Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(15)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38150725

RESUMO

Obesity has become an ongoing global crisis, since it increases the risks of cardiovascular disease, type 2 diabetes, fatty liver, cognitive decline, and some cancers. Adipose tissue is closely associated with the disorder of lipid metabolism. Several efforts have been made toward the modulation of lipid accumulation, but have been hindered by poor efficiency of cellular uptake, low safety, and uncertain effective dosage. Herein, we design an Fe3O4microsphere-doped composite hydrogel (Fe3O4microspheres @chitosan/ß-glycerophosphate/collagen), termed as Fe3O4@Gel, as the magnetocaloric agent for magnetic hyperthermia therapy (MHT), aiming to promote lipolysis in white adipocytes. The experimental results show that the obtained Fe3O4@Gel displays a series of advantages, such as fast sol-gel transition, high biocompatibility, and excellent magneto-thermal performance. MHT, which is realized by Fe3O4@Gel subjected to an alternating magnetic field, leads to reduced lipid accumulation, lower triglyceride content, and increased mitochondrial activity in white adipocytes. This work shows that Fe3O4@Gel-mediated MHT can effectively promote lipolysis in white adipocytesin vitro, which provides a potential approach to treat obesity and associated metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertermia Induzida , Humanos , Lipólise , Adipócitos Brancos , Microesferas , Hidrogéis , Obesidade , Lipídeos , Hipertermia Induzida/métodos , Fenômenos Magnéticos
2.
Nutrients ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375680

RESUMO

Activating brown adipose tissue (BAT) and stimulating white adipose tissue (WAT) browning is a prospective obesity treatment method. Dietary components derived from plants are the most effective approach to activate BAT and promote WAT browning in rodents. This study investigated the synergistic effects of Panax ginseng (PG) and Diospyros kaki leaf (DKL) extract on adipocyte differentiation and browning, as well as the molecular mechanism underlying their beneficial effects. The administration of PG and DKL to HFD-induced obese mice significantly decreased body weight and epididymal and abdominal adipose tissue mass. In in vitro, PG inhibited the adipogenesis of 3T3-L1 adipocytes by regulating the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, DKL negligibly influenced the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of UCP-1, PGC-1α, and PPARα in BAT and/or WAT. Moreover, PG and DKL inhibited adipogenesis synergistically and activated white adipocyte browning via AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) pathways. These results suggest that a combination of PG and DKL regulates adipogenesis in white adipocytes and browning in brown adipocytes by activating AMPK/SIRT1 axis. The potential use of PG and DKL may represent an important strategy in obesity management that will be safer and more effective.


Assuntos
Diospyros , Panax , Camundongos , Animais , Adipócitos Brancos , Proteínas Quinases Ativadas por AMP/metabolismo , Panax/química , Sirtuína 1/metabolismo , Estudos Prospectivos , Adipogenia , PPAR gama/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Folhas de Planta/metabolismo , Células 3T3-L1
3.
Food Funct ; 14(11): 5138-5150, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37170655

RESUMO

Previous studies have shown that coffee has a role in regulating lipid metabolism. However, the active compounds and pharmacological mechanism(s) are still unclear. Here, four new coffee diterpenoids (1-4) were identified from roasted arabica coffee (Coffea arabica L.) beans, and together with 31 known coffee diterpenoids (5-35), their bioactivities in the regulation of lipid content in white adipocytes were evaluated. Based on their structures and correlated bioactivities, we proposed that the α,ß-unsaturated-γ-lactone moiety and hydroxyl group at C-3 are required for the bioactivity. Furthermore, the pharmacological approaches revealed that the active new diterpenoid, dehydrocaffarolide B, inhibited the Akt/mTOR/GSK3ß pathway and arrested cells in the G0/G1 phase of the mitotic clonal expansion process during the adipocyte differentiation and maturation, eventually resulting in the blunting of lipid accumulation in the adipocytes. Collectively, our findings identified four new diterpenoids of arabica coffee and elucidated a mechanism of an active lactone-type diterpenoid in the regulation of lipid content in white adipocytes.


Assuntos
Coffea , Coffea/química , Café/química , Adipócitos Brancos , Manipulação de Alimentos/métodos , Sementes/química , Lipídeos/análise
4.
Food Funct ; 13(6): 3760-3775, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35274657

RESUMO

The role of melatonin in obesity control is extensively accepted, but its mechanism of action is still unclear. Previously we demonstrated that chronic oral melatonin acts as a brown-fat inducer, driving subcutaneous white adipose tissue (sWAT) into a brown-fat-like function (beige) in obese diabetic rats. However, immunofluorescence characterization of beige depots in sWAT and whether melatonin is a beige-fat inducer by de novo differentiation and/or transdifferentiation of white adipocytes are still undefined. Lean (ZL) and diabetic fatty (ZDF) Zücker rats were subdivided into two groups, control (C) and oral melatonin-supplemented (M, 10 mg kg-1 day-1) for 6 weeks. Mesenchymal stem cells (MSCs) were isolated from both rat inguinal fat and human lipoaspirates followed by adipogenesis assays with or without melatonin (50 nM for 12 h in a 24 h period, 12 h+/12 h-) mimicking the light/dark cycle. Immunofluorescence and western-blot assays showed the partial transdifferentiation of white adipocytes in both ZL and ZDF rats, with increasing thermogenic and beige markers, UCP1 and CITED1 and decreasing white adipocyte marker ASC-1 expression. In addition, melatonin increased UCP1, CITED1, and PGC1-α expression in differentiated adipocytes in both rats and humans. These results demonstrate that melatonin increases brown fat in obese diabetic rats by both adipocyte transdifferentiation and de novo differentiation. Furthermore, it promotes beige MSC adipogenesis in humans. This may contribute to the control of body weight attributed to melatonin and its metabolic benefits in human diabesity.


Assuntos
Diabetes Mellitus Experimental , Melatonina , Células-Tronco Mesenquimais , Adipócitos Brancos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Transdiferenciação Celular , Diabetes Mellitus Experimental/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Ratos , Ratos Zucker
5.
Adipocyte ; 11(1): 120-132, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35094659

RESUMO

Obesity is a major global health issue that contributes to the occurrence of metabolic disorders. Based on this fact, understanding the underlying mechanisms and to uncover promising therapeutic approaches for obesity have attracted intense investigation. Brown adipose tissue (BAT) can help burns excess calories. Therefore, promoting White adipose tissue (WAT) browning and BAT activation is an attractive strategy for obesity treatment. MicroRNAs (miRNAs) are small, non-coding RNAs, which are involved in regulation of adipogenic processes and metabolic functions. Evidence is accumulating that miRNAs are important regulators for both brown adipocyte differentiation and white adipocyte browning. Here we report that the expression of miR-669a-5p increases during the adipogenic differentiation of 3T3-L1 and C3H10T1/2 adipocytes. miR-669a-5p supplementation promotes adipogenic differentiation and causes browning of 3T3-L1 and C3H10T1/2 cells. Moreover, the expression of miR-669a-5p is upregulated in iWAT of mice exposed to cold. These data demonstrate that miR-669a-5p plays a role in regulating adipocyte differentiation and fat browning.Abbreviations: Acadl: long-chain acyl-Coenzyme A dehydrogenase; Acadm: medium-chain acyl-Coenzyme A dehydrogenase; Acadvl: very long-chain acyl-Coenzyme A dehydrogenase, very long chain; Aco2: mitochondrial  aconitase 2; BAT: brown adipose tissue; Bmper: BMP-binding endothelial regulator; Cpt1-b:carnitine palmitoyltransferase 1b; Cpt2: carnitine palmitoyltransferase 2; Crat: carnitine acetyltransferase; Cs: citrate synthase; C2MC: Chromosome 2 miRNA cluster; DMEM: Dulbecco's modified Eagle medium; eWAT: epididymal white adipose tissue; ETC: electron transport chain; FAO: fatty acid oxidation; Fabp4:fatty acid binding protein 4; FBS: fetal bovine serum; Hadha: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha; Hadhb: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta; HFD: high fat diet; Idh3a: isocitrate dehydrogenase 3 alpha; iWAT: inguinal subcutaneous white adipose tissue; Lpl: lipoprotein lipase; Mdh2: malate dehydrogenase 2; NBCS: NewBorn Calf Serum; mt-Nd1: mitochondrial NADH dehydrogenase 1; Ndufb8:ubiquinone oxidoreductase subunit B8; Nrf1: nuclear respiratory factor 1; Pgc1α: peroxisome proliferative activated receptor gamma coactivator 1 alpha; Pgc1b: peroxisome proliferative activated receptor, gamma, coactivator 1 beta; Pparγ: peroxisome proliferator activated receptor gamma; Prdm16: PR domain containing 16; Rgs4: regulator of G-protein signaling 4; Sdhb: succinate dehydrogenase complex, subunit B; Sdhc: succinate dehydrogenase complex, subunit C; Sdhd: succinate dehydrogenase complex, subunit D; Sh3d21: SH3 domain containing 21; Sfmbt2: Scm-like with four mbt domains 2; TG: triglyceride; TCA: tricarboxylic acid cycle; Tfam: transcription factor A, mitochondrial; TMRE: tetramethylrhodamine, methyl ester; Ucp1: uncoupling protein 1; Uqcrc2: ubiquinol cytochrome c reductase core protein 2; WAT: White adipose tissue.


Assuntos
MicroRNAs , Succinato Desidrogenase , Células 3T3-L1 , Acil-CoA Desidrogenase/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Coenzima A/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Obesidade/metabolismo , Proteínas Repressoras/metabolismo , Succinato Desidrogenase/metabolismo , Fatores de Transcrição/genética
6.
Nanoscale ; 14(4): 1187-1194, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35005765

RESUMO

Browning of white adipose tissue (WAT) is becoming an attractive therapeutic target for obesity. Great efforts have been made to develop effective approaches to induce browning. Unfortunately, the current methods suffer from a series of disadvantages, such as low efficiency, unsatisfactory stability, and side effects. Herein, we report a new approach to induce browning of 3T3-L1 white adipocytes based on electromagnetic induction heating (EIH) hyperthermia. In particular, adipocyte-targeting aptamer modified gold nanoclusters (Apt-AuNCs) were employed as the mediators of EIH. Apt-AuNCs had good biocompatibility and excellent targeting performance with white adipocytes. After Apt-AuNCs/EIH treatment, adipocytes with characteristic multilocular and small lipid droplets increased, and the content of triglycerides reduced effectively. Apt-AuNCs/EIH treatment also significantly increased the mitochondrial activity in adipocytes. Meanwhile, the mRNA levels of key genes that are involved in browning, for example UCP1, PRDM16, PPARγ, and PGC-1α, were upregulated. Finally, the induction mechanism of Apt-AuNCs/EIH on browning of white adipocytes was explained by the synergistic effects of EIH hyperthermia and pharmacological action of AuNCs. To the best of our knowledge, this is the first attempt on induction of browning by metal nanocluster-mediated EIH hyperthermia, thus providing an interesting and efficient channel for obesity treatment.


Assuntos
Adipócitos Brancos , Hipertermia Induzida , Células 3T3-L1 , Animais , Fenômenos Eletromagnéticos , Ouro , Calefação , Camundongos
7.
J Nutr Biochem ; 101: 108943, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35017003

RESUMO

Obesity and associated comorbidities are closely linked to gut microbiota dysbiosis, energy balance, and chronic inflammation. Tangeretin, a key citrus polymethoxylated flavone (PMF), is abundant in citrus fruits and has preventative and therapeutic effects for numerous diseases. The current study investigated the effects and possible mechanisms of tangeretin supplementation in preventing obesity in high-fat diet (HFD)-fed mice. Treatment of HFD-fed mice with tangeretin potently ameliorated HFD-induced body weight, liver steatosis, glucose intolerance, and insulin resistance. Tangeretin mitigated systemic chronic inflammation by reducing metabolic endotoxemia and inflammation-related gene expression in HFD-fed mice. An increased number of small brown adipocytes possessing multilocular and cytoplasmic lipid droplets and upregulation of thermogenic gene expression were observed after tangeretin treatment. 16S rRNA amplicon sequencing indicated that tangeretin markedly altered the gut microbiota composition (richness and diversity) and reversed 16 operational taxonomic units (OTUs) back to levels seen in mice consuming a normal chow diet (NCD). Notably, tangeretin decreased the ratio of Firmicutes-to-Bacteroidetes and greatly enriched Bacteroides and Lactobacillus. Overall, our results suggest that long-term supplementation with citrus tangeretin ameliorates the phenotype of obesity by improving adipose thermogenesis and reducing systemic inflammation and gut microbiota dysbiosis, which provides a good basis for studying the mechanism of tangeretin's beneficial effects.


Assuntos
Tecido Adiposo Marrom/fisiologia , Suplementos Nutricionais , Flavonas/administração & dosagem , Microbioma Gastrointestinal , Inflamação/dietoterapia , Obesidade/prevenção & controle , Adipócitos Brancos/fisiologia , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Dieta Hiperlipídica , Fígado Gorduroso/dietoterapia , Intolerância à Glucose , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Termogênese
8.
J Nutr Biochem ; 100: 108898, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748921

RESUMO

The adipocytes play an important role in driving the obese-state-white adipose tissue (WAT) stores the excess energy as fat, wherein brown adipose tissue (BAT) is responsible for energy expenditure via the thermoregulatory function of uncoupling protein 1 (UCP1)-the imbalance between these two onsets obesity. Moreover, the anti-obesity effects of brown-like-adipocytes (beige) in WAT are well documented. Browning, the process of transformation of energy-storing into energy-dissipating adipocytes, is a potential preventive strategy against obesity and its related diseases. In the present study, to explore an alternative source of natural products in the regulation of adipocyte transformation, we assessed the potential of theobromine (TB), a bitter alkaloid of the cacao plant, inducing browning in mice (in vivo) and primary adipocytes (in vitro). Dietary supplementation of TB significantly increased skin temperature of the inguinal region in mice and induced the expression of UCP1 protein. It also increased the expression levels of mitochondrial marker proteins in subcutaneous adipose tissues but not in visceral adipose tissues. The microarray analysis showed that TB supplementation upregulated multiple thermogenic and beige adipocyte marker genes in subcutaneous adipose tissue. Furthermore, in mouse-derived primary adipocytes, TB upregulated the expression of the UCP1 protein and mitochondrial mass in a PPARγ ligand-dependent manner. It also increased the phosphorylation levels of PPARγ coactivator 1α without affecting its protein expression. These results indicate that dietary supplementation of TB induces browning in subcutaneous WAT and enhances PPARγ-induced UCP1 expression in vitro, suggesting its potential to treat obesity.


Assuntos
Adipócitos Bege/fisiologia , Adipócitos Brancos/fisiologia , Suplementos Nutricionais , PPAR gama/metabolismo , Teobromina/administração & dosagem , Adipócitos Brancos/efeitos dos fármacos , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitofagia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Prótons , Transdução de Sinais , Temperatura Cutânea , Teobromina/farmacologia , Termogênese , Transcriptoma , Proteína Desacopladora 1/metabolismo , Aumento de Peso
9.
J Nutr Biochem ; 100: 108885, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34655754

RESUMO

The present study evaluated the anti-obesity effect of sulforaphane (SFN) and glucoraphanin (GRN) in broccoli leaf extract (BLE) on 3T3-L1 adipocytes and ob/ob mice. Based on Oil Red O staining and triglyceride (TG) assay, SFN and BLE significantly reduced (P<.05) both lipid accumulation and TG content in the differentiated 3T3-L1 adipocytes. SFN and BLE increased 2-NBDG uptake by 3T3-L1 adipocytes in a dose-dependent manner. Western blot analysis confirmed that SFN and BLE increased the phosphorylation levels of both AMPK (Thr172) and ACC (Ser79), and reduced the expression of HMGCR in liver and white adipose tissues of ob/ob mice. Histological analysis revealed that SFN and BLE ameliorated hepatic steatosis, and reduced the size of adipocyte in ob/ob mice. Treatment with SFN and BLE significantly reduced (P<.05) TG content, low-density lipoprotein (LDL) cholesterol, total cholesterol (TC), and glucose in the serum of ob/ob mice. RNA sequencing analysis showed that up- or down-regulation of 32 genes related to lipid metabolism was restored to control level in both SFN and BLE-treated ob/ob mice groups. A protein-protein interaction (PPI) network was constructed via STRING analysis, and Srebf2, Pla2g2c, Elovl5, Plb1, Ctp1a, Lipin1, Fgfr1, and Plcg1 were located in the functional hubs of the PPI network of lipid metabolism. Overall results suggest that the SFN content in BLE exerts a potential anti-obesity effect by normalizing the expression of genes related to lipid metabolism, which are up- or down-regulated in ob/ob mice.


Assuntos
Adipócitos/metabolismo , Fármacos Antiobesidade/farmacologia , Brassica/química , Isotiocianatos/farmacologia , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Sulfóxidos/farmacologia , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos Brancos/citologia , Animais , Glicemia/metabolismo , Glucose/metabolismo , Glucosinolatos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/patologia , Oximas/farmacologia , Fosforilação , Folhas de Planta/química , Transcriptoma , Triglicerídeos/metabolismo
10.
Phytomedicine ; 96: 153857, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34840022

RESUMO

BACKGROUND: Natural compounds with medicinal properties are part of a strategic trend in the treatment of obesity. The vitamin A agent, ß-carotene, is a well-known carotenoid, and its numerous functions in metabolism have been widely studied. The activation of thermogenesis by stimulating white fat browning (beiging) has been identified as a treatment for obese individuals. PURPOSE: The current study was undertaken to unveil the browning activity of ß-carotene in 3T3-L1 white adipocytes. METHODS: The effects of ß-carotene were evaluated in 3T3-L1 white adipocytes, and gene/protein expressions were determined by performing quantitative real-time PCR, immunoblot analysis, immunofluorescence assessment, and molecular docking techniques. RESULTS: ß-carotene strikingly increased the expression levels of brown-fat-specific marker proteins (UCP1, PRDM16, and PGC-1α) and beige-fat-specific genes (Cd137, Cidea, Cited1, andTbx1) in 3T3-L1 cells. Exposure to ß-carotene also elevated the expressions of key adipogenic transcription factors C/EBPα and PPARγ in white adipocytes but decreased the expressions of lipogenic marker proteins ACC and FAS. Moreover, lipolysis and fat oxidation were regulated by ß-carotene via upregulation of ATGL, pHSL, ACOX, and CPT1. In addition, molecular docking studies revealed ß-carotene activation of the adenosine A2A receptor and ß3-AR. ß-Carotene increased the expressions of mitochondrial biogenic markers, stimulated the ß3-AR and p38 MAPK signaling pathways and its downstream signaling molecules (SIRTs and ATF2), thereby inducing browning. CONCLUSIONS: Taken together, our results indicate the potential of ß-carotene as a natural-source therapeutic anti-obesity agent.


Assuntos
Sirtuínas , beta Caroteno , Células 3T3-L1 , Adipócitos Marrons , Adipócitos Brancos , Animais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Transdução de Sinais , Termogênese , Proteínas Quinases p38 Ativadas por Mitógeno
11.
PLoS One ; 16(9): e0249438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473703

RESUMO

Muscle derived stem cells (MDSCs) and myoblast play an important role in myotube regeneration when muscle tissue is injured. However, these cells can be induced to differentiate into adipocytes once exposed to PPARγ activator like EPA and DHA that are highly suggested during pregnancy. The objective of this study aims at determining the identity of trans-differentiated cells by exploring the effect of EPA and DHA on C2C12 undergoing differentiation into brown and white adipocytes. DHA but not EPA committed C2C12 cells reprograming into white like adipocyte phenotype. Also, DHA promoted the expression of lipolysis regulating genes but had no effect on genes regulating ß-oxidation referring to its implication in lipid re-esterification. Furthermore, DHA impaired C2C12 cells differentiation into brown adipocytes through reducing the thermogenic capacity and mitochondrial biogenesis of derived cells independent of UCP1. Accordingly, DHA treated groups showed an increased accumulation of lipid droplets and suppressed mitochondrial maximal respiration and spare respiratory capacity. EPA, on the other hand, reduced myogenesis regulating genes, but no significant differences were observed in the expression of adipogenesis key genes. Likewise, EPA suppressed the expression of WAT signature genes indicating that EPA and DHA have an independent role on white adipogensis. Unlike DHA treatment, EPA supplementation had no effect on the differential of C2C12 cells into brown adipocytes. In conclusion, DHA is a potent adipogenic and lipogenic factor that can change the metabolic profile of muscle cells by increasing myocellular fat.


Assuntos
Adipócitos Brancos/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/citologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Linhagem Celular , Transdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/genética , DNA Mitocondrial , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipólise/efeitos dos fármacos , Camundongos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos
12.
Phytother Res ; 35(11): 6281-6294, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34523169

RESUMO

Microbial fermentation of grape-skin extracts is found to synthesize anthocyanin oligomers (AO), which are more active than the monomeric anthocyanins that are effective for some metabolic diseases such as diabetes and obesity. This study investigated the functional role of AO in 3T3-L1 white adipocyte metabolism, with a focus on inducing browning. To achieve this, we determined the expressions of core genes and protein markers responsible for browning and lipid metabolism in response to AO treatment of 3T3-L1 white adipocytes. AO exposure significantly increases the expressions of beige-specific genes (Cidea, Cited1, Ppargc1α, Prdm16, Tbx1, Tmem26, and Ucp1) and brown-fat signature proteins (UCP1, PRDM16, and PGC-1α), and suppresses the expressions of lipogenic marker proteins while enhancing the protein levels of lipolysis in white adipocytes. The mechanistic study revealed stimulation of white fat browning via activation of the ß3-AR/PKA/p38 axis and ERK/CREB signaling pathway subsequent to AO treatment. In conclusion, our current findings indicate the beneficial effects of AO for the treatment of obesity with interesting properties such as regulating the browning of adipocytes and increasing thermogenic activity. Although further research based on animal models or clinical trials remains, AO treatment can bring more insights into the treatment of obesity and metabolic syndrome.


Assuntos
Adipócitos Brancos , Antocianinas , Células 3T3-L1 , Adipócitos Marrons , Animais , Antocianinas/farmacologia , Sistema de Sinalização das MAP Quinases , Camundongos , Receptores Adrenérgicos , Transdução de Sinais , Termogênese
13.
Biochem Biophys Res Commun ; 558: 154-160, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33915329

RESUMO

Genistein, a naturally occurring phytoestrogen and a member of the large class of compounds known as isoflavones, exerts protective effects in several diseases. Recent studies indicate that genistein plays a critical role in controlling body weight, obesity-associated insulin resistance, and metabolic disorders, but its target organs in reversing obesity and related pathological conditions remain unclear. In this study, we showed that mice supplemented with 0.2% genistein in a high-fat diet for 12 weeks showed enhanced metabolic homeostasis, including reduced obesity, improved glucose uptake and insulin sensitivity, and alleviated hepatic steatosis. We also observed a beiging phenomenon in the white adipose tissue and reversal of brown adipose tissue whitening in these mice. These changes led to enhanced resistance to cold stress. Altogether, our data suggest that the improved metabolic profile in mice treated with genistein is likely a result of enhanced adipose tissue function.


Assuntos
Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Resposta ao Choque Frio/efeitos dos fármacos , Resposta ao Choque Frio/fisiologia , Genisteína/farmacologia , Adipócitos Brancos/citologia , Adipócitos Brancos/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Crescimento Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Fitoestrógenos/farmacologia , Substâncias Protetoras/farmacologia
14.
J Food Biochem ; 45(4): e13680, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33646616

RESUMO

High-fat diet (HFD)-induced obesity is caused by the imbalance between energy intake and expenditure. Here, we studied the inhibitory effects of aqueous extracts of fermented barley with Lactobacillus plantarum dy-1 (LFBE) and beta-glucan (BGL) on the obesity induced by HFD. Both LFBE and BGL significantly decreased body weight, suppressed visceral lipid accumulation, improved blood lipid profile, and glucose tolerance in HFD rats. BGL showed no thermogenic capacity, while LFBE enhanced the expression of Uncoupling Protein 1 (UCP1), and brown-specific mRNA (PRDM16, PGC1-α, and CIDEA) levels in brown adipose tissue (BAT) and white adipose tissues (WAT) of HFD rats. In addition, LFBE increased the expression of key genes involved in mitochondria biosynthesis and the mitochondrial respiration function. Further, we demonstrated that proteins extracted from LFBE (LFBE-P) were responsible for triggering brown markers to some extent. In conclusion, LFBE alleviates HFD-induced obesity by activating thermogenic fat bioenergetics and mitochondria biosynthesis. PRACTICAL APPLICATIONS: Barley is one of the most productive crops with pretty low utilization. Our group committed to exploring the application and nutritional value of barley. This work aimed to explore improvements in nutritional function of barley after fermentation by Lactobacillus plantarum dy-1. Our study found that oral administration of LFBE help turning white adipose tissue into a thermogenesis state and activate heat generation function of brown adipose tissue. Its characteristics mentioned above significantly inhibited the body weight and blood lipid of high-fat diet rats. Further, we evidenced that LFBE-P were responsible for triggering brown markers in 3T3-L1 cells. We believe our research plays a great part to relieving high-fat diet-induced obesity and type 2 diabetes with functional diet supplementation.


Assuntos
Diabetes Mellitus Tipo 2 , Hordeum , Lactobacillus plantarum , Adipócitos Brancos , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Extratos Vegetais/farmacologia , Ratos
15.
Biochem Biophys Res Commun ; 545: 189-194, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33561654

RESUMO

The prevalence of obesity is increasing globally and is associated with many metabolic disorders, such as type 2 diabetes and cardiovascular diseases. In recent years, a number of studies suggest that promotion of white adipose browning represents a promising strategy to combat obesity and its related metabolic disorders. The aim of this study was to identify compounds that induce adipocyte browning and elucidate their mechanism of action. Among the 500 natural compounds screened, a small molecule named Rutaecarpine, was identified as a positive regulator of adipocyte browning both in vitro and in vivo. KEGG pathway analysis from RNA-seq data suggested that the AMPK signaling pathway was regulated by Rutaecarpine, which was validated by Western blot analysis. Furthermore, inhibition of AMPK signaling mitigated the browning effect of Rutaecaripine. The effect of Rutaecaripine on adipocyte browning was also abolished upon deletion of Prdm16, a downstream target of AMPK pathway. In collusion, Rutaecarpine is a potent chemical agent to induce adipocyte browning and may serve as a potential drug candidate to treat obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Alcaloides Indólicos/farmacologia , Quinazolinas/farmacologia , Fatores de Transcrição/metabolismo , Adipócitos Bege/citologia , Adipócitos Brancos/citologia , Animais , Produtos Biológicos/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Termogênese/genética , Termogênese/fisiologia
16.
Sci Rep ; 11(1): 2008, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479386

RESUMO

Obesity is associated with the growth and expansion of adipocytes which could be decreased via several mechanisms. Cissus Quadrangularis (CQ) extract has been shown to reduce obesity in humans; however, its effect on human white adipocytes (hWA) has not been elucidated. This study aimed to investigate the effects of CQ on obesity, lipolysis, and browning of hWA. CQ treatment in obese humans significantly decreased waist circumference at week 4 and week 8 when compared with the baseline values (p < 0.05 all) and significantly decreased hip circumference at week 8 when compared with the baseline and week 4 values (p < 0.05 all). Serum leptin levels of the CQ-treated group were significantly higher at week 8 compared to baseline levels (p < 0.05). In hWA, glycerol release was reduced in the CQ-treated group when compared with the vehicle-treated group. In the browning experiment, pioglitazone, the PPAR-γ agonist, increased UCP1 mRNA when compared to vehicle (p < 0.01). Interestingly, 10, 100, and 1000 ng/ml CQ extract treatment on hWA significantly enhanced UCP1 expression in a dose-dependent manner when compared to pioglitazone treatment (p < 0.001 all). In conclusion, CQ decreased waist and hip circumferences in obese humans and enhanced UCP1 mRNA in hWA suggestive of its action via browning of hWA.


Assuntos
Cissus/química , Obesidade Abdominal/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Proteína Desacopladora 1/genética , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Adulto , Feminino , Humanos , Leptina/genética , Lipólise/efeitos dos fármacos , Masculino , Obesidade Abdominal/patologia , Extratos Vegetais/química , RNA Mensageiro/genética
17.
Phytother Res ; 35(2): 1113-1124, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33015893

RESUMO

Trigonelline, a major alkaloid component of fenugreek, has been demonstrated to have several biological activities, including antidiabetic and anticancer effects. This study aimed to examine the possible application of trigonelline as an anti-obesity compound based on an investigation of its enhancement of lipid catabolism and induction of browning in white adipocytes. Trigonelline induces browning of 3T3-L1 white adipocytes by enhancing the expressions of brown-fat signature proteins and genes as well as beige-specific genes, including Cd137, Cited1, Tbx1, and Tmem26. Trigonelline also improves lipid metabolism in white adipocytes by decreasing adipogenesis and lipogenesis as well as promotes lipolysis and fatty acid oxidation. Moreover, trigonelline increases the expression of Cox4, Nrf1, and Tfam genes that are responsible for mitochondrial biogenesis. Mechanistic studies revealed that the browning effect of trigonelline in 3T3-L1 white adipocytes is mediated by activating ß3-AR and inhibiting PDE4, thereby stimulating the p38 MAPK/ATF-2 signaling pathway. Considering its high bioavailability in humans and the results of this study, trigonelline may have potential as an anti-obesity compound.


Assuntos
Células 3T3-L1/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Alcaloides/uso terapêutico , Obesidade/tratamento farmacológico , Alcaloides/farmacologia , Animais , Humanos , Camundongos
18.
Exp Biol Med (Maywood) ; 246(2): 163-176, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045853

RESUMO

Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Catequina/análogos & derivados , Kisspeptinas/sangue , Obesidade/sangue , Obesidade/fisiopatologia , Triglicerídeos/sangue , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Adiponectina/sangue , Adulto , Glicemia/metabolismo , Catequina/farmacologia , Humanos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Leptina/sangue , Lipólise , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Pessoa de Meia-Idade , Obesidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
19.
Cells ; 9(11)2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171828

RESUMO

Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity. Activation of these receptors induce browning of white adipocyte. The purpose of this work was to characterize the role of carnosic acid (CA), a compound used in traditional medicine, in the control of brown/brite adipocyte formation and function. We used human multipotent adipose-derived stem (hMADS) cells differentiated into white or brite adipocytes. The expression of key marker genes was determined using RT-qPCR and western blotting. We show here that CA inhibits the browning of white adipocytes and favors decreased gene expression of thermogenic markers. CA treatment does not affect ß-adrenergic response. Importantly, the effects of CA are fully reversible. We used transactivation assays to show that CA has a PPARα/γ antagonistic action. Our data pinpoint CA as a drug able to control PPAR activity through an antagonistic effect. These observations shed some light on the development of natural PPAR antagonists and their potential effects on thermogenic response.


Assuntos
Abietanos/farmacologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/antagonistas & inibidores , Rosmarinus/química , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lipólise/efeitos dos fármacos , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Rosiglitazona/farmacologia , Termogênese/efeitos dos fármacos , Termogênese/genética
20.
Sci Rep ; 10(1): 14175, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843714

RESUMO

Patients with chronic kidney disease (CKD) are often 25(OH)D3 and 1,25(OH)2D3 insufficient. We studied whether vitamin D repletion could correct aberrant adipose tissue and muscle metabolism in a mouse model of CKD-associated cachexia. Intraperitoneal administration of 25(OH)D3 and 1,25(OH)2D3 (75 µg/kg/day and 60 ng/kg/day respectively for 6 weeks) normalized serum concentrations of 25(OH)D3 and 1,25(OH)2D3 in CKD mice. Vitamin D repletion stimulated appetite, normalized weight gain, and improved fat and lean mass content in CKD mice. Vitamin D supplementation attenuated expression of key molecules involved in adipose tissue browning and ameliorated expression of thermogenic genes in adipose tissue and skeletal muscle in CKD mice. Furthermore, repletion of vitamin D improved skeletal muscle fiber size and in vivo muscle function, normalized muscle collagen content and attenuated muscle fat infiltration as well as pathogenetic molecular pathways related to muscle mass regulation in CKD mice. RNAseq analysis was performed on the gastrocnemius muscle. Ingenuity Pathway Analysis revealed that the top 12 differentially expressed genes in CKD were correlated with impaired muscle and neuron regeneration, enhanced muscle thermogenesis and fibrosis. Importantly, vitamin D repletion normalized the expression of those 12 genes in CKD mice. Vitamin D repletion may be an effective therapeutic strategy for adipose tissue browning and muscle wasting in CKD patients.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Caquexia/tratamento farmacológico , Calcifediol/uso terapêutico , Calcitriol/uso terapêutico , Insuficiência Renal Crônica/complicações , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Caquexia/etiologia , Caquexia/fisiopatologia , Calcifediol/sangue , Calcifediol/deficiência , Calcifediol/farmacologia , Calcitriol/sangue , Calcitriol/deficiência , Calcitriol/farmacologia , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Fibrose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Força da Mão , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Nefrectomia , Hormônio Paratireóideo/sangue , RNA Mensageiro/biossíntese , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/tratamento farmacológico , Teste de Desempenho do Rota-Rod , Análise de Sequência de RNA , Termogênese/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA