Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8607, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615120

RESUMO

Stellera chamaejasme (S. chamaejasme) is an important medicinal plant with heat-clearing, detoxifying, swelling and anti-inflammatory effects. At the same time, it is also one of the iconic plants of natural grassland degradation in northwest China, playing a key role in the invasion process. Plant endophytes live in healthy plant tissues and can synthesize substances needed for plant growth, induce disease resistance in host plants, and enhance plant resistance to environmental stress. Therefore, studying the root endophytes of S. chamaejasme is of great significance for mining beneficial microbial resources and biological prevention and control of S. chamaejasme. This study used Illumina MiSeq high-throughput sequencing technology to analyze the composition and diversity of endophytes in the roots of S. chamaejasme in different alpine grasslands (BGC, NMC and XGYZ) in Tibet. Research results show that the main phylum of endophytic fungi in the roots of S. chamaejasme in different regions is Ascomycota, and the main phyla of endophytic bacteria are Actinobacteria, Proteobacteria and Firmicutes (Bacteroidota). Overall, the endophyte diversity of the NMC samples was significantly higher than that of the other two sample sites. Principal coordinate analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA) results showed significant differences in the composition of endophytic bacterial and fungal communities among BGC, NMC and XGYZ samples. Co-occurrence network analysis of endophytes showed that there were positive correlations between fungi and some negative correlations between bacteria, and the co-occurrence network of bacteria was more complex than that of fungi. In short, this study provides a vital reference for further exploring and utilizing the endophyte resources of S. chamaejasme and an in-depth understanding of the ecological functions of S. chamaejasme endophytes.


Assuntos
Actinobacteria , Thymelaeaceae , Endófitos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Thymelaeaceae/genética , Análise de Variância
2.
Cell Biochem Funct ; 42(3): e3988, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532684

RESUMO

This article deals with the antibacterial and anticancer potential of secondary metabolites produced by actinomycetes also reported as actinobacteria, Microbacterium proteolyticum (MN560041), and Streptomycetes rochei, where preliminary studies were done with the well diffusion method. These actinobacteria's silver nanoparticles were synthesized and characterized using transmission electron microscopy (TEM) and UV-Visible spectroscopy. Anticancer was measured using the MTT test, reactive oxygen species (ROS) generation measured with DCFDA, mitochondrial membrane potential (MMP) measurement, and DAPI fluorescence intensity activity was measured in treated and non-treated cancerous cells. The IC50 value for 5-FU (a), LA2(O) (b), LA2(R) (c), LA2(ON) (d), and LA2(RN) (e) was obtained at 3.91 µg/mL (52.73% cell viability), 56.12 µg/mL (52.35% cell viability), 44.90 µg/mL (52.3% cell viability), 3.45 µg/mL (50.25% cell viability), and 8.05 µg/mL (48.72% cell viability), respectively. TEM micrographs revealed discrete, well-separated AgNPs particles of size 7.88 ± 2 to 12.86 ± 0.24 nm. Gas chromatography-mass spectrometry was also performed to detect the compounds in bioactive metabolites where n-hexadecanoic acid was obtained as the most significant one. MTT test showed a substantial decline in A549 cell viability (up to 48.72%), 2.75-fold increase in ROS generation was noticed in comparison to untreated A549 lung cancer cells when measured with DCFDA. A total of 0.31-fold decrease in MMP and 1.74-fold increase in DAPI fluorescence intensity compared to untreated A549 lung cancer cells suggests that the synthesized nanoparticles promote apoptosis in cancerous cells. Our findings suggests that the secondary metabolites of M. proteolyticum and S. rochei in nanoparticle form can be used as a significant compound against lung cancers.


Assuntos
Actinobacteria , Fluoresceínas , Neoplasias Pulmonares , Nanopartículas Metálicas , Humanos , Prata/química , Espécies Reativas de Oxigênio/metabolismo , Actinobacteria/metabolismo , Nanopartículas Metálicas/química , Células A549 , Extratos Vegetais/química
3.
Sci Rep ; 14(1): 5513, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448523

RESUMO

As a typical sub-deep reservoir in the upper reaches of the Yangtze River in the southwest region, Zhangjiayan Reservoir is also an important source of drinking water. Exploring the role of microorganisms in the material cycle of water bodies is of great significance for preventing the exacerbation of eutrophication in the reservoir. In this study, water samples from the overlying water of five points in the reservoir were collected four times in spring (April), summer (July), autumn (November), and winter (January) of 2022-2023 using a gas-tight water sampler. Physicochemical factors were measured, and the microbial community structure was analyzed by high-throughput MiSeq sequencing of the V3-V4 hypervariable region of 16S rRNA gene in order to explore the relationship between physicochemical factors and microbial community structure and the dominant microbial populations that affect eutrophication of the reservoir. The following results were obtained through analysis. Among the 20 overlying water samples from Zhangjiayan Reservoir, a total of 66 phyla, 202 classes, 499 orders, 835 families, 1716 genera, and 27,904 ASVs of the bacterial domain were detected. The phyla Proteobacteria and Actinobacteria were dominant in the microbial community of the overlying water in Zhangjiayan Reservoir. At the genus level, hgcI_clade and Actinobacteria had the highest abundance and was the dominant population. The microbial community in the water of Zhangjiayan Reservoir has a high level of diversity. The diversity index ranked by numerical order was winter > autumn > summer > spring. Significant differences were found in the composition and structure of the microbial community between the spring/summer and autumn/winter seasons (p < 0.05). Total phosphorus, dissolved total phosphorus, soluble reactive phosphorus, and dissolved oxygen have a significant impact on the composition and structure of the microbial community (p < 0.01). The bacterial community in the overlying water of Zhangjiayan Reservoir showed a mainly positive correlation. Sphingomonas, Brevundimonas, and Blastomonas were the central populations of the bacterial community in the overlying water of Zhangjiayan Reservoir. This study indicates that environmental factors, such as phosphorus and other nutrients, have a significant impact on the formation of the microbial community structure in different seasons. Sphingomonas, Brevundimonas, and Blastomonas are key populations that may have a significant impact on eutrophication in Zhangjiayan Reservoir.


Assuntos
Actinobacteria , Caulobacteraceae , Microbiota , Humanos , Estações do Ano , RNA Ribossômico 16S/genética , Microbiota/genética , Água , Actinobacteria/genética , Fósforo
4.
Sci Rep ; 14(1): 5676, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453942

RESUMO

Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.


Assuntos
Actinobacteria , Nocardia , Nocardia/genética , Nocardia/metabolismo , Sideróforos/metabolismo , Ecossistema , Antifúngicos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Actinobacteria/metabolismo , Ferro/metabolismo , Bactérias/metabolismo , Genômica , Metaboloma , Solo
5.
Chemosphere ; 354: 141712, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484991

RESUMO

The effects of oxyanions selenite (SeO32-) in soils are of high concern in ecotoxicology and microbiology as they can react with mineral particles and microorganisms. This study investigated the evolution of the actinomycete Kitasatospora sp. SeTe27 in response to selenite. To this aim, we used the Adaptive Laboratory Evolution (ALE) technique, an experimental approach that mimics natural evolution and enhances microbial fitness for specific growth conditions. The original strain (wild type; WT) isolated from uncontaminated soil gave us a unique model system as it has never encountered the oxidative damage generated by the prooxidant nature of selenite. The WT strain exhibited a good basal level of selenite tolerance, although its growth and oxyanion removal capacity were limited compared to other environmental isolates. Based on these premises, the WT and the ALE strains, the latter isolated at the end of the laboratory evolution procedure, were compared. While both bacterial strains had similar fatty acid profiles, only WT cells exhibited hyphae aggregation and extensively produced membrane-like vesicles when grown in the presence of selenite (challenged conditions). Conversely, ALE selenite-grown cells showed morphological adaptation responses similar to the WT strain under unchallenged conditions, demonstrating the ALE strain improved resilience against selenite toxicity. Whole-genome sequencing revealed specific missense mutations in genes associated with anion transport and primary and secondary metabolisms in the ALE variant. These results were interpreted to show that some energy-demanding processes are attenuated in the ALE strain, prioritizing selenite bioprocessing to guarantee cell survival in the presence of selenite. The present study indicates some crucial points for adapting Kitasatospora sp. SeTe27 to selenite oxidative stress to best deal with selenium pollution. Moreover, the importance of exploring non-conventional bacterial genera, like Kitasatospora, for biotechnological applications is emphasized.


Assuntos
Actinobacteria , Selênio , Ácido Selenioso/toxicidade , Selenito de Sódio/metabolismo , Selenito de Sódio/toxicidade , Actinobacteria/genética , Actinobacteria/metabolismo , Bactérias/metabolismo , Selênio/metabolismo , Oxirredução
6.
J Basic Microbiol ; 64(4): e2300585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346247

RESUMO

This study aimed to isolate biosurfactant-producing and hydrocarbon-degrading actinomycetes from different soils using glycerol-asparagine and starch-casein media with an antifungal agent. The glycerol-asparagine agar exhibited the highest number of actinomycetes, with a white, low-opacity medium supporting pigment production and high growth. Biosurfactant analyses, such as drop collapse, oil displacement, emulsification, tributyrin agar test, and surface tension measurement, were conducted. Out of 25 positive isolates, seven could utilize both olive oil and black oil for biosurfactant production, and only isolate RP1 could produce biosurfactant when grown in constrained conditions with black oil as the sole carbon source and inducer, demonstrating in situ bioremediation potential. Isolate RP1 from oil-spilled garden soil is Gram-staining-positive with a distinct earthy odor, melanin formation, and white filamentous colonies. It has a molecular size of ~621 bp and 100% sequence similarity to many Streptomyces spp. Morphological, biochemical, and 16 S rRNA analysis confirmed it as Streptomyces sp. RP1, showing positive results in all screenings, including high emulsification activity against kerosene (27.2%) and engine oil (95.8%), oil displacement efficiency against crude oil (7.45 cm), and a significant reduction in surface tension (56.7 dynes/cm). Streptomyces sp. RP1 can utilize citrate as a carbon source, tolerate sodium chloride, resist lysozyme, degrade petroleum hydrocarbons, and produce biosurfactant at 37°C in a 15 mL medium culture, indicating great potential for bioremediation and various downstream industrial applications with optimization.


Assuntos
Actinobacteria , Petróleo , Streptomyces , Actinobacteria/genética , Actinobacteria/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Actinomyces/metabolismo , Biodegradação Ambiental , Ágar , Glicerol , Asparagina , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Carbono , Tensoativos/química
7.
Arch Microbiol ; 206(2): 65, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227026

RESUMO

Tea, a highly aromatic and globally consumed beverage, is derived from the aqueous infusion of dried leaves of Camellia sinensis (L.) O. Kuntze. Northeast India, encompassing an expansive geographical area between 24° and 27° N latitude and 88° and 95° E longitude, is a significant tea-producing region covering approximately 312,210 hectares. Despite its prominence, this region faces persistent challenges owing to a conducive climate that harbors the prevalence of pests, fungal pathogens, and weeds, necessitating agrochemicals. Helopeltis theivora, Oligonychus coffeae, and Biston suppressaria are prominent among the tea pests in this region. Concurrently, tea plants encounter fungal infections such as blister blight, brown root rot, and Fusarium dieback. The growing demand for safer tea production and the need to reduce pesticide and fertilizer usage has spurred interest in exploring biological control methods. This review focuses on Actinomycetia, which potentially safeguards plants from diseases and pest infestations by producing many bioactive substances. Actinomycetia, which resides in the tea rhizosphere and internal plant tissues, can produce antagonistic secondary metabolites and extracellular enzymes while promoting plant growth. Harnessing the biocontrol potential of Actinomycetia offers a promising solution to enhance tea production, while minimizing reliance on harmful agrochemicals, contributing to a more environmentally conscious and economically viable tea cultivation system.


Assuntos
Actinobacteria , Camellia sinensis , Agroquímicos , Clima , Chá
8.
Braz J Microbiol ; 55(1): 179-190, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38030865

RESUMO

Actinobacteria that are found in nature have enormous promise for the growth of the pharmaceutical sector. There is a scarce report on the antimicrobial activities of endophytic Actinobacteria from Nigeria. As a result, this study evaluated the Actinobacteria isolated from Nigerian medicinal plants in terms of their biodiversity, phylogenetics, and ability to produce antimicrobial compounds. Following accepted practices, Actinobacteria were isolated from the surface-sterilized plant parts. They were identified using 16S rRNA sequencing, microscopic, and morphological methods. The cell-free broth of Actinobacteria isolates was subjected to antimicrobial assay by agar well diffusion. Molecular evolutionary and genetic analysis (MEGA) version X was used for phylogenetic analysis, and the interactive tree of life (iTOL) version 6.0 was used to view the neighbour-joining method-drawn tree. A total of 13 Actinobacteria were recovered, belonging to three genera including 10 strains of Streptomyces, 2 strains of Saccharomonospora, and only 1 strain of Saccharopolyspora. They showed inhibitory activity against several bacterial pathogens. The phylogenetic tree generated from the sequences showed that our isolates are divergent and distinct from other closely related strains on the database. Further, optimization of the antibiotic production by selected Saccharomonospora sp. PNSac2 was conducted. It showed that the optimal conditions were the ISP2 medium (1-2% w/v salt) adjusted to pH of 8 at 30-32℃ for 12-14 days. In conclusion, endophytic Actinobacteria dwelling in Nigerian soils could be a promising source of new antibiotics. Future research is warranted because more genomic analysis and characterization of their metabolites could lead to the development of new antibacterial medicines.


Assuntos
Actinobacteria , Anti-Infecciosos , Plantas Medicinais , Streptomyces , Filogenia , Endófitos , RNA Ribossômico 16S/genética , Nigéria , Anti-Infecciosos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Streptomyces/genética
9.
Bioresour Technol ; 393: 130048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37980947

RESUMO

Previous researches have recognized the vital role of Tetrasphaera elongata in enhanced biological phosphorus removal systems, but the underlying mechanisms remain under-investigated. To address this issue, this study investigated the metabolic characteristics of Tetrasphaera elongata when utilizing glucose as the sole carbon source. Results showed under aerobic conditions, Tetrasphaera elongata exhibited a glucose uptake rate of 136.6 mg/(L·h) and a corresponding phosphorus removal rate of 8.6 mg P/(L·h). Upregulations of genes associated with the glycolytic pathway and oxidative phosphorylation were observed. Noteworthily, the genes encoding the two-component sensor histidine kinase and response regulator transcription factor exhibited a remarkable 28.3 and 27.4-fold increase compared with the group without glucose. Since these genes play a pivotal role in phosphate-specific transport systems, collectively, these findings shed light on a potential mechanism for simultaneous decarbonization and phosphorus removal by Tetrasphaera elongata under aerobic conditions, providing fresh insights into phosphorus removal from wastewaters.


Assuntos
Actinobacteria , Actinomycetales , Glucose , Glucose/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Polifosfatos/metabolismo , Actinomycetales/genética , Actinomycetales/metabolismo , Reatores Biológicos , Esgotos
10.
Fitoterapia ; 172: 105716, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926399

RESUMO

Four previously undescribed angucyclinones umezawaones A-D (1-4) were isolated from the liquid cultures of Umezawaea beigongshangensis. Their structures were determined by spectroscopic analyses, single crystal X-ray diffraction, quantum chemical 13C NMR and electronic circular dichroism calculations. All compounds displayed strong inhibitory activities against indoleamine 2,3-dioxygenase and tryptophan-2,3-dioxygenase in enzymatic assay, especially compound 2.


Assuntos
Actinobacteria , Triptofano Oxigenase , Triptofano Oxigenase/química , Triptofano Oxigenase/metabolismo , Anguciclinas e Anguciclinonas , Actinomyces/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase , Estrutura Molecular
11.
J Microorg Control ; 28(3): 123-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37866894

RESUMO

Clavibacter michiganensis, a gram-positive actinomycete, is a major seed-borne tomato pathogen. We investigated the inactivation efficacy of low-pressure plasma treatment against C. michiganensis inoculated on tomato seeds by placing them on a mesh sheet above the bottom dielectric glass plate. The 2- and 5-minute plasma treatment reduced C. michiganensis populations on the tomato seeds by 0.8 and 1.8 log cfu/seed, respectively. The reduction rates were similar to those of C. michiganensis on shirona (cruciferous) seeds, which have different shapes and surface structures. In contrast, the inactivation of C. michiganensis cells using plasma was more difficult than that of X. campestris cells. Additionally, it was found that placing seeds on a mesh sheet laid on the dielectric glass plate was remarkably effective in inactivating the pathogens on tomato seeds. Since the tomato seeds were susceptible to damage from plasma treatment, methods to reduce its damage need to be investigated.


Assuntos
Actinobacteria , Micrococcaceae , Solanum lycopersicum , Sementes
12.
Huan Jing Ke Xue ; 44(8): 4599-4610, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694653

RESUMO

A 120-day in situ remediation of oil-contaminated soil was carried out by using highly efficient oil-degrading bacteria. The effects of bio-enhanced remediation and changes in soil physicochemical properties and enzyme activities were investigated. Combined with metagenomic sequencing and bioinformatics analysis, the strengthening mechanism was revealed. The results showed that compared with the blank control group (Ctrl), the degradation rate of total petroleum hydrocarbons in the bioremediation group (Exp-BT) was significantly increased, reaching 81.23%. During enhanced bioremediation by highly efficient oil-degrading bacteria, the pH of the soil was stable, the oxidation capacity of the system was improved, and the electrical conductivity was in the range suitable for agricultural activities. Lipase and dehydrogenase maintained high activity during repair. In addition, the analysis of the initial contaminated soil (B0), the highly efficient oil-degrading bacteria obtained from domestication (GZ), and the soil samples after bioremediation (BT) in the obtained samples showed that, at the phylum level, the total proportion of Proteobacteria and Actinobacteria increased by 17.1%. At the genus level, the abundance of Nocardioides, Achromobacter, Gordonia, and Rhodococcus increased significantly. The species and function contribution analysis of COG and KEGG proved that the above bacterial genera had important contributions to the degradation of petroleum hydrocarbons. A high abundance of petroleum hydrocarbon-related metabolic enzymes and five petroleum hydrocarbon-related degradation genes was found in the soil after remediation:alkM, tamA, rubB, ladA, and alkB. The analysis showed that the introduction of the exogenous petroleum hydrocarbon-degrading bacteria group enhanced the metabolic activity of microorganism-related enzymes and the expression of corresponding functional genes.


Assuntos
Actinobacteria , Petróleo , Bactérias/genética , Proteobactérias , Agricultura
13.
Gut Microbes ; 15(2): 2247025, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37614109

RESUMO

Synbiotics are increasingly used by the general population to boost immunity. However, there is limited evidence concerning the immunomodulatory effects of synbiotics in healthy individuals. Therefore, we conducted a double-blind, randomized, placebo-controlled study in 106 healthy adults. Participants were randomly assigned to receive either synbiotics (containing Bifidobacterium lactis HN019 1.5 × 108 CFU/d, Lactobacillus rhamnosus HN001 7.5 × 107 CFU/d, and fructooligosaccharide 500 mg/d) or placebo for 8 weeks. Immune parameters and gut microbiota composition were measured at baseline, mid, and end of the study. Compared to the placebo group, participants receiving synbiotic supplementation exhibited greater reductions in plasma C-reactive protein (P = 0.088) and interferon-gamma (P = 0.008), along with larger increases in plasma interleukin (IL)-10 (P = 0.008) and stool secretory IgA (sIgA) (P = 0.014). Additionally, synbiotic supplementation led to an enrichment of beneficial bacteria (Clostridium_sensu_stricto_1, Lactobacillus, Bifidobacterium, and Collinsella) and several functional pathways related to amino acids and short-chain fatty acids biosynthesis, whereas reduced potential pro-inflammatory Parabacteroides compared to baseline. Importantly, alternations in anti-inflammatory markers (IL-10 and sIgA) were significantly correlated with microbial variations triggered by synbiotic supplementation. Stratification of participants into two enterotypes based on pre-treatment Prevotella-to-Bacteroides (P/B) ratio revealed a more favorable effect of synbiotic supplements in individuals with a higher P/B ratio. In conclusion, this study suggested the beneficial effects of synbiotic supplementation on immune parameters, which were correlated with synbiotics-induced microbial changes and modified by microbial enterotypes. These findings provided direct evidence supporting the personalized supplementation of synbiotics for immunomodulation.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Simbióticos , Humanos , Adulto , Aminoácidos , Bacteroides
14.
Pestic Biochem Physiol ; 194: 105492, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532318

RESUMO

Nanomaterials have been produced with the use of bio-nanotechnology, which is a low-cost approach. Currently, research is being conducted to determine whether actinomycetes isolated from Egyptian soil can biosynthesize Ag nanoparticles (Ag NPs) and characterized by using the following techniques: Transmission electron microscopy (TEM), Dynamic light scattering (DLS), Fourier transforms infrared (FT-IR), Energy-dispersive X-ray spectroscopy (EDX), UV-Vis spectroscopy and X-ray diffraction (XRD). The most promising actinomycetes isolate were identified, morphologically, biochemically, and molecularly. Streptomyces avermitilis Azhar A.4 was found to be able to reduce silver metal nanoparticles from silver nitrate in nine isolates collected from Egyptian soil. Toxicity of biosynthesized against 2nd and 4th larval instar of Agrotis ipsilon (Hufn.) (Lepidoptera: Noctuidae) was estimated. In addition, activity of certain vital antioxidant and detoxifying enzymes as well as midgut histology of treated larvae were also investigated. The results showed appositive correlations between larval mortality percentage (y) and bio-AgNPs concentrations (x) with excellent (R2). The 4th larval instar was more susceptible than 2nd larval instar with LC50 (with 95% confirmed limits) =8.61 (2.76-13.89) and 26.44(13.25-35.58) ppml-1, respectively of 5 days from treatment. The initial stages of biosynthesized AgNps exposure showed significant increases in carboxylesterase (CarE) and peroxidases (PODs) activity followed by significant suppression after 5 days pos-exposure. While protease activity was significantly decreased by increasing time post-exposure. Midgut histology showed abnormality and progressive damage by increasing time post exposure leading to complete destruction of midgut cells after 5 days from exposure. These results make biosynthesized AgNPs an appropriate alternative to chemical insecticide in A. ipsilon management.


Assuntos
Actinobacteria , Nanopartículas Metálicas , Animais , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Actinomyces , Espectroscopia de Infravermelho com Transformada de Fourier , Prata/toxicidade , Larva , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia
15.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37580141

RESUMO

AIM: This study evaluated the phylogenetic diversity, plant growth promotion capacity, antifungal activity, and biocontrol potential of culturable actinobacterial endophytes isolated from the medicinal plant Aconitum carmichaelii Debeaux. METHODS AND RESULTS: Isolation of actinobacteria from healthy A. carmichaelii plants was carried out on six different media. Full-length 16S rRNA gene was amplified by PCR from the genomic DNA of each strain. Indole-3-acetic acid and siderophore production were quantitatively assessed by the Salkowski and Chrome Azurol S methods, respectively. Rice seeds germination and seedling growth were employed to evaluate plant growth promotion capacities of candidate strains. Dual-culture assay and pot experiments were performed to investigate the antifungal and biocontrol potential of isolates. We obtained 129 actinobacterial isolates from A. carmichaelii, and they belonged to 49 species in 7 genera. These strains exhibited diverse plant growth promotion ability, among which one strain significantly enhanced rice seeds germination, while 31 strains significantly facilitated rice seedling growth. SWUST-123 showed strong antifungal activity against four pathogens in vitro and was most compatible with Qingchuan cultivar. SWUST-123 reduced around 40% of southern blight disease occurrence compared to blank control treatment. . CONCLUSION: Aconitum carmichaelii harbored genetically diverse actinobacterial endophytes exhibiting diverse plant growth promotion and antifungal potential, some of which can be served as good candidates for biofertilizers and biocontrol agents.


Assuntos
Aconitum , Actinobacteria , Actinobacteria/genética , Filogenia , RNA Ribossômico 16S/genética , Antifúngicos/farmacologia , Bactérias , Plântula/genética , Variação Genética , Endófitos , Raízes de Plantas/microbiologia
16.
Arch Microbiol ; 205(9): 321, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642791

RESUMO

Omega-3 fatty acids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and α-linolenic acid (ALA), are essential polyunsaturated fatty acids with diverse health benefits. The limited conversion of dietary DHA necessitates its consumption as food supplements. Omega-3 fatty acids possess anti-arrhythmic and anti-inflammatory capabilities, contributing to cardiovascular health. Additionally, DHA consumption is linked to improved vision, brain, and memory development. Furthermore, omega-3 fatty acids offer protection against various health conditions, such as celiac disease, Alzheimer's, hypertension, thrombosis, heart diseases, depression, diabetes, and certain cancers. Fish oil from pelagic cold-water fish remains the primary source of omega-3 fatty acids, but the global population burden creates a demand-supply gap. Thus, researchers have explored alternative sources, including microbial systems, for omega-3 production. Microbial sources, particularly oleaginous actinomycetes, microalgae like Nannochloropsis and among microbial systems, Thraustochytrids stand out as they can store up to 50% of their dry weight in lipids. The microbial production of omega-3 fatty acids is a potential solution to meet the global demand, as these microorganisms can utilize various carbon sources, including organic waste. The biosynthesis of omega-3 fatty acids involves both aerobic and anaerobic pathways, with bacterial polyketide and PKS-like PUFA synthase as essential enzymatic complexes. Optimization of physicochemical parameters, such as carbon and nitrogen sources, pH, temperature, and salinity, plays a crucial role in maximizing DHA production in microbial systems. Overall, microbial sources hold significant promise in meeting the global demand for omega-3 fatty acids, offering an efficient and sustainable solution for enhancing human health.


Assuntos
Actinobacteria , Ácidos Graxos Ômega-3 , Humanos , Ácidos Docosa-Hexaenoicos , Vias Biossintéticas , Carbono
17.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37468449

RESUMO

AIMS: This study aimed to isolate and characterize endophytic plant growth-promoting (PGP) actinomycetes from the wild medicinal plant Zygophyllum album. METHODS AND RESULTS: Eight actinomycetes were isolated, identified, and screened for their PGP activities to improve the growth and production of wheat plants under low N-inputs. Based on 16S rRNA analysis, the isolated actinobacteria showed high diversity and had multiple in vitro PGP attributes. In pot experiments, Streptomyces sp. NGB-Act4 and NGB-Act6 demonstrated the highest significant PGP activities to enhance the growth of wheat plants under reduced N-inputs. Under various field conditions (high-fertility clay soils and low-fertility sandy soils), in combination with 50% N-dose, the two streptomycetes showed significant increases in grain N% and grain yield of the wheat crop compared with the 50% N-fertilized treatment. Irrespective of soil type, wheat plants inoculated with strain NGB-Act4 produced grain yield and grain N% significantly greater than or comparable to the full N-dose treatment. CONCLUSIONS: This is the first field report on the successful use of endophytic streptomycetes as an effective strategy to improve wheat yield and reduce the use of synthetic N fertilizers.


Assuntos
Actinobacteria , Actinomycetales , Streptomyces , Triticum/microbiologia , Solo , RNA Ribossômico 16S/genética , Desenvolvimento Vegetal , Grão Comestível , Actinobacteria/genética , Actinomycetales/genética
18.
Front Endocrinol (Lausanne) ; 14: 1134877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967788

RESUMO

Objectives: This work aimed to observe the effect of consuming Chinese herb tea on glucolipid metabolism and gut microbiota in patients with type 2 diabetes mellitus (T2DM). Methods: Ninety patients with T2DM were recruited from a community and randomly divided into the control group (CG) and intervention group (IG). CG maintained conventional treatment and lifestyle, and IG accepted additional "maccog" traditional Chinese medicine (TCM) tea (mulberry leaf, radix astragali, corn stigma, cortex lycii, radix ophiopogonis, and gynostemma) for 12 weeks. Glucolipid metabolism, hepatorenal function, and gut microbiota were then measured. Results: After the intervention, the decreases in fasting plasma glucose (FPG) and total cholesterol (TC) were greater (P<0.05) in IG than in CG, and those in glycosylated serum protein (GSP) were almost significantly greater (P=0.066) in IG than in CG. The total protein (TP), albumin (ALB), and creatinine (CREA) levels in IG were significantly lower and their decreases were larger in IG than in CG (P<0.05) after the intervention. The Ace and Chao1 indices in IG were slightly higher after the intervention (P=0.056 and 0.052, respectively) than at baselines. The abundance of Actinobacteria, Lachnospiraceae, Bifidobacteriaceae, and Phascolarctobacterium increased significantly after the intervention in IG (P<0.05), and the abundance was higher in IG than in CG (P<0.05 or P<0.1). The abundance of Clostridiales and Lactobacillales was negatively correlated with FPG (P<0.05), Clostridiales and Lachnospiraceae was negatively correlated with GSP (P<0.05), and Bacteroides/Firmicutes was positively correlated with both (P<0.05). No adverse event was observed during the intervention. Conclusions: Administration of "maccog" TCM tea for 12 weeks slightly improved glucolipid metabolism and significantly increased the abundance of beneficial gut microbiota in community patients with T2DM. The increase in beneficial bacteria abundance may be involved in the improvement of glucose metabolism indicators. In addition, this intervention is safe and feasible. Clinical trial registration: https://www.chictr.org.cn/showproj.aspx?proj=31281, identifier ChiCTR1800018566.


Assuntos
Actinobacteria , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Medicina Tradicional Chinesa , Fígado/metabolismo , Bactérias , Chá
19.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36977576

RESUMO

There is increasing evidence that microbes can help ameliorate plant growth under environmental stress. Still, it is largely unknown what microbes and potential functions are involved in sustaining turfgrass, the major component of urban/suburban landscapes, under drought. We examined microbial responses to water deficits in bulk soil, rhizosphere, and root endosphere of bermudagrass by applying evapotranspiration (ET)-based dynamic irrigation twice per week during the growing season to create six treatments (0%, 40%, 60%, 80%, 100%, and 120% ET) and respective drought-stressed soil conditions. Bacterial and fungal communities were analyzed via marker gene amplicon sequencing and thereafter drought-reshaped potential functions of the bacterial community were projected. Slight yet significant microbial responses to irrigation treatments were observed in all three microhabitats. The root endophytic bacterial community was most responsive to water stress. No-irrigation primarily increased the relative abundance of root endophytic Actinobacteria, especially the genus Streptomyces. Irrigation at ≤40% ET increased the relative abundances of PICRUSt2-predicted functional genes encoding 1-aminocyclopropane-1-carboxylic acid deaminase, superoxide dismutase, and chitinase in root endosphere. Our data suggest that the root endophytic Actinobacteria are likely the key players to improve bermudagrass fitness under drought by modulating phytohormone ethylene production, scavenging reactive oxygen species, or ameliorating nutrient acquisition.


Assuntos
Actinobacteria , Cynodon , Desidratação , Microbiota , Raízes de Plantas , Actinobacteria/efeitos dos fármacos , Actinobacteria/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Cynodon/microbiologia , Microbiota/efeitos dos fármacos , Microbiota/genética , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo , Água/farmacologia , Biodiversidade , Genes Bacterianos/genética
20.
J Microbiol Biotechnol ; 33(1): 61-74, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36597590

RESUMO

The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 µg/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis( 3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 µg/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.


Assuntos
Actinobacteria , Actinobacteria/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , RNA Ribossômico 16S/genética , Antibacterianos/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA