Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(4): 1084-1098, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37934816

RESUMO

Plant cell wall polysaccharides, including xylan, mannan, xyloglucan, and pectins, are often acetylated and members of the domain of unknown function 231 (DUF231)/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases mediating the acetylation of xylan, mannan, and xyloglucan. However, little is known about the O-acetyltransferases responsible for pectin acetylation. In this report, we biochemically characterized a suite of Arabidopsis DUF231/TBL proteins for their roles in pectin acetylation. We generated 24 TBL recombinant proteins in mammalian cells and demonstrated that 10 of them were able to transfer acetyl groups from acetyl-CoA onto the pectins homogalacturonan (HG) or rhamnogalacturonan-I (RG-I), and thus were named pectin O-acetyltransferase 1 to 10 (POAT1 to 10). It was found that POAT2,4,9,10 specifically acetylated HG and POAT5,6 acetylated RG-I, whereas POAT1,3,7,8 could act on both HG and RG-I. The acetylation of HG and RG-I by POATs was further corroborated by hydrolysis with pectin acetylesterases and by nuclear magnetic resonance spectroscopy. In addition, mutations of the conserved GDS and DXXH motifs in POAT3 and POAT8 were shown to lead to a loss of their ability to acetylate HG and RG-I. Furthermore, simultaneous RNA interference downregulation of POAT1,3,6,7,8 resulted in reduced cell expansion, impaired plant growth, and decreased pectin acetylation. Together, our findings indicate that these POATs are pectin O-acetyltransferases involved in acetylation of the pectin polysaccharides HG and RG-I.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Xilanos/metabolismo , Ramnogalacturonanos/análise , Ramnogalacturonanos/metabolismo , Mananas/metabolismo , Acetilação , Birrefringência , Tricomas/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Catálise , Parede Celular/metabolismo
2.
Cancer Sci ; 113(8): 2738-2752, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35670054

RESUMO

Renal cell carcinoma (RCC) features altered lipid metabolism and accumulated polyunsaturated fatty acids (PUFAs). Elongation of very long-chain fatty acid (ELOVL) family enzymes catalyze fatty acid elongation, and ELOVL5 is indispensable for PUFAs elongation, but its role in RCC progression remains unclear. Here, we show that higher levels of ELOVL5 correlate with poor RCC clinical prognosis. Liquid chromatography/electrospray ionization-tandem mass spectrometry analysis showed decreases in ELOVL5 end products (arachidonic acid and eicosapentaenoic acid) under CRISPR/Cas9-mediated knockout of ELOVL5 while supplementation with these fatty acids partially reversed the cellular proliferation and invasion effects of ELOVL5 knockout. Regarding cellular proliferation and invasion, CRISPR/Cas9-mediated knockout of ELOVL5 suppressed the formation of lipid droplets and induced apoptosis via endoplasmic reticulum stress while suppressing renal cancer cell proliferation and in vivo tumor growth. Furthermore, CRISPR/Cas9-mediated knockout of ELOVL5 inhibited AKT Ser473 phosphorylation and suppressed renal cancer cell invasion through chemokine (C-C motif) ligand-2 downregulation by AKT-mTOR-STAT3 signaling. Collectively, these results suggest that ELOVL5-mediated fatty acid elongation promotes not only cellular proliferation but also invasion in RCC.


Assuntos
Carcinoma de Células Renais , Elongases de Ácidos Graxos , Neoplasias Renais , Acetiltransferases/genética , Acetiltransferases/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proliferação de Células/genética , Elongases de Ácidos Graxos/genética , Ácidos Graxos , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteínas Proto-Oncogênicas c-akt
3.
PLoS One ; 16(8): e0256704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34449796

RESUMO

Paclitaxel® (PC) is one of the most effective and profitable anti-cancer drugs. The most promising sources of this compound are natural materials such as tissue cultures of Taxus species and, more recently, hazelnut (Corylus avellana L.). A large part of the PC biosynthetic pathway in the yew tree and a few steps in the hazelnut have been identified. Since understanding the biosynthetic pathway of plant-based medicinal metabolites is an effective step toward their development and engineering, this paper aimed to identify taxadiene-5α-ol-O-acetyltransferase (TDAT) in hazelnut. TDAT is one of the key genes involved in the third step of the PC biosynthetic pathway. In this study, the TDAT gene was isolated using the nested-PCR method and then characterized. The cotyledon-derived cell mass induced with 150 µM of methyl jasmonate (MeJA) was utilized to isolate RNA and synthesize the first-strand cDNA. The full-length cDNA of TDAT is 1423 bp long and contains a 1302 bp ORF encoding 433 amino acids. The phylogenetic analysis of this gene revealed high homology with its ortholog genes in Quercus suber and Juglans regia. Bioinformatics analyses were used to predict the secondary and tertiary structures of the protein. Due to the lack of signal peptide, protein structure prediction suggested that this protein may operate at the cytoplasm. The homologous superfamily of the T5AT protein, encoded by TDAT, has two domains. The highest and lowest hydrophobicity of amino acids were found in proline 142 and lysine 56, respectively. T5AT protein fragment had 24 hydrophobic regions. The tertiary structure of this protein was designed using Modeler software (V.9.20), and its structure was verified based on the results of the Verify3D (89.46%) and ERRAT (90.3061) programs. The T5AT enzyme belongs to the superfamily of the transferase, and the amino acids histidine 164, cysteine 165, leucine 166, histidine 167, and Aspartic acid 168 resided at its active site. More characteristics of TDAT, which would aid PC engineering programs and maximize its production in hazelnut, were discussed.


Assuntos
Acetiltransferases/genética , Corylus/química , Neoplasias/tratamento farmacológico , Plantas Medicinais/química , Acetiltransferases/química , Acetiltransferases/uso terapêutico , Sequência de Aminoácidos/genética , Produtos Biológicos/química , Humanos , Paclitaxel/química , Paclitaxel/uso terapêutico , Filogenia , Taxus/química
4.
Plant J ; 107(5): 1403-1419, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34165841

RESUMO

Triterpenes (30-carbon isoprene compounds) represent a large and highly diverse class of natural products that play various physiological functions in plants. The triterpene biosynthetic enzymes, particularly those catalyzing the late-stage regio-selective modifications are not well characterized. The bark of select Boswellia trees, e.g., B. serrata exudes specialized oleo-gum resin in response to wounding, which is enriched with boswellic acids (BAs), a unique class of C3α-epimeric pentacyclic triterpenes with medicinal properties. The bark possesses a network of resin secretory structures comprised of vertical and horizontal resin canals, and amount of BAs in bark increases considerably in response to wounding. To investigate BA biosynthetic enzymes, we conducted tissue-specific transcriptome profiling and identified a wound-responsive BAHD acetyltransferase (BsAT1) of B. serrata catalyzing the late-stage C3α-O-acetylation reactions in the BA biosynthetic pathway. BsAT1 catalyzed C3α-O-acetylation of αBA, ßBA, and 11-keto-ßBA in vitro and in planta assays to produce all the major C3α-O-acetyl-BAs (3-acetyl-αBA, 3-acetyl-ßBA, and 3-acetyl-11-keto-ßBA) found in B. serrata bark and oleo-gum resin. BsAT1 showed strict specificity for BA scaffold, whereas it did not acetylate the more common C3ß-epimeric pentacyclic triterpenes. The analysis of steady-state kinetics using various BAs revealed distinct substrate affinity and catalytic efficiency. BsAT1 transcript expression coincides with increased levels of C3α-O-acetyl-BAs in bark in response to wounding, suggesting a role of BsAT1 in wound-induced biosynthesis of C3α-O-acetyl-BAs. Overall, the results provide new insights into the biosynthesis of principal chemical constituents of Boswellia oleo-gum resin.


Assuntos
Acetiltransferases/metabolismo , Boswellia/enzimologia , Resinas Vegetais/metabolismo , Transcriptoma , Triterpenos/metabolismo , Acetiltransferases/genética , Vias Biossintéticas , Boswellia/anatomia & histologia , Boswellia/química , Boswellia/genética , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Genes Reporter , Especificidade de Órgãos , Casca de Planta/anatomia & histologia , Casca de Planta/química , Casca de Planta/enzimologia , Casca de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais , Resinas Vegetais/química , Nicotiana/genética , Nicotiana/metabolismo , Triterpenos/química
5.
Plant J ; 106(4): 953-964, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33619818

RESUMO

Acetyl-triacylglycerols (acetyl-TAG) contain an acetate group in the sn-3 position instead of the long-chain fatty acid present in regular triacylglycerol (TAG). The acetate group confers unique physical properties such as reduced viscosity and a lower freezing point to acetyl-TAG, providing advantages for use as emulsifiers, lubricants, and 'drop-in' biofuels. Previously, the synthesis of acetyl-TAG in the seeds of the oilseed crop camelina (Camelina sativa) was achieved through the heterologous expression of the diacylglycerol acetyltransferase gene EaDAcT, isolated from Euonymus alatus seeds that naturally accumulate high levels of acetyl-TAG. Subsequent work identified a similar acetyltransferase, EfDAcT, in the seeds of Euonymus fortunei, that possesses higher in vitro activity compared to EaDAcT. In this study, the seed-specific expression of EfDAcT in camelina led to a 20 mol% increase in acetyl-TAG levels over that of EaDAcT. Coupling EfDAcT expression with suppression of the endogenous competing enzyme DGAT1 further enhanced acetyl-TAG accumulation, up to 90 mol% in the best transgenic lines. Accumulation of high levels of acetyl-TAG was stable over multiple generations, with minimal effect on seed size, weight, and fatty acid content. Slight delays in germination were noted in transgenic seeds compared to the wild type. EfDAcT transcript and protein levels were correlated during seed development with a limited window of EfDAcT protein accumulation. In high acetyl-TAG producing lines, EfDAcT protein expression in developing seeds did not reflect the eventual acetyl-TAG levels in mature seeds, suggesting that other factors limit acetyl-TAG accumulation.


Assuntos
Acetiltransferases/metabolismo , Camellia/enzimologia , Euonymus/enzimologia , Óleos de Plantas/química , Triglicerídeos/metabolismo , Acetiltransferases/genética , Biocombustíveis , Camellia/química , Camellia/genética , Diglicerídeos/metabolismo , Euonymus/genética , Ácidos Graxos/metabolismo , Germinação , Metabolismo dos Lipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/enzimologia , Sementes/genética
6.
Andrologia ; 52(11): e13876, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33125782

RESUMO

Thirty-six 12-week-old breeder roosters (Ross 308) were randomly allocated into three groups to receive L-carnitine (LC): LC-0, LC-250 or LC-500 mg/kg of diet to evaluate the effects of dietary LC on the expression of apoptotic-related genes and desaturases and elongase mRNA transcript levels, in the cockerel testicles. Alteration of Bak (Bcl2 antagonist/killer), Bcl2, Cas3, Cas8, Cas9, Elovl2, Elovl4, Elovl5, Fads1, Fads2 and Scd expression at 24 and 34 weeks of age was compared by real-time quantitative PCR. The expression of Bcl2 and Elovl5 was significantly up-regulated (p < .05), while Cas8 expression (p < .05) and Bak/Bcl2 ratio were reduced (p < .02) in the cockerel testicles at 24 weeks of age. Although Bak mRNA abundance decreased by dietary LC, Bak/Bcl2 ratio was not affected by the treatments at 34 weeks of age. The expression of Cas3 was down-regulated, while Fads2 was up-regulated in the cockerel testicles by dietary LC at 34 weeks of age (p < .05). The results demonstrate the beneficial effects of LC supplementation in suppression of the Bak/Bcl2 ratio by altering Bak and Bcl2 mRNA abundance and, ultimately, prevention of apoptosis. Furthermore, LC increased the expression of Elovl5 and Fads2 genes which are involved in the metabolism of long chain fatty acids.


Assuntos
Galinhas , Ácidos Graxos Dessaturases , Acetiltransferases/genética , Animais , Apoptose , Carnitina , Dieta , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos , Ácidos Graxos , Masculino , Testículo
7.
Cells ; 9(9)2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961767

RESUMO

In eukaryotes, the C20:4 polyunsaturated fatty acid arachidonic acid (AA) plays important roles as a phospholipid component, signaling molecule and precursor of the endocannabinoid-prostanoid axis. Accordingly, the absence of AA causes detrimental effects. Here, compensatory mechanisms involved in AA deficiency in Caenorhabditis elegans were investigated. We show that the ω-3 C20:4 polyunsaturated fatty acid juniperonic acid (JuA) is generated in the C. elegansfat-3(wa22) mutant, which lacks Δ6 desaturase activity and cannot generate AA and ω-3 AA. JuA partially rescued the loss of function of AA in growth and development. Additionally, we observed that supplementation of AA and ω-3 AA modulates lifespan of fat-3(wa22) mutants. We described a feasible biosynthetic pathway that leads to the generation of JuA from α-linoleic acid (ALA) via elongases ELO-1/2 and Δ5 desaturase which is rate-limiting. Employing liquid chromatography mass spectrometry (LC-MS/MS), we identified endocannabinoid-like ethanolamine and glycerol derivatives of JuA and ω-3 AA. Like classical endocannabinoids, these lipids exhibited binding interactions with NPR-32, a G protein coupled receptor (GPCR) shown to act as endocannabinoid receptor in C. elegans. Our study suggests that the eicosatetraenoic acids AA, ω-3 AA and JuA share similar biological functions. This biosynthetic plasticity of eicosatetraenoic acids observed in C. elegans uncovers a possible biological role of JuA and associated ω-3 endocannabinoids in Δ6 desaturase deficiencies, highlighting the importance of ALA.


Assuntos
Caderinas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Endocanabinoides/biossíntese , Fator de Crescimento Epidérmico/genética , Ácidos Graxos Insaturados/metabolismo , Longevidade/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Ácido Araquidônico/deficiência , Caderinas/deficiência , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Fator de Crescimento Epidérmico/deficiência , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Regulação da Expressão Gênica , Ácido Linoleico/metabolismo , Mutação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
8.
Discov Med ; 29(156): 65-77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598864

RESUMO

Staphylococcus aureus can cause both acute and recurrent persistent infections such as peritonitis, endocarditis, abscesses, osteomyelitis, and chronic wound infections. Effective therapies to treat persistent disease are paramount. However, the mechanisms of S. aureus persistence are poorly understood. In this study, we performed a comprehensive and unbiased high-throughput mutant screen against a transposon-insertion mutant library of S. aureus USA300 and focused on the role of argJ encoding an acetyltransferase in the arginine biosynthesis pathway, whose transposon insertion caused a significant defect in persister formation using multiple drugs and stresses. Genetic complementation and arginine supplementation restored persistence in the argJ transposon insertion mutant while generation of mutations on the active site of the ArgJ protein caused a defect in persistence. Quantitative RT-PCR analysis showed that the genes encoded in the arg operon were over-expressed under drug stressed conditions and in stationary phase cultures. In addition, the argJ mutant had attenuated virulence in both mouse and C. elegans. Our studies identify a new mechanism of persistence mediated by arginine metabolism in S. aureus. These findings provide not only novel insights about the mechanisms of S. aureus persistence but also offer novel therapeutic targets that may help to develop more effective treatment of persistent S. aureus infections.


Assuntos
Acetiltransferases/genética , Proteínas de Bactérias/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/genética , Acetiltransferases/metabolismo , Animais , Antibacterianos/farmacologia , Arginina/biossíntese , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Caenorhabditis elegans , Elementos de DNA Transponíveis/genética , Modelos Animais de Doenças , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Feminino , Biblioteca Gênica , Genes Bacterianos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , Mutação/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/metabolismo
9.
Mol Biotechnol ; 62(8): 387-399, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32572810

RESUMO

D-Glucosamine is a commonly used dietary supplement that promotes cartilage health in humans. Metabolic flux analysis showed that D-glucosamine production could be increased by blocking three pathways involved in the consumption of glucosamine-6-phosphate and acetylglucosamine-6-phosphate. By homologous single-exchange, two key genes (nanE and murQ) of Escherichia coli BL21 were knocked out, respectively. The D-glucosamine yields of the engineered strains E. coli BL21ΔmurQ and E. coli BL21ΔnanE represented increases by factors of 2.14 and 1.79, respectively. Meanwhile, for bifunctional gene glmU, we only knocked out its glucosamine-1-phosphate acetyltransferase domain by 3D structural analysis to keep the engineered strain E. coli BL21glmU-Δgpa survival, which resulted in an increase in the production of D-glucosamine by a factor of 2.16. Moreover, for further increasing D-glucosamine production, two genes encoding rate-limiting enzymes, named glmS and gna1, were coexpressed by an RBS sequence in those engineered strains. The total concentrations of D-glucosamine in E. coli BL21 glmU-Δgpa', E. coli BL21ΔmurQ', and E. coli BL21ΔnanE' were 2.65 g/L, 1.73 g/L, and 1.38 g/L, which represented increases by factors of 8.83, 5.76, and 3.3, respectively.


Assuntos
Acetilglucosamina/metabolismo , Escherichia coli , Glucosamina/metabolismo , Engenharia Metabólica/métodos , Acetilglucosamina/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Glucosamina/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Redes e Vias Metabólicas/genética , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo
10.
J Cell Biochem ; 121(3): 2258-2267, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31693222

RESUMO

Lung cancer is famous as an aggressive malignant tumor and is the main cause of cancer-associated mortality globally. Tumor angiogenesis is a vital part in cancer, which influences cell proliferation and metastasis. Increasing studies have claimed that long noncoding RNAs (lncRNAs) were involved in the progression of several cancers. Based on previous studies, this study focused on the role and mechanism of lncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in lung cancer. At first, MCM3AP-AS1 expression was found to be elevated in lung cancer cells. Depletion of MCM3AP-AS1 repressed cell proliferation, migration, and angiogenesis in lung cancer cells. YY1 was confirmed to mediate MCM3AP-AS1 transcription in lung cancer cells. Moreover, the molecular mechanism investigation revealed that MCM3AP-AS1 could sponge miR-340-5p and elevate KPNA4 expression. On the basis of rescue assays, we identified that the overexpression of KPNA4 partly counteracted the suppressed effect of MCM3AP-AS1 knockdown on angiogenesis and progression in lung cancer cells. Conclusively, the YY1-mediated overexpression of MCM3AP-AS1 accelerated angiogenesis and progression in lung cancer by targeting miR-340-5p/KPNA4 axis, which highlighted the possibility of MCM3AP-AS1 as a promising therapeutic target for lung cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Neovascularização Patológica/patologia , RNA Longo não Codificante/genética , Fator de Transcrição YY1/metabolismo , alfa Carioferinas/metabolismo , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/genética , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Progressão da Doença , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , RNA Antissenso/genética , Células Tumorais Cultivadas , Fator de Transcrição YY1/genética , alfa Carioferinas/genética
11.
J Agric Food Chem ; 67(35): 9851-9857, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31418561

RESUMO

Arachidonic acid (ARA, C20:4) is a typical ω-6 polyunsaturated fatty acid with special functions. Using Yarrowia lipolytica as an unconventional chassis, we previously showed the performance of the Δ-6 pathway in ARA production. However, a significant increase in the Δ-9 pathway has rarely been reported. Herein, the Δ-9 pathway from Isochrysis galbana was constructed via pathway engineering, allowing us to synthesize ARA at 91.5 mg L-1. To further improve the ARA titer, novel enzyme fusions of Δ-9 elongase and Δ-8 desaturase were redesigned in special combinations containing different linkers. Finally, with the integrated pathway engineering and synthetic enzyme fusion, a 29% increase in the ARA titer, up to 118.1 mg/L, was achieved using the reconstructed strain RH-4 that harbors the rigid linker (GGGGS). The results show that the combined pathway and protein engineering can significantly facilitate applications of Y. lipolytica.


Assuntos
Ácido Araquidônico/biossíntese , Engenharia Metabólica , Yarrowia/genética , Yarrowia/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Glucose/metabolismo , Haptófitas/enzimologia
12.
Plant J ; 100(5): 1022-1035, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31411777

RESUMO

Powdery mildew (Golovinomyces cichoracearum), one of the most prolific obligate biotrophic fungal pathogens worldwide, infects its host by penetrating the plant cell wall without activating the plant's innate immune system. The Arabidopsis mutant powdery mildew resistant 5 (pmr5) carries a mutation in a putative pectin acetyltransferase gene that confers enhanced resistance to powdery mildew. Here, we show that heterologously expressed PMR5 protein transfers acetyl groups from [14 C]-acetyl-CoA to oligogalacturonides. Through site-directed mutagenesis, we show that three amino acids within a highly conserved esterase domain in putative PMR5 orthologs are necessary for PMR5 function. A suppressor screen of mutagenized pmr5 seed selecting for increased powdery mildew susceptibility identified two previously characterized genes affecting the acetylation of plant cell wall polysaccharides, RWA2 and TBR. The rwa2 and tbr mutants also suppress powdery mildew disease resistance in pmr6, a mutant defective in a putative pectate lyase gene. Cell wall analysis of pmr5 and pmr6, and their rwa2 and tbr suppressor mutants, demonstrates minor shifts in cellulose and pectin composition. In direct contrast to their increased powdery mildew resistance, both pmr5 and pmr6 plants are highly susceptibile to multiple strains of the generalist necrotroph Botrytis cinerea, and have decreased camalexin production upon infection with B. cinerea. These results illustrate that cell wall composition is intimately connected to fungal disease resistance and outline a potential route for engineering powdery mildew resistance into susceptible crop species.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Resistência à Doença/genética , Pectinas/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ascomicetos/patogenicidade , Botrytis/patogenicidade , Parede Celular/química , Parede Celular/genética , Celulose/genética , Celulose/metabolismo , Mutação , Pectinas/química , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética
13.
J Bacteriol ; 201(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31331975

RESUMO

Type II fatty acid biosynthesis in bacteria can be broadly classified into the initiation and elongation phases. The biochemical functions defining each step in the two phases have been studied in vitro Among the ß-ketoacyl-acyl carrier protein (ACP) synthases, FabH catalyzes the initiation reaction, while FabB and FabF, which primarily catalyze the elongation reaction, can also drive initiation as side reactions. A role for FabB and FabF in the initiation of fatty acid biosynthesis would be supported by the viability of the ΔfabH mutant. In this study, we show that the ΔfabH and ΔyiiD mutations were synthetically lethal and that ΔfabH ΔrelA ΔspoT and ΔfabH ΔdksA synthetic lethality was rescued by the heterologous expression of yiiD In the ΔfabH mutant, the expression of yiiD was positively regulated by (p)ppGpp. The growth defect, reduced cell size, and altered fatty acid profile of the ΔfabH mutant and the growth defect of the ΔfabH ΔfabF fabB15(Ts) mutant in oleate- and palmitate-supplemented medium at 42°C were rescued by the expression of yiiD from a multicopy plasmid. Together, these results indicate that the yiiD-encoded function supported initiation of fatty acid biosynthesis in the absence of FabH. We have renamed yiiD as fabYIMPORTANCE Fatty acid biosynthesis is an essential process conserved across life forms. ß-Ketoacyl-ACP synthases are essential for fatty acid biosynthesis. FabH is a ß-ketoacyl-ACP synthase that contributes to the initiation of fatty acid biosynthesis in Escherichia coli In this study, we present genetic and biochemical evidence that the yiiD (renamed fabY)-encoded function contributes to the biosynthesis of fatty acid in the absence of FabH activity and that under these conditions, the expression of FabY was regulated by the stringent response factors (p)ppGpp and DksA. Combined inactivation of FabH and FabY resulted in growth arrest, possibly due to the loss of fatty acid biosynthesis. A molecule(s) that inhibits the two activities can be an effective microbicide.


Assuntos
Acetiltransferases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Ácidos Graxos/biossíntese , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/genética , GTP Pirofosfoquinase/genética , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/metabolismo , Mutação , Mutações Sintéticas Letais
14.
Int J Mol Sci ; 20(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979053

RESUMO

Elongation of very long chain fatty acids protein 6 (Elovl6) is a key enzyme in fatty acid synthesis, which participates in converting palmitate (C16:0) to stearate (C18:0). Although studies of Elovl6 have been carried out in mammals, the nutritional regulation of elovl6 in fish remains poorly understood. In the present study, the cloning and nutritional regulation of elovl6 were determined in large yellow croaker. Sequence and phylogenetic analysis revealed that the full-length cDNA of elovl6 was 1360 bp, including an open reading frame of 810 bp encoding a putative protein of 269 amino acid that possesses the characteristic features of Elovl proteins. The transcript level of elovl6 was significantly increased in the liver of croaker fed the diets with soybean oil (enriched with 18: 2n-6, LA) or linseed oil (enriched with 18: 3n-3, ALA) than that in croaker fed the diet with fish oil (enriched with 20: 5n-3 and 22: 6n-3). Correspondingly, the elovl6 expression in croaker's hepatocytes treated with ALA or LA was remarkably increased compared to the controls. Furthermore, the transcription factors including hepatocyte nuclear factor 1α (HNF1α), CCAAT-enhancer-binding protein ß (CEBPß), retinoid X receptor α (RXRα), and cAMP response element-binding protein 1 (CREB1) greatly enhanced promoter activity of elovl6 in large yellow croaker, and the expression of transcription factors is consistent with the changes of elovl6 expression in response to fatty acids in vivo and in vitro. In conclusion, this study revealed that elovl6 expression in large yellow croaker could be upregulated by dietary ALA or LA via the increased transcriptional expression of transcription factors including hnf1α, cebpß, rxrα, and creb1.


Assuntos
Acetiltransferases/genética , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Peixes/genética , Perciformes/genética , Ativação Transcricional , Acetiltransferases/química , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Sequência de Bases , Clonagem Molecular , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Óleo de Semente do Linho/metabolismo , Fígado/fisiologia , Perciformes/fisiologia , Filogenia , Óleo de Soja/metabolismo
15.
Nutrients ; 11(4)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991731

RESUMO

The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) is implicated in theregulation of both lipid and carbohydrate metabolism. Thus, we questioned whether dietary DHAand low or high content of sucrose impact on metabolism in mice deficient for elongation of verylong-chain fatty acids 2 (ELOVL2), an enzyme involved in the endogenous DHA synthesis. Wefound that Elovl2 -/- mice fed a high-sucrose DHA-enriched diet followed by the high sucrose, highfat challenge significantly increased body weight. This diet affected the triglyceride rich lipoproteinfraction of plasma lipoproteins and changed the expression of several genes involved in lipidmetabolism in a white adipose tissue. Our findings suggest that lipogenesis in mammals issynergistically influenced by DHA dietary and sucrose content.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Sacarose Alimentar/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Lipogênese/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/sangue , Ácidos Docosa-Hexaenoicos/deficiência , Elongases de Ácidos Graxos , Lipogênese/genética , Lipoproteínas/sangue , Camundongos Knockout , Triglicerídeos/sangue
16.
Planta ; 249(6): 1823-1836, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30847571

RESUMO

MAIN CONCLUSION: The enzymes HaKCS1 and HaKCS2 are expressed in sunflower seeds and contribute to elongation of C18 fatty acids, resulting in the C20-C24 fatty acids in sunflower oil. Most plant fatty acids are produced by plastidial soluble fatty acid synthases that produce fatty acids of up to 18 carbon atoms. However, further acyl chain elongations can take place in the endoplasmic reticulum, catalysed by membrane-bound synthases that act on acyl-CoAs. The condensing enzymes of these complexes are the ketoacyl-CoA synthase (KCSs), responsible for the synthesis of very long chain fatty acids (VLCFAs) and their derivatives in plants, these including waxes and cuticle hydrocarbons, as well as fatty aldehydes. Sunflower seeds accumulate oil that contains around 2-3% of VLCFAs and studies of the fatty acid elongase activity in developing sunflower embryos indicate that two different KCS isoforms drive the synthesis of these fatty acids. Here, two cDNAs encoding distinct KCSs were amplified from RNAs extracted from developing sunflower embryos and named HaKCS1 and HaKCS2. These genes are expressed in developing seeds during the period of oil accumulation and they are clear candidates to condition sunflower oil synthesis. These two KCS cDNAs complement a yeast elongase null mutant and when expressed in yeast, they alter the host's fatty acid profile, proving the encoded KCSs are functional. The structure of these enzymes was modelled and their contribution to the presence of VLCFAs in sunflower oil is discussed based on the results obtained.


Assuntos
Acetiltransferases/metabolismo , Helianthus/enzimologia , Modelos Estruturais , Óleo de Girassol/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Acil Coenzima A/metabolismo , Aldeídos/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA Complementar/genética , Ácido Graxo Sintases/química , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Helianthus/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sementes/enzimologia , Sementes/genética , Alinhamento de Sequência
17.
Plant J ; 96(4): 772-785, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30118566

RESUMO

O-Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O-acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O-acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock-out mutants of Arabidopsis, tbl10-1 and tbl10-2, were isolated and shown to exhibit reduced levels of wall-bound acetyl esters, equivalent of ~50% of the wild-type level in pectin-enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan-I (RG-I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O-acetylation of RG-I, possibly as an acetyltransferase, and suggest that O-acetylated RG-I plays a role in abiotic stress responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Glucanos/metabolismo , Mananas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Polissacarídeos/metabolismo , Pseudomonas syringae/metabolismo , Transcriptoma , Xilanos/metabolismo
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1041-1056, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885363

RESUMO

The hepatitis C virus (HCV) life cycle is tightly linked to the host cell lipid metabolism with the endoplasmic reticulum-derived membranous web harboring viral RNA replication complexes and lipid droplets as virion assembly sites. To investigate HCV-induced changes in the lipid composition, we performed quantitative shotgun lipidomic studies of whole cell extracts and subcellular compartments. Our results indicate that HCV infection reduces the ratio of neutral to membrane lipids. While the amount of neutral lipids and lipid droplet morphology were unchanged, membrane lipids, especially cholesterol and phospholipids, accumulated in the microsomal fraction in HCV-infected cells. In addition, HCV-infected cells had a higher relative abundance of phosphatidylcholines and triglycerides with longer fatty acyl chains and a strikingly increased utilization of C18 fatty acids, most prominently oleic acid (FA [18:1]). Accordingly, depletion of fatty acid elongases and desaturases impaired HCV replication. Moreover, the analysis of free fatty acids revealed increased levels of polyunsaturated fatty acids (PUFAs) caused by HCV infection. Interestingly, inhibition of the PUFA synthesis pathway via knockdown of the rate-limiting Δ6-desaturase enzyme or by treatment with a high dose of a small-molecule inhibitor impaired viral progeny production, indicating that elevated PUFAs are needed for virion morphogenesis. In contrast, pretreatment with low inhibitor concentrations promoted HCV translation and/or early RNA replication. Taken together our results demonstrate the complex remodeling of the host cell lipid metabolism induced by HCV to enhance both virus replication and progeny production.


Assuntos
Hepacivirus/metabolismo , Hepatócitos/metabolismo , Interações Hospedeiro-Patógeno , Metabolismo dos Lipídeos/genética , Metaboloma , Vírion/metabolismo , Replicação Viral/fisiologia , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/genética , Acetiltransferases/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Ácidos Graxos Dessaturases/antagonistas & inibidores , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica , Hepacivirus/crescimento & desenvolvimento , Hepatócitos/química , Hepatócitos/virologia , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/virologia , Microssomos/metabolismo , Microssomos/virologia , Ácido Oleico/metabolismo , Fosfatidilcolinas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Triglicerídeos/metabolismo , Vírion/crescimento & desenvolvimento , Montagem de Vírus/fisiologia
19.
Int J Mol Sci ; 19(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874815

RESUMO

Increasing the yield of plant oil is an important objective to meet the demand for sustainable resources and energy. Some attempts to enhance the expression of genes involved in oil synthesis in seeds have succeeded in increasing oil content. In many cases, the promoters of seed-storage protein genes have been used as seed-specific promoters. However, conventional promoters are developmentally regulated and their expression periods are limited. We constructed a chimeric promoter that starts to express in the early stage of seed development, and high-level expression is retained until the later stage by connecting the promoters of the biotin carboxyl carrier protein 2 (BCCP2) gene encoding the BCCP2 subunit of acetyl-CoA carboxylase and the fatty acid elongase 1 (FAE1) gene from Arabidopsis. The constructed promoter was ligated upstream of the TAG1 gene encoding diacylglycerol acyltransferase 1 and introduced into Arabidopsis. Seeds from transgenic plants carrying AtTAG1 under the control of the chimeric promoter showed increased oil content (up by 18⁻73%) compared with wild-type seeds. The novel expression profile of the chimeric promoter showed that this could be a promising strategy to manipulate the content of seed-storage oils and other compounds.


Assuntos
Acetil-CoA Carboxilase/genética , Acetiltransferases/genética , Proteínas de Arabidopsis/genética , Diacilglicerol O-Aciltransferase/genética , Óleos de Plantas/metabolismo , Sementes/genética , Arabidopsis/genética , Elongases de Ácidos Graxos , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Óleos de Plantas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Armazenamento de Sementes/biossíntese , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/genética , Sementes/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-29432806

RESUMO

Dusky grouper is an important commercial fish species in many countries, but some factors such as overfishing has significantly reduced their natural stocks. Aquaculture emerges as a unique way to conserve this species, but very little biological information is available, limiting the production of this endangered species. To understand and generate more knowledge about this species, liver transcriptome sequencing and de novo assembly was performed for E. marginatus by Next Generation Sequencing (NGS). Sequences obtained were used as a tool to validate the presence of key genes relevant to lipid metabolism, and their expression was quantified by qPCR. Moreover, we investigated the influence of supplementing different dietary fatty acids on hepatic lipid metabolism. The results showed that the different fatty acids added to the diet dramatically changed the gene expression of some key enzymes associated with lipid metabolism as well as hepatic fatty acid profiles. Elongase 5 gene expression was shown to influence intermediate hepatic fatty acid elongation in all experimental groups. Hepatic triglycerides reflected the diet composition more than hepatic phospholipids, and were characterized mainly by the high percentage of 18:3n3 in animals fed with a linseed oil rich diet. Results for the saturated and monounsaturated fatty acids suggest a self-regulatory potential for retention and oxidation processes in liver, since in general the tissues did not directly reflect these fatty acid diet compositions. These results indicated that genes involved in lipid metabolism pathways might be potential biomarkers to assess lipid requirements in the formulated diet for this species.


Assuntos
Gorduras na Dieta/administração & dosagem , Ácidos Graxos/administração & dosagem , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Perciformes/metabolismo , Acetiltransferases/genética , Animais , Aquicultura , Gorduras na Dieta/metabolismo , Elongases de Ácidos Graxos , Ácidos Graxos/metabolismo , Feminino , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Perciformes/genética , Fosfolipídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA