curves of all fifteen test samples indicated that three of tested products did not contain the indicated species. Two closely related species (A. paniculata and R. nasutus), which have a high level of morphological similarity, were interchanged with one another in three tested products. Incorrect information on packaging and labels of the tested herbal products was the cause of the results shown here. Morphological similarity among the species of interest also hindered the collection process. The Bar-HRM method developed here proved useful in aiding in the identification and authentication of herbal species in processed samples. In the future, species authentication through Bar-HRM could be used to promote consumer trust, as well as raising the quality of herbal products.


Assuntos
Acanthaceae/classificação , Código de Barras de DNA Taxonômico/métodos , Plantas Medicinais/classificação , Acanthaceae/genética , Qualidade de Produtos para o Consumidor , DNA de Plantas/genética , Plantas Medicinais/genética , Tailândia
10.
Syst Biol ; 63(5): 660-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24733412

RESUMO

More than a decade of phylogenetic research has yielded a well-sampled, strongly supported hypothesis of relationships within the large ( > 4000 species) plant family Acanthaceae. This hypothesis points to intriguing biogeographic patterns and asymmetries in sister clade diversity but, absent a time-calibrated estimate for this evolutionary history, these patterns have remained unexplored. Here, we reconstruct divergence times within Acanthaceae using fossils as calibration points and experimenting with both fossil selection and effects of invoking a maximum age prior related to the origin of Eudicots. Contrary to earlier reports of a paucity of fossils of Lamiales (an order of ∼ 23,000 species that includes Acanthaceae) and to the expectation that a largely herbaceous to soft-wooded and tropical lineage would have few fossils, we recovered 51 reports of fossil Acanthaceae. Rigorous evaluation of these for accurate identification, quality of age assessment and utility in dating yielded eight fossils judged to merit inclusion in analyses. With nearly 10 kb of DNA sequence data, we used two sets of fossils as constraints to reconstruct divergence times. We demonstrate differences in age estimates depending on fossil selection and that enforcement of maximum age priors substantially alters estimated clade ages, especially in analyses that utilize a smaller rather than larger set of fossils. Our results suggest that long-distance dispersal events explain present-day distributions better than do Gondwanan or northern land bridge hypotheses. This biogeographical conclusion is for the most part robust to alternative calibration schemes. Our data support a minimum of 13 Old World (OW) to New World (NW) dispersal events but, intriguingly, only one in the reverse direction. Eleven of these 13 were among Acanthaceae s.s., which comprises > 90% of species diversity in the family. Remarkably, if minimum age estimates approximate true history, these 11 events occurred within the last ∼ 20 myr even though Acanthaceae s.s is over 3 times as old. A simulation study confirmed that these dispersal events were significantly skewed toward the present and not simply a chance occurrence. Finally, we review reports of fossils that have been assigned to Acanthaceae that are substantially older than the lower Cretaceous estimate for Angiosperms as a whole (i.e., the general consensus that has resulted from several recent dating and fossil-based studies in plants). This is the first study to reconstruct divergence times among clades of Acanthaceae and sets the stage for comparative evolutionary research in this and related families that have until now been thought to have extremely poor fossil resources.


Assuntos
Acanthaceae/classificação , Fósseis , Acanthaceae/genética , DNA Espaçador Ribossômico/genética , Genes de Plantas/genética , Filogenia , Pólen/citologia , Tempo
11.
Asian Pac J Trop Biomed ; 3(4): 284-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23620852

RESUMO

OBJECTIVE: To distinguish the difference among the Clinacanthus nutans (Burm. f.) Lindau (C. nutans) and Clinacanthus siamensis Bremek (C. siamensis) by assessing pharmacognosy characteristics, molecular aspect and also to evaluate their anti-herpes simplex virus (HSV) type 1 and type 2 activities. METHODS: Macroscopic and microscopic evaluation were performed according to WHO Geneva guideline. Stomatal number, stomatal index and palisade ratio of leaves were evaluated. Genomic DNA was extracted by modified CTAB method and ITS region was amplified using PCR and then sequenced. Dry leaves were subsequently extracted with n-hexane, dichloromethane and methanol and antiviral activity was performed using plaque reduction assay and the cytotoxicity of the extracts on Vero cells was determined by MTT assay. RESULTS: Cross section of midrib and stem showed similar major components. Leaf measurement index of stomatal number, stomatal index and palisade ratio of C. nutans were 168.32±29.49, 13.83±0.86 and 6.84±0.66, respectively, while C. siamensis were 161.60±18.04, 11.93±0.81 and 3.37±0.31, respectively. The PCR amplification of ITS region generated the PCR product approximately 700 bp in size. There were 34 polymorphisms within the ITS region which consisted of 11 Indels and 23 nucleotide substitutions. The IC50 values of C. nutans extracted with n-hexane, dichloromethane and methanol against HSV-1 were (32.05±3.63) µg/mL, (44.50±2.66) µg/mL, (64.93±7.00) µg/mL, respectively where as those of C. siamensis were (60.00±11.61) µg/mL, (55.69±4.41) µg/mL, (37.39±5.85) µg/mL, respectively. Anti HSV-2 activity of n-hexane, dichloromethane and methanol C. nutans leaves extracts were (72.62±12.60) µg/mL, (65.19±21.45) µg/mL, (65.13±2.22) µg/mL, respectively where as those of C. siamensis were (46.52±4.08) µg/mL, (49.63±2.59) µg/mL, (72.64±6.52) µg/mL, respectively. CONCLUSIONS: The combination of macroscopic, microscopic and biomolecular method are able to authenticate these closely related plants and both of them have a potency to be an anti-HSV agent.


Assuntos
Acanthaceae/química , Antivirais/farmacologia , Extratos Vegetais/farmacologia , Simplexvirus/efeitos dos fármacos , Acanthaceae/genética , Antivirais/química , Flores/química , Flores/citologia , Flores/genética , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Fenótipo , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/citologia , Folhas de Planta/genética , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
12.
PLoS One ; 8(1): e55677, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383261

RESUMO

Gene flow between closely related species is a frequent phenomenon that is known to play important roles in organismal evolution. Less clear, however, is the importance of hybridization between distant relatives. We present molecular and morphological evidence that support origin of the plant genus Physacanthus via "wide hybridization" between members of two distantly related lineages in the large family Acanthaceae. These two lineages are well characterized by very different morphologies yet, remarkably, Physacanthus shares features of both. Chloroplast sequences from six loci indicate that all three species of Physacanthus contain haplotypes from both lineages, suggesting that heteroplasmy likely predated speciation in the genus. Although heteroplasmy is thought to be unstable and thus transient, multiple haplotypes have been maintained through time in Physacanthus. The most likely scenario to explain these data is that Physacanthus originated via an ancient hybridization event that involved phylogenetically distant parents. This wide hybridization has resulted in the establishment of an independently evolving clade of flowering plants.


Assuntos
Acanthaceae/genética , Evolução Molecular , Hibridização Genética , Acanthaceae/classificação , Fluxo Gênico , Genes de Cloroplastos , Variação Genética , Fenótipo , Filogenia , Pólen/ultraestrutura
13.
Am J Bot ; 99(6): 967-82, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22575370

RESUMO

PREMISE OF THE STUDY: Anatomical and morphological features of Satanocrater were studied to test hypotheses of xeric adaptations in the genus, which is endemic to arid tropical Africa. These features, together with molecular data, were used to test the phylogenetic placement of Satanocrater within the large plant family Acanthaceae. METHODS: We undertook a comparative study of four species of Satanocrater. Carbon isotope ratios were generated to test a hypothesis of C(4) photosynthesis. Molecular data from chloroplast (trnG-trnS, trnG-trnR, psbA-trnH) and nuclear (Eif3E) loci were used to test the placement of Satanocrater within Acanthaceae. KEY RESULTS: Anatomical features reflecting xeric adaptations of species of Satanocrater included a thick-walled epidermis, thick cuticle, abundant trichomes and glandular scales, stomata overarched by subsidiary cells, tightly packed mesophyll cells, and well-developed palisade parenchyma on both leaf surfaces. Although two species had enlarged bundle sheath cells, a feature often implicated in C(4) photosynthesis, isotope ratios indicated all species of Satanocrater use the C(3) pathway. Molecular data resolved Satanocrater within tribe Ruellieae with strong support. Within Ruellieae, our data suggest that pollen morphology of Satanocrater may represent an intermediate stage in a transition series. CONCLUSIONS: Anatomical and morphological features of Satanocrater reflect adaptation to xeric environments and add new information about the biology of xerophytes. Morphological and molecular data place Satanocrater in the tribe Ruellieae with confidence. This study adds to our capacity to test hypotheses of broad evolutionary and ecological interest in a diverse and important family of flowering plants.


Assuntos
Acanthaceae/genética , Núcleo Celular/genética , Genes de Cloroplastos/genética , Filogenia , Proteínas de Plantas/genética , Acanthaceae/anatomia & histologia , Acanthaceae/classificação , Adaptação Fisiológica/genética , África , DNA de Plantas/química , DNA de Plantas/genética , Clima Desértico , Evolução Molecular , Variação Genética , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Fotossíntese/genética , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/genética , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética , Estômatos de Plantas/ultraestrutura , Pólen/anatomia & histologia , Pólen/genética , Pólen/ultraestrutura , Análise de Sequência de DNA , Especificidade da Espécie
14.
Zhong Yao Cai ; 33(2): 183-6, 2010 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-20575408

RESUMO

OBJECTIVE: To explore the genetic diversity of germplasm resources of Baphicacanthus cusia on molecular leve. METHODS: The molecular biological technique-random amplified polymorphic DNA (RAPD) were used. RESULTS: 104 random decamer primers were screened for RAPD fragments of Baphicacanthus cusia. 422 DNA bands were amplified by 12 primers, 55.69% products were found to be polymorphic. Base on UPGMA cluster analysis, a DNA molecular dendrogram was established to discuss the genetic diversity of the germplasm resources of Baphicacanthus cusia. The genetic differences are related to morphological differences on a certain extant, but not to geographic regions. CONCLUSION: There actually existed much genetic diversity on molecular level among different natural populations of Baphicacanthus cusia.


Assuntos
Acanthaceae/genética , DNA de Plantas/genética , Plantas Medicinais/genética , Polimorfismo Genético , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Acanthaceae/classificação , Acanthaceae/crescimento & desenvolvimento , Sequência de Bases , Análise por Conglomerados , Primers do DNA/genética , Filogenia , Folhas de Planta/genética , Plantas Medicinais/crescimento & desenvolvimento
15.
Evolution ; 61(1): 111-24, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17300431

RESUMO

In some areas of sympatry, reproductively compatible plant species hybridize, but in other areas of sympatry, they do not and they remain reproductively isolated from one another. Explanations offered to explain patterns of hybridization that vary by population have usually focused on genetic or environmental factors. Instead, we examined whether different community contexts might change pollinator preference and constancy and thus influence the likelihood of hybridization among three Indian paintbrush species (Castilleja miniata, C. rhexifolia, and C. sulphurea). To determine whether visitation was context-dependent, we observed pollinator behavior in experimental arrays (constructed using flowering stems of the three Indian paintbrush species) in different contexts. Contexts were defined by which Castilleja species occurred in the immediate neighborhood of the arrays. Specifically, we asked, does visitation to particular species in the arrays depend on context? In general, each Castilleja species was preferred when it matched the surrounding community context, as is predicted by optimal foraging theory. More interestingly, pollinator constancy was weakened in the hybrid context (an area where the three species co-occurred with morphologically intermediate plants), which is likely to increase pollen flow among the species. Reduced pollinator constancy in hybrid zones could set up a positive feedback loop in which more flower diversity is created through hybridization, decreasing pollinator constancy, and leading to more hybridization. This self-reinforcing mechanism could lead to "hybridization hot spots" and to a patchy distribution of hybrid populations. We expect that this mechanism may be important in other animal-pollinated plant hybrid zones.


Assuntos
Acanthaceae/genética , Comportamento Apetitivo/fisiologia , Aves/fisiologia , Hibridização Genética , Insetos/fisiologia , Análise de Variância , Animais , Colorado , Demografia , Análise dos Mínimos Quadrados , Pólen/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA