Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
BMC Plant Biol ; 24(1): 284, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627650

RESUMO

BACKGROUND: Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production. RESULTS: In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 ß-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China. CONCLUSION: This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.


Assuntos
Acer , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Acer/genética , Acer/metabolismo , Ácidos Graxos Insaturados/metabolismo , Sementes , Metaboloma , Óleos de Plantas/metabolismo
2.
Poult Sci ; 102(10): 102951, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562124

RESUMO

This study investigated the appropriate way of dietary Acer truncatum leaves (ATL) addition, the effect of disease prevention and its mechanism of action. In experiment 1, 192 Arbor Acres broilers were assigned to 4 treatment groups, fed with basal diets containing 2% bran, replacing it with primary and fermented ATL, and additional 0.3% ATL extract to the basal diet for 42 d, respectively. In experiment 2, 144 broilers were assigned to 3 treatment groups for 21-d trial: (1) C-N group, basal diets, and injected with 0.9% (w/v) sterile saline; (2) C-L group, basal diets, and injected with lipopolysaccharide (LPS); (3) T-L group, ATL diets and injected with LPS. In experiment 1, ATL significantly decreased the index of abdominal fat at 42 d (P < 0.05). ATL extract had a better ability to improve antioxidant capacity and reduce inflammatory levels among all treatment groups, which significantly decreased the content of MDA in the liver and ileum mucosa at 21 d, and increased the expression of IL-10 and Occludin in jejunal mucosa at 42 d (P < 0.05). In experiment 2, ATL significantly increased the level of T-AOC in the liver, decreased the expression of NF-κB in the jejunal mucosa and ileum mucosa (P < 0.05), and restored LPS-induced the changed level of CAT in jejunal mucosa, the expression of IL-6, Claudin-1, and ZO-1 in jejunal mucosa and IL-1ß in ileum mucosa (P < 0.05). Analysis of gut microbiota indicated that ATL enhanced the abundances of Bacteroidota and reduced the proportion of Firmicutes (P < 0.05), and the changed levels of T-AOC in body, IL-1ß, IL-6, IL-10, and NF-κB in jejunum mucosa and propionic acid in cecal were associated with gut microbiota. Collectively, our data showed that the extract of ATL had a better antioxidant and anti-inflammatory effects than primality and fermented. Extraction of ATL modulated intestinal microbiota, and had a protective effect on oxidative stress, inflammation, and intestinal barrier function in broilers challenged with LPS.


Assuntos
Acer , Microbioma Gastrointestinal , Animais , Acer/metabolismo , Ração Animal/análise , Antioxidantes/metabolismo , Galinhas/metabolismo , Dieta , Suplementos Nutricionais/análise , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/veterinária , Interleucina-10 , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo
3.
Tree Physiol ; 43(7): 1118-1129, 2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040317

RESUMO

Few previous studies have described the patterns of leaf characteristics in response to nutrient availability and depth in the crown. Sugar maple has been studied for both sensitivity to light, as a shade-tolerant species, and sensitivity to soil nutrient availability, as a species in decline due to acid rain. To explore leaf characteristics from the top to bottom of the canopy, we collected leaves along a vertical gradient within mature sugar maple crowns in a full-factorial nitrogen (N) by phosphorus (P) addition experiment in three forest stands in central New Hampshire, USA. Thirty-two of the 44 leaf characteristics had significant relationships with depth in the crown, with the effect of depth in the crown strongest for leaf area, photosynthetic pigments and polyamines. Nitrogen addition had a strong impact on the concentration of foliar N, chlorophyll, carotenoids, alanine and glutamate. For several other elements and amino acids, N addition changed patterns with depth in the crown. Phosphorus addition increased foliar P and boron (B); it also caused a steeper increase of P and B with depth in the crown. Since most of these leaf characteristics play a direct or indirect role in photosynthesis, metabolic regulation or cell division, studies that ignore the vertical gradient may not accurately represent whole-canopy performance.


Assuntos
Acer , Luz , Acer/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Árvores/fisiologia
4.
BMC Plant Biol ; 22(1): 29, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35026989

RESUMO

BACKGROUND: Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). The species is admired as a landscape plant with high developmental prospects and scientific research value. The A. truncatum chloroplast genome has recently been reported; however, the mitochondrial genome (mitogenome) is still unexplored. RESULTS: We characterized the A. truncatum mitogenome, which was assembled using reads from PacBio and Illumina sequencing platforms, performed a comparative analysis against different species of Acer. The circular mitogenome of A. truncatum has a length of 791,052 bp, with a base composition of 27.11% A, 27.21% T, 22.79% G, and 22.89% C. The A. truncatum mitogenome contains 62 genes, including 35 protein-coding genes, 23 tRNA genes and 4 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the A. truncatum mitogenome. To determine the evolutionary and taxonomic status of A. truncatum, we conducted a phylogenetic analysis based on the mitogenomes of A. truncatum and 25 other taxa. In addition, the gene migration from chloroplast and nuclear genomes to the mitogenome were analyzed. Finally, we developed a novel NAD1 intron indel marker for distinguishing several Acer species. CONCLUSIONS: In this study, we assembled and annotated the mitogenome of A. truncatum, a woody oil-tree species producing nervonic acid. The results of our analyses provide comprehensive information on the A. truncatum mitogenome, which would facilitate evolutionary research and molecular barcoding in Acer.


Assuntos
Acer/genética , Acer/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Genoma Mitocondrial , Óleos de Plantas/metabolismo , Árvores/genética , Variação Genética , Filogenia
5.
Mol Vis ; 26: 691-704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088173

RESUMO

Purpose: The present study aimed to determine whether the administration of Acer palmatum thumb. leaf extract (KIOM-2015E) protects against the degeneration of rat retinal ganglion cells after ischemia/reperfusion (I/R) induced by midbrain cerebral artery occlusion (MCAO). Methods: Sprague-Dawley rats were subjected to 90 min of MCAO, which produces transient ischemia in both the retina and brain due to the use of an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. This was followed by reperfusion under anesthesia with isoflurane. The day after surgery, the eyes were treated three times (eye drop) or one time (oral administration) daily with KIOM-2015E for five days. Retinal histology was assessed in flat mounts and vertical sections to determine the effect of KIOM-2015E on I/R injury. Results: A significant loss of brain-specific homeobox/POU domain protein 3A (Brn3a) and neuron-specific class III beta-tubulin (Tuj-1) fluorescence and a marked increase in glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) expression were observed after five days in the PBS-treated MCAO group compared to the sham-operated control group. However, KIOM-2015E treatment reduced (1) MCAO-induced upregulation of GFAP and GS, (2) retinal ganglion cell loss, (3) nerve fiber degeneration, and (4) the number of TUNEL-positive cells. KIOM-2015E application also increased staining for parvalbumin (a marker of horizontal cell associated calcium-binding protein and amacrine cells) and recoverin (a marker of photoreceptor expression) in rats subjected to MCAO-induced retinal damage. Conclusions: Our findings indicated that KIOM-2015E treatment exerted protective effects against retinal damage following MCAO injury and that this extract may aid in the development of novel therapeutic strategies for retinal diseases, such as glaucoma and age-related macular disease.


Assuntos
Acer/metabolismo , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão/metabolismo , Degeneração Retiniana/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Acer/química , Animais , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Masculino , Fibras Nervosas/patologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/mortalidade , Degeneração Retiniana/complicações , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/patologia , Fator de Transcrição Brn-3B/metabolismo , Tubulina (Proteína)/metabolismo , Regulação para Cima
6.
J Agric Food Chem ; 67(32): 8819-8838, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31322880

RESUMO

Recent studies about hot-water extracts from sugar maple (Acer saccharum Marsh.) bark and buds demonstrated that they contain high amounts of phenolic structures that may be used as antioxidant food additives. However, the detailed chemical composition of these maple-derived extracts has yet to be determined. By performing high-performance liquid chromatography-diode array detector-high-resolution mass spectrometry (HPLC-DAD-HRMS)-based dereplication, we were able to spike and classify almost 100 metabolites in each hot-water extract. The sugar maple bark hot-water extract is rich in simple phenolic compounds and phenylpropanoid derivatives, while bud extract contains predominantly flavonoids, benzoic acids, and their complex derivatives (condensed and hydrolyzable tannins). Among those chemical structures, we tentatively identified 69 phenolic compounds potentially reported for the first time in the genus Acer. Considering the growing commercial demand in natural products, the phenolic fingerprints of sugar maple bark and bud hot-water extracts will help in promoting these two maple-derived products as new sources of bioactive compounds in the food, nutraceutical, and cosmetic industries.


Assuntos
Acer/química , Casca de Planta/química , Extratos Vegetais/química , Acer/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Espectrometria de Massas por Ionização por Electrospray
7.
J Agric Food Chem ; 67(5): 1585-1597, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30675777

RESUMO

Acer truncatum is an important ornamental, edible, and medicinal plant resource in China. Previous phytochemical research has focused on the leaf (AL) due to its long history as a tea for health. Other parts such as the branch (ABr), bark (ABa), fruit (AF), and root (AR) have drawn little attention regarding their metabolites and bioactivities. The strategy of an in-house chemical library combined with Progenesis QI informatics platform was applied to characterize the metabolites. A total of 98 compounds were characterized or tentatively identified, including 63 compounds reported from this species for the first time. Principal component analysis showed the close clustering of ABr, ABa, and AR, indicating that they share similar chemical components, while AL and AF clustered more distantly. By multiple orthogonal partial least-squares discriminant analyses (OPLS-DA), 52 compounds were identified as potential marker compounds differentiating these different plant parts. The variable influence on projection score from OPLS-DA revealed that catechin, procyanidins B2 or B3, and procyanidins C1 or C2 are the significant metabolites in ABa extracts, which likely contribute to its antioxidant and cytotoxic activities.


Assuntos
Acer/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Espectrometria de Massas em Tandem/métodos , Acer/metabolismo , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Catequina/química , Catequina/isolamento & purificação , Catequina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Frutas/química , Humanos , Metabolômica , Mongólia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Raízes de Plantas/química , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Proantocianidinas/farmacologia
8.
PLoS One ; 13(6): e0198739, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29879203

RESUMO

Plants are an important and inexhaustible source of bioactive molecules in food, medicine, agriculture, and industry. In this study, we performed systematic liquid chromatography-mass spectrometry (LC-MS)-based metabolic profiling coupled with antioxidant assays for indigenous plant family extracts. Partial least-squares discriminant analysis of LC-MS datasets for the extracts of 34 plant species belonging to the families Aceraceae, Asteraceae, and Rosaceae showed that these species were clustered according to their respective phylogenies. In particular, seven Aceraceae species were clearly demarcated with higher average antioxidant activities, rationalizing their application for bioconversion studies. On the basis of further evaluation of the interspecies variability of metabolic profiles and antioxidant activities among Aceraceae family plants, we found that Acer tataricum (TA) extracts were clearly distinguished from those of other species, with a higher relative abundance of tannin derivatives. Further, we detected a strong positive correlation between most tannin derivatives and the observed higher antioxidant activities. Following Aspergillus oryzae-mediated fermentative bioconversion of Acer plant extracts, we observed a time-correlated (0-8 days) linear increase in antioxidant phenotypes for all species, with TA having the highest activity. Temporal analysis of the MS data revealed tannin bioconversion mechanisms with a relatively higher abundance of gallic acid (m/z 169) accumulated at the end of 8 days, particularly in TA. Similarly, quercetin precursor (glycoside) metabolites were also transformed to quercetin aglycones (m/z 301) in most Acer plant extracts. The present study underscores the efficacy of fermentative bioconversion strategies aimed at enhancing the quality and availability of bioactive metabolites from plant extracts.


Assuntos
Acer/química , Acer/metabolismo , Aspergillus oryzae/crescimento & desenvolvimento , Metaboloma , Extratos Vegetais/química , Antioxidantes/química , Antioxidantes/metabolismo , Cromatografia Líquida , Ácido Gálico/química , Ácido Gálico/metabolismo , Espectrometria de Massas , Metabolômica , Quercetina/química , Quercetina/metabolismo , Taninos/química , Taninos/metabolismo
9.
PLoS One ; 12(2): e0171321, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28234921

RESUMO

Nitrogen and phosphorous are critical determinants of plant growth and productivity, and both plant growth and root morphology are important parameters for evaluating the effects of supplied nutrients. Previous work has shown that the growth of Acer mono seedlings is retarded under nursery conditions; we applied different levels of N (0, 5, 10, and 15 g plant-1) and P (0, 4, 6 and 8 g plant-1) fertilizer to investigate the effects of fertilization on the growth and root morphology of four-year-old seedlings in the field. Our results indicated that both N and P application significantly affected plant height, root collar diameter, chlorophyll content, and root morphology. Among the nutrient levels, 10 g N and 8 g P were found to yield maximum growth, and the maximum values of plant height, root collar diameter, chlorophyll content, and root morphology were obtained when 10 g N and 8 g P were used together. Therefore, the present study demonstrates that optimum levels of N and P can be used to improve seedling health and growth during the nursery period.


Assuntos
Acer/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Acer/metabolismo , Clorofila/metabolismo , Fertilizantes , Nitrogênio/química , Fósforo/química , Raízes de Plantas/metabolismo , Plântula/metabolismo , Solo/química
10.
J Korean Med Sci ; 30(7): 979-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26130964

RESUMO

Angiogenesis, the formation of new blood vessels, is critical for tumor growth and metastasis. Notably, tumors themselves can lead to angiogenesis by inducing vascular endothelial growth factor (VEGF), which is one of the most potent angiogenic factors. Inhibition of angiogenesis is currently perceived as one of the most promising strategies for the blockage of tumor growth. In this study, we investigated the effects of Acer tegmentosum maxim water extract (ATME) on angiogenesis and its underlying signal mechanism. We studied the antiangiogenic activity of ATME by using human umbilical vein endothelial cells (HUVECs). ATME strongly inhibited VEGF-induced endothelial cell proliferation, migration, invasion, and tube formation, as well as vessel sprouting in a rat aortic ring sprouting assay. Moreover, we found that the p44/42 mitogen activated protein (MAP) kinase signaling pathway is involved in the inhibition of angiogenesis by ATME. Moreover, when we performed the in vivo matrigel plug assay, VEGF-induced angiogenesis was potently reduced when compared to that for the control group. Taken together, these results suggest that ATME exhibits potent antiangiogenic activity in vivo and in vitro and that these effects are regulated by the extracellular regulated kinase (ERK) pathway.


Assuntos
Acer/metabolismo , Inibidores da Angiogênese/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Hep G2 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica/patologia , Neovascularização Patológica/prevenção & controle , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Artigo em Inglês | WPRIM | ID: wpr-70183

RESUMO

Angiogenesis, the formation of new blood vessels, is critical for tumor growth and metastasis. Notably, tumors themselves can lead to angiogenesis by inducing vascular endothelial growth factor (VEGF), which is one of the most potent angiogenic factors. Inhibition of angiogenesis is currently perceived as one of the most promising strategies for the blockage of tumor growth. In this study, we investigated the effects of Acer tegmentosum maxim water extract (ATME) on angiogenesis and its underlying signal mechanism. We studied the antiangiogenic activity of ATME by using human umbilical vein endothelial cells (HUVECs). ATME strongly inhibited VEGF-induced endothelial cell proliferation, migration, invasion, and tube formation, as well as vessel sprouting in a rat aortic ring sprouting assay. Moreover, we found that the p44/42 mitogen activated protein (MAP) kinase signaling pathway is involved in the inhibition of angiogenesis by ATME. Moreover, when we performed the in vivo matrigel plug assay, VEGF-induced angiogenesis was potently reduced when compared to that for the control group. Taken together, these results suggest that ATME exhibits potent antiangiogenic activity in vivo and in vitro and that these effects are regulated by the extracellular regulated kinase (ERK) pathway.


Assuntos
Animais , Humanos , Camundongos , Ratos , Acer/metabolismo , Inibidores da Angiogênese/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica/patologia , Neovascularização Patológica/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
12.
Mol Med Rep ; 7(2): 654-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23165961

RESUMO

Sap is a plant fluid that primarily consists of water and small amounts of mineral elements, sugars, hormones and other nutrients. Acer mono (A. mono) is an endemic Korean mono maple which was recently suggested to have health benefits due to its abundant calcium and magnesium ion content. In the present study, we examined the effects of sap from Acer okamotoanum (A. okamotoanum) on the phagocytic response of mouse neutrophils in vivo and rat and canine neutrophils in vitro. We tested the regulation of phagocytic activity, oxidative burst activity (OBA) and the levels of filamentous polymeric actin (F-actin) in the absence and presence of dexamethasone (DEX) in vitro and in vivo. Our results showed that DEX primarily reduced OBA in the mouse neutrophils, and that this was reversed in the presence of the sap. By contrast, the phagocytic activity of the mouse cells was not regulated by either DEX or the sap. Rat and canine polymorphonuclear neutrophilic leukocytes (PMNs) responded in vitro to the sap in a similar manner by increasing OBA. However, regulation of phagocytic activity by the sap was different between the species. In canine PMNs, phagocytic activity was enhanced by the sap at a high dose, while it did not significantly modulate this activity in rat PMNs. These findings suggest that the sap of A. okamotoanum stimulates neutrophil activity in the mouse, rat and canine by increasing OBA in vivo and in vitro, and thus may have a potential antimicrobial effect in the PMNs of patients with infections.


Assuntos
Acer/metabolismo , Neutrófilos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Explosão Respiratória/efeitos dos fármacos , Actinas/metabolismo , Animais , Antineoplásicos Hormonais/toxicidade , Células Cultivadas , Dexametasona/toxicidade , Cães , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neutrófilos/citologia , Neutrófilos/imunologia , Fagocitose/efeitos dos fármacos , Ratos
13.
J Nat Med ; 67(1): 234-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22456895

RESUMO

We prepared a series of acerogenins A and B derivatives as inhibitors of nitric oxide (NO) production in vitro. Our results suggested that an ester group at a hydroxyl at C-2 improved inhibitory effects without cytotoxicity. A benzoyl ester derivative of acerogenin C showed the most potent inhibitory activity of NO production from lipopolysaccharide-activated macrophages.


Assuntos
Acer/efeitos dos fármacos , Acer/metabolismo , Diarileptanoides/química , Diarileptanoides/farmacologia , Óxido Nítrico/metabolismo
14.
Bioorg Med Chem Lett ; 22(1): 597-600, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22079755

RESUMO

Thirteen gallic acid derivatives including five new gallotannins, named maplexins A-E, were isolated from red maple (Acer rubrum) stems. The compounds were identified by spectral analyses. The maplexins varied in number and location of galloyl groups attached to 1,5-anhydro-d-glucitol. The isolates were evaluated for α-glucosidase inhibitory and antioxidant activities. Maplexin E, the first compound identified with three galloyl groups linked to three different positions of 1,5-anhydro-d-glucitol, was 20 fold more potent than the α-glucosidase inhibitory drug, Acarbose (IC(50)=8 vs 160 µM). Structure-activity related studies suggested that both number and position of galloyls attached to 1,5-anhydro-d-glucitol were important for α-glucosidase inhibition.


Assuntos
Acer/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases , Taninos Hidrolisáveis/farmacologia , Extratos Vegetais/farmacologia , Taninos/química , Acarbose/química , Acer/metabolismo , Antioxidantes/química , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Extratos Vegetais/metabolismo , Caules de Planta , Relação Estrutura-Atividade , Árvores , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
15.
Chem Pharm Bull (Tokyo) ; 59(5): 672-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21532209

RESUMO

A new compound, pycnalin (1), together with four known compounds, ginnalins A (2), B (3), C (4), and 3,6-di-O-galloyl-1,5-anhydro-D-glucitol (3,6-di-GAG) (5), were isolated from Acer pycnanthum. The structure of 1 was determined on the basis of 2D-NMR spectral data and synthesis of 1. Pycnalin (1) is the first 1,5-anhydro-D-mannitol linked to a gallic acid, while compounds 2-5 were 1,5-anhydro-D-glucitol linked to gallic acids. All compounds were tested in vitro for α-glucosidase inhibitory and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities. Pycnalin (1) exhibited moderate α-glucosidase inhibitory activity as well as free radical scavenging activity. Ginnalin A (2) and 3,6-di-GAG (5), which have two galloyl groups, exhibited potent α-glucosidase inhibition, compared to those of other compounds 1, 3, and 4 containing a galloyl group. These results suggest that α-glucosidase inhibition is influenced by the number of galloyl groups.


Assuntos
Acer/química , Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases , Glicosídeos/farmacologia , Hipoglicemiantes/farmacologia , Acer/metabolismo , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Desoxiglucose/análogos & derivados , Desoxiglucose/química , Desoxiglucose/isolamento & purificação , Desoxiglucose/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Ácido Gálico/isolamento & purificação , Ácido Gálico/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Hipoglicemia/tratamento farmacológico , Hipoglicemia/metabolismo , Hipoglicemia/patologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Espectroscopia de Ressonância Magnética , Picratos/química , Picratos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Sorbitol/análogos & derivados , Sorbitol/química , Sorbitol/isolamento & purificação , Sorbitol/farmacologia
16.
J Chem Ecol ; 35(1): 58-70, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19123035

RESUMO

The western boxelder bug (BEB), Boisea rubrolineata (Heteroptera: Rhopalidae), is a specialist herbivore of boxelder trees, Acer negundo. We tested the hypothesis that BEBs use semiochemicals to locate host trees. Headspace volatiles from trees bearing staminate inflorescences ("staminate trees") and from trees bearing pistillate inflorescences ("pistillate trees") were collected throughout the season and bioassayed in Y-tube olfactometer experiments. Headspace extracts of early-season, pollen-bearing staminate trees and midseason pistillate trees with mature samaras (seed pods) attracted female and male BEBs. By using coupled gas chromatographic-electroantennographic detection and gas chromatography-mass spectrometry, we identified and tested a five-component synthetic blend of candidate semiochemicals (hexanol, pentyl acetate, phenylacetonitrile, 2-phenethyl acetate, and trans-nerolidol). This blend attracted females, males, and fifth-instar nymphs. Phenylacetonitrile by itself was as attractive as the five-component blend to both adults and nymphs. By responding to phenylacetonitrile emitted by pollen-bearing staminate trees and pistillate trees with maturing seeds, BEBs appear to track and exploit the availability of nutrient-rich food sources, suggesting that the bugs' reproductive ecology is synchronized to the phenology of their host boxelder tree.


Assuntos
Acer/química , Acer/parasitologia , Heterópteros/fisiologia , Feromônios/metabolismo , Acer/metabolismo , Animais , Bioensaio , Comportamento Alimentar , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Interações Hospedeiro-Parasita , Masculino , Movimento , Ninfa/fisiologia , Feromônios/química , Feromônios/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Estações do Ano , Sementes/parasitologia , Fatores Sexuais , Volatilização
17.
Tree Physiol ; 28(2): 173-85, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18055428

RESUMO

Heavy atmospheric nitrogen (N) deposition has been associated with altered nutrient cycling, and even N saturation, in forest ecosystems previously thought to be N-limited. This observation has prompted application to such forests of non-N mineral nutrients as a mitigation measure. We examined leaf gas-exchange, leaf chemistry and leaf and shoot morphological responses of Acer saccharum Marsh. saplings and mature trees to experimental additions of non-nitrogenous mineral nutrients (dolomitic lime, phosphorus + potassium (P + K) and lime plus P + K) over 2 years in the Haliburton region of central Ontario, which receives some of the largest annual N inputs in North America. Nutrients were adsorbed in the mineral soil and taken up by A. saccharum trees within 1 year of fertilizer application; however, contrary to expectation, liming had no effect on soil P availability. Saplings and canopy trees showed significant responses to both P + K fertilization and liming, including increased foliar nutrient concentration, leaf size and shoot extension growth; however, no treatment effects on leaf gas-exchange parameters were detected. Increases in shoot extension preceded increases in diameter growth in saplings and canopy trees. Vector analysis of shoot extension growth and nutrient content was consistent with sufficiency of N but marked limitation of P, with co-limitation by calcium (Ca) in saplings and by Ca, Mg and K in canopy trees.


Assuntos
Acer/efeitos dos fármacos , Compostos de Cálcio/farmacologia , Nitrogênio/metabolismo , Óxidos/farmacologia , Fósforo/farmacologia , Potássio/farmacologia , Árvores/efeitos dos fármacos , Acer/crescimento & desenvolvimento , Acer/metabolismo , Análise de Variância , Clorofila/metabolismo , Fertilizantes , Alimentos , Gases/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Solo
18.
Plant Cell Physiol ; 47(4): 447-56, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16434435

RESUMO

We have recently shown the occurrence of endocytic sucrose uptake in heterotrophic cells. Whether this mechanism is involved in the sucrose-starch conversion process was investigated by comparing the rates of starch accumulation in sycamore cells cultured in the presence or absence of the endocytic inhibitors wortmannin and 2-(4-morpholynyl-)-8-phenyl-4H-1 benzopyran-4-1 (LY294002). These analyses revealed a two-phase process involving an initial 120 min wortmannin- and LY294002-insensitive starch accumulation period, followed by a prolonged phase that was arrested by the endocytic inhibitors. Both wortmannin and LY294002 led to a strong reduction of the intracellular levels of both sucrose and the starch precursor molecule, ADPglucose. No changes in maximum catalytic activities of enzymes closely linked to starch and sucrose metabolism occurred in cells cultured with endocytic inhibitors. In addition, starch accumulation was unaffected by endocytic inhibitors when cells were cultured with glucose. These results provide a first indication that an important pool of sucrose incorporated into the cell is taken up by endocytosis prior to its subsequent conversion into starch in heterotrophic cells. This conclusion was substantiated further by experiments showing that sucrose-starch conversion was strongly prevented by both wortmannin and LY294002 in both potato tuber discs and developing barley endosperms.


Assuntos
Acer/metabolismo , Endocitose , Amido/biossíntese , Sacarose/metabolismo , Acer/citologia , Acer/efeitos dos fármacos , Adenosina Difosfato Glucose/metabolismo , Androstadienos/farmacologia , Células Cultivadas , Cromonas/farmacologia , Endocitose/efeitos dos fármacos , Hordeum/efeitos dos fármacos , Hordeum/metabolismo , Morfolinas/farmacologia , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/metabolismo , Sacarose/farmacologia , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA