Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0249438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473703

RESUMO

Muscle derived stem cells (MDSCs) and myoblast play an important role in myotube regeneration when muscle tissue is injured. However, these cells can be induced to differentiate into adipocytes once exposed to PPARγ activator like EPA and DHA that are highly suggested during pregnancy. The objective of this study aims at determining the identity of trans-differentiated cells by exploring the effect of EPA and DHA on C2C12 undergoing differentiation into brown and white adipocytes. DHA but not EPA committed C2C12 cells reprograming into white like adipocyte phenotype. Also, DHA promoted the expression of lipolysis regulating genes but had no effect on genes regulating ß-oxidation referring to its implication in lipid re-esterification. Furthermore, DHA impaired C2C12 cells differentiation into brown adipocytes through reducing the thermogenic capacity and mitochondrial biogenesis of derived cells independent of UCP1. Accordingly, DHA treated groups showed an increased accumulation of lipid droplets and suppressed mitochondrial maximal respiration and spare respiratory capacity. EPA, on the other hand, reduced myogenesis regulating genes, but no significant differences were observed in the expression of adipogenesis key genes. Likewise, EPA suppressed the expression of WAT signature genes indicating that EPA and DHA have an independent role on white adipogensis. Unlike DHA treatment, EPA supplementation had no effect on the differential of C2C12 cells into brown adipocytes. In conclusion, DHA is a potent adipogenic and lipogenic factor that can change the metabolic profile of muscle cells by increasing myocellular fat.


Assuntos
Adipócitos Brancos/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/citologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Linhagem Celular , Transdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/genética , DNA Mitocondrial , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipólise/efeitos dos fármacos , Camundongos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos
2.
Sci Rep ; 11(1): 2008, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479386

RESUMO

Obesity is associated with the growth and expansion of adipocytes which could be decreased via several mechanisms. Cissus Quadrangularis (CQ) extract has been shown to reduce obesity in humans; however, its effect on human white adipocytes (hWA) has not been elucidated. This study aimed to investigate the effects of CQ on obesity, lipolysis, and browning of hWA. CQ treatment in obese humans significantly decreased waist circumference at week 4 and week 8 when compared with the baseline values (p < 0.05 all) and significantly decreased hip circumference at week 8 when compared with the baseline and week 4 values (p < 0.05 all). Serum leptin levels of the CQ-treated group were significantly higher at week 8 compared to baseline levels (p < 0.05). In hWA, glycerol release was reduced in the CQ-treated group when compared with the vehicle-treated group. In the browning experiment, pioglitazone, the PPAR-γ agonist, increased UCP1 mRNA when compared to vehicle (p < 0.01). Interestingly, 10, 100, and 1000 ng/ml CQ extract treatment on hWA significantly enhanced UCP1 expression in a dose-dependent manner when compared to pioglitazone treatment (p < 0.001 all). In conclusion, CQ decreased waist and hip circumferences in obese humans and enhanced UCP1 mRNA in hWA suggestive of its action via browning of hWA.


Assuntos
Cissus/química , Obesidade Abdominal/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Proteína Desacopladora 1/genética , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Adulto , Feminino , Humanos , Leptina/genética , Lipólise/efeitos dos fármacos , Masculino , Obesidade Abdominal/patologia , Extratos Vegetais/química , RNA Mensageiro/genética
3.
Phytother Res ; 35(2): 920-931, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32840919

RESUMO

In this study, we investigated the effect of Biochanin A (BioA), an O-methylated isoflavone on the brown-fat phenotype formation and on the associated thermogenic program including mitochondrial biogenesis and lipolysis in C3H10T1/2 MSCs. Our data demonstrates that Treatment with BioA in an adipogenic differentiation cocktail induced formation of brown-fat-like adipocytes from C3H10T1/2 MSCs without treatment with a known browning inducer (rosiglitazone or T3) at an early stage of differentiation. The formation of brown-fat-like adipocytes by BioA treatment was evidenced by upregulation of key thermogenic markers: Ucp1, Pgc1α, Prdm16, and Pparγ. BioA also increased the expression of beige (Cd137 and Fgf21) and brown (Elovl3 and Zic1)-specific markers. Additionally, BioA treatment promoted mitochondrial biogenesis, judging by the upregulation of genes; Cox8b, Cidea, Dio2, Sirt1, Opa1, and Fis1. BioA treatment increased the amount of mitochondrial DNA and its encoded proteins: oxidative phosphorylation complexes (I-V); this change was associated with high oxygen consumption by C3H10T1/2 MSCs. A small-interfering-RNA-induced gene knockdown and experiments with dorsomorphin-driven competitive inhibition revealed that BioA exerts the thermogenic action via activation of AMPK signaling. Our study shows the mechanism of BioA-induced promotion of a brown-fat phenotype. Nonetheless, clinical research is necessary to validate BioA as a brown-fat-like signature inducer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Anticarcinógenos/uso terapêutico , Genisteína/uso terapêutico , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Anticarcinógenos/farmacologia , Diferenciação Celular , Genisteína/farmacologia , Camundongos , Biogênese de Organelas , Transdução de Sinais , Transfecção
4.
Phytother Res ; 35(2): 1113-1124, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33015893

RESUMO

Trigonelline, a major alkaloid component of fenugreek, has been demonstrated to have several biological activities, including antidiabetic and anticancer effects. This study aimed to examine the possible application of trigonelline as an anti-obesity compound based on an investigation of its enhancement of lipid catabolism and induction of browning in white adipocytes. Trigonelline induces browning of 3T3-L1 white adipocytes by enhancing the expressions of brown-fat signature proteins and genes as well as beige-specific genes, including Cd137, Cited1, Tbx1, and Tmem26. Trigonelline also improves lipid metabolism in white adipocytes by decreasing adipogenesis and lipogenesis as well as promotes lipolysis and fatty acid oxidation. Moreover, trigonelline increases the expression of Cox4, Nrf1, and Tfam genes that are responsible for mitochondrial biogenesis. Mechanistic studies revealed that the browning effect of trigonelline in 3T3-L1 white adipocytes is mediated by activating ß3-AR and inhibiting PDE4, thereby stimulating the p38 MAPK/ATF-2 signaling pathway. Considering its high bioavailability in humans and the results of this study, trigonelline may have potential as an anti-obesity compound.


Assuntos
Células 3T3-L1/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Alcaloides/uso terapêutico , Obesidade/tratamento farmacológico , Alcaloides/farmacologia , Animais , Humanos , Camundongos
5.
Exp Biol Med (Maywood) ; 246(2): 163-176, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045853

RESUMO

Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Catequina/análogos & derivados , Kisspeptinas/sangue , Obesidade/sangue , Obesidade/fisiopatologia , Triglicerídeos/sangue , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Adiponectina/sangue , Adulto , Glicemia/metabolismo , Catequina/farmacologia , Humanos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Leptina/sangue , Lipólise , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Pessoa de Meia-Idade , Obesidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
Mol Nutr Food Res ; 65(2): e2000681, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33274552

RESUMO

SCOPE: Brown and brite adipocytes within the mammalian adipose organ provide non-shivering thermogenesis and thus, have an exceptional capacity to dissipate chemical energy as heat. Polyunsaturated fatty acids (PUFA) of the n3-series, abundant in fish oil, have been repeatedly demonstrated to enhance the recruitment of thermogenic capacity in these cells, consequently affecting body adiposity and glucose tolerance. These effects are scrutinized in mice housed in a thermoneutral environment and in a human dietary intervention trial. METHODS AND RESULTS: Mice are housed in a thermoneutral environment eliminating the superimposing effect of mild cold-exposure on thermogenic adipocyte recruitment. Dietary fish oil supplementation in two different inbred mouse strains neither affects body mass trajectory nor enhances the recruitment of brown and brite adipocytes, both in the presence and absence of a ß3-adrenoreceptor agonist imitating the effect of cold-exposure on adipocytes. In line with these findings, dietary fish oil supplementation of persons with overweight or obesity fails to recruit thermogenic adipocytes in subcutaneous adipose tissue. CONCLUSION: Thus, the authors' data question the hypothesized potential of n3-PUFA as modulators of adipocyte-based thermogenesis and energy balance regulation.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Óleos de Peixe/farmacologia , Gordura Subcutânea/efeitos dos fármacos , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Adulto , Animais , Suplementos Nutricionais , Ácidos Graxos Ômega-3/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Pessoa de Meia-Idade , Óleo de Palmeira/farmacologia , Óleos de Plantas/farmacologia , Gordura Subcutânea/fisiologia , Termogênese/efeitos dos fármacos , Termogênese/fisiologia , Ácido gama-Linolênico/farmacologia
7.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287103

RESUMO

The effects of insulin on the bioenergetic and thermogenic capacity of brown adipocyte mitochondria were investigated by focusing on key mitochondrial proteins. Two-month-old male Wistar rats were treated acutely or chronically with a low or high dose of insulin. Acute low insulin dose increased expression of all electron transport chain complexes and complex IV activity, whereas high dose increased complex II expression. Chronic low insulin dose decreased complex I and cyt c expression while increasing complex II and IV expression and complex IV activity. Chronic high insulin dose decreased complex II, III, cyt c, and increased complex IV expression. Uncoupling protein (UCP) 1 expression was decreased after acute high insulin but increased following chronic insulin treatment. ATP synthase expression was increased after acute and decreased after chronic insulin treatment. Only a high dose of insulin increased ATP synthase activity in acute and decreased it in chronic treatment. ATPase inhibitory factor protein expression was increased in all treated groups. Confocal microscopy showed that key mitochondrial proteins colocalize differently in different mitochondria within a single brown adipocyte, indicating mitochondrial mosaicism. These results suggest that insulin modulates the bioenergetic and thermogenic capacity of rat brown adipocytes in vivo by modulating mitochondrial mosaicism.


Assuntos
Adipócitos Marrons/metabolismo , Metabolismo Energético , Insulina/metabolismo , Mitocôndrias/metabolismo , Termogênese , Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Biomarcadores , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Imunofluorescência , Expressão Gênica , Insulina/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mosaicismo , Ratos , Termogênese/efeitos dos fármacos , Termogênese/genética
8.
Cells ; 9(11)2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171828

RESUMO

Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity. Activation of these receptors induce browning of white adipocyte. The purpose of this work was to characterize the role of carnosic acid (CA), a compound used in traditional medicine, in the control of brown/brite adipocyte formation and function. We used human multipotent adipose-derived stem (hMADS) cells differentiated into white or brite adipocytes. The expression of key marker genes was determined using RT-qPCR and western blotting. We show here that CA inhibits the browning of white adipocytes and favors decreased gene expression of thermogenic markers. CA treatment does not affect ß-adrenergic response. Importantly, the effects of CA are fully reversible. We used transactivation assays to show that CA has a PPARα/γ antagonistic action. Our data pinpoint CA as a drug able to control PPAR activity through an antagonistic effect. These observations shed some light on the development of natural PPAR antagonists and their potential effects on thermogenic response.


Assuntos
Abietanos/farmacologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/antagonistas & inibidores , Rosmarinus/química , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lipólise/efeitos dos fármacos , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Rosiglitazona/farmacologia , Termogênese/efeitos dos fármacos , Termogênese/genética
9.
Phytomedicine ; 78: 153292, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32777487

RESUMO

BACKGROUND: Brown adipose tissue (BAT) activation is a promising therapeutic target to treat hyperlipidemia with obesity. Huang-Qi San (HQS), an traditional Chinese medicine, can ameliorate hyperlipidemia with obesity, but its mechanism of action (MOA) is not understood. PURPOSE: To articulate the MOA for HQS with animal models. METHODS: The main chemical constituents of HQS were identified by high-performance liquid chromatography (HPLC) based assay. Hyperlipidemia with obesity rat models induced by high-fat diet were employed in the study. The levels of the fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and high-density lipoprotein-cholesterol (HDL-C) were measured to evaluate the ability of HQS to ameliorate hyperlipidemia with obesity. Pathological analyses of organs were conducted with Oil Red O staining, hematoxylin-eosin (H&E) staining and transmission electron microscopy. The expression of mRNAs related to thermogenic genes, fatty acid oxidation-related genes and mitochondria biogenic genes were examined by quantitative real-time PCR. The protein expressions of uncoupling protein 1 (UCP1) were investigated by immunohistochemistry and western blot. Simultaneously, the protein expression of PR domain containing 16 (PRDM16), ATP synthase F1 subunit alpha (ATP5A) was detected by western blot. RESULTS: HQS ameliorates metabolic disorder, lipid ectopic deposition, obesity and maintained glucose homeostasis in hyperlipidemia with obesity rats. HQS can significantly increase the number of mitochondria and reduced the size of the intracellular lipid droplets in BAT, and increase the expression of BAT activation-related genes (UCP1, PGC1α, PGC1ß, Prdm16, CD137, TBX1, CPT1a, PPARα, Tfam, NRF1 and NRF2) in vivo. Furthermore, UCP1, PRDM16 and ATP5A proteins of BAT were increased. CONCLUSION: HQS can activate BAT and browning of S-WAT (subcutaneous white adipose tissue) through activating the PRDM16/PGC1α/UCP1 pathway, augmenting mitochondrial biogenesis and fatty acid oxidation to increase thermogenesis and energy expenditure, resulting in a significant amelioration of hyperlipidemia with obesity. Therefore, HQS is an effective therapeutic medicine for the treatment of hyperlipidemia with obesity.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Hiperlipidemias/tratamento farmacológico , Adipócitos Marrons/fisiologia , Adipócitos Brancos/metabolismo , Adipócitos Brancos/fisiologia , Animais , Astragalus propinquus , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/química , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperlipidemias/etiologia , Hiperlipidemias/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Obesidade/tratamento farmacológico , Obesidade/etiologia , Ratos Sprague-Dawley , Termogênese/efeitos dos fármacos
10.
J Agric Food Chem ; 68(24): 6715-6725, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32450691

RESUMO

Brown adipocytes, which contain abundant mitochondria, use stored energy as fuel during a process named nonshivering thermogenesis. Thus, the pharmacological activation of thermogenesis in brown adipose tissue (BAT) has become a promising target for treating obesity. We investigated the effect of fruit of Hovenial dulcis Thunb. (FHD), a frequently used herbal treatment for liver diseases, on thermogenesis and its mechanism using primary cultured brown adipocytes and BAT of high-fat-diet (HFD)-induced obese mice. Thermogenesis-related factors including UCP1 and PGC1α increased with FHD treatment. FHD also increased mitochondrial biogenesis and activation factors such as nuclear respiratory factor (NRF)1 and oxidative phosphorylation (OXPHOS) complex. Furthermore, FHD increased the intercellular nicotinamide adenine dinucleotide (NAD+) level and sirtuin 1 (SIRT1) activity, which may be responsible for the activation of the thermogenic reaction. Overall, our results suggest that FHD can be a novel option for obesity treatment due to its thermogenic action through mitochondrial biogenesis and activation.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Rhamnaceae/química , Termogênese/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/efeitos dos fármacos , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Pharmacol Res ; 158: 104852, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32438038

RESUMO

Secoisolariciresinol diglucoside (SDG) is the main phytoestrogen component of flaxseed known as an antioxidant. Current study focused on the effect of SDG in white adipose tissue (WAT) browning. Browning of WAT is considered as a promising treatment strategy for metabolic diseases. To demonstrate the effect of SDG as an inducer of browning, brown adipocyte markers were investigated in inguinal WAT (iWAT) of high fat diet-fed obese mice and genetically obese db/db mice after SDG administration. SDG increased thermogenic factors such as uncoupling protein 1, peroxisome proliferator-activated receptor gamma coactivator 1 alpha and PR domain containing 16 in iWAT and brown adipose tissue (BAT) of mice. Similar results were shown in beige-induced 3T3-L1 adipocytes and primary cultured brown adipocytes. Furthermore, SDG increased factors of mitochondrial biogenesis and activation. We also observed SDG-induced alteration of AMP-activated protein kinase α (AMPKα). As AMPKα is closely related in the regulation of adipogenesis and thermogenesis, we then evaluated the effect of SDG in AMPKα-inhibited conditions. Genetic or chemical inhibition of AMPKα demonstrated that the role of SDG on browning and thermogenesis was dependent on AMPKα signaling. In conclusion, our data suggest SDG as a potential candidate for improvement of obesity and other metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Butileno Glicóis/farmacologia , Glucosídeos/farmacologia , Fitoestrógenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Células 3T3-L1 , Adipócitos Marrons/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Biogênese de Organelas
12.
PLoS Biol ; 18(3): e3000688, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32218572

RESUMO

Obesity leads to multiple health problems, including diabetes, fatty liver, and even cancer. Here, we report that urolithin A (UA), a gut-microflora-derived metabolite of pomegranate ellagitannins (ETs), prevents diet-induced obesity and metabolic dysfunctions in mice without causing adverse effects. UA treatment increases energy expenditure (EE) by enhancing thermogenesis in brown adipose tissue (BAT) and inducing browning of white adipose tissue (WAT). Mechanistically, UA-mediated increased thermogenesis is caused by an elevation of triiodothyronine (T3) levels in BAT and inguinal fat depots. This is also confirmed in UA-treated white and brown adipocytes. Consistent with this mechanism, UA loses its beneficial effects on activation of BAT, browning of white fat, body weight control, and glucose homeostasis when thyroid hormone (TH) production is blocked by its inhibitor, propylthiouracil (PTU). Conversely, administration of exogenous tetraiodothyronine (T4) to PTU-treated mice restores UA-induced activation of BAT and browning of white fat and its preventive role on high-fat diet (HFD)-induced weight gain. Together, these results suggest that UA is a potent antiobesity agent with potential for human clinical applications.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fármacos Antiobesidade/uso terapêutico , Cumarínicos/uso terapêutico , Obesidade/prevenção & controle , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/prevenção & controle , Intolerância à Glucose/prevenção & controle , Resistência à Insulina , Reação de Maillard , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Propiltiouracila/toxicidade , Termogênese , Tri-Iodotironina/antagonistas & inibidores , Tri-Iodotironina/metabolismo , Aumento de Peso/efeitos dos fármacos
13.
Planta Med ; 86(1): 45-54, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31663108

RESUMO

A previous study showed that the meroterpenoid-rich fraction of an ethanolic extract of Sargassum serratifolium (MES) stimulated adipose tissue browning and inhibited diet-induced obesity and metabolic syndrome. Sargaquinoic acid (SQA) is a major component in MES. We investigated the effects of SQA on the differentiation of preadipocytes to the beige adipocytes. SQA was treated in 3T3-L1 adipocytes differentiated under a special condition that has been reported to induce the browning of adipocytes. SQA at 10 µM reduced lipid accumulation by approximately 23%. SQA at 2.5 - 10 µM induced the differentiation of white adipocytes to beige adipocytes partially by increasing the mitochondrial density and the expression of beige/brown adipocyte markers. In addition, SQA activated lipid catabolic pathways, evidenced by the increased expression levels of perilipin, carnitine palmitoyltransferase 1, and acyl-CoA synthetase long-chain family member 1. As a partial mechanism, biochemical and in silico analyses indicate that SQA activated AMP-activated protein kinase signaling in adipocytes.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Alcenos/farmacologia , Benzoquinonas/farmacologia , Sargassum/química , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Marrons/citologia , Alcenos/isolamento & purificação , Alcenos/toxicidade , Animais , Benzoquinonas/isolamento & purificação , Benzoquinonas/toxicidade , Camundongos , Transdução de Sinais/efeitos dos fármacos
14.
Int J Obes (Lond) ; 44(3): 715-726, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31467421

RESUMO

OBJECTIVES: High-esterified pectin (HEP) is a prebiotic able to modulate gut microbiota, associated with health-promoting metabolic effects in glucose and lipid metabolism and adipostatic hormone sensitivity. Possible effects regulating adaptive thermogenesis and energy waste are poorly known. Therefore, we aimed to study how physiological supplementation with HEP is able to affect microbiota, energy metabolism and adaptive thermogenic capacity, and to contribute to the healthier phenotype promoted by HEP supplementation, as previously shown. We also attempted to decipher some of the mechanisms involved in the HEP effects, including in vitro experiments. SUBJECTS AND EXPERIMENTAL DESIGN: We used a model of metabolic malprogramming consisting of the progeny of rats with mild calorie restriction during pregnancy, both under control diet and an obesogenic (high-sucrose) diet, supplemented with HEP, combined with in vitro experiments in primary cultured brown and white adipocytes treated with the postbiotic acetate. RESULTS: Our main findings suggest that chronic HEP supplementation induces markers of brown and white adipose tissue thermogenic capacity, accompanied by a decrease in energy efficiency, and prevention of weight gain under an obesogenic diet. We also show that HEP promotes an increase in beneficial bacteria in the gut and peripheral levels of acetate. Moreover, in vitro acetate can improve adipokine production, and increase thermogenic capacity and browning in brown and white adipocytes, respectively, which could be part of the protection mechanism against excess weight gain observed in vivo. CONCLUSION: HEP and acetate stand out as prebiotic/postbiotic active compounds able to modulate both brown-adipocyte metabolism and browning and protect against obesity.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Pectinas/farmacologia , Prebióticos , Termogênese/efeitos dos fármacos , Acetatos/metabolismo , Acetatos/farmacologia , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Animais , Restrição Calórica , Suplementos Nutricionais , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Pectinas/administração & dosagem , Pectinas/metabolismo , Gravidez , Ratos , Ratos Wistar
15.
J Agric Food Chem ; 67(51): 14056-14065, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31789021

RESUMO

The main purpose of the present study was to investigate the browning effect of 6-gingerol (6G), one of the main functional compounds in the ethyl acetate extract of ginger (ginger ethyl acetate fraction, GEF), and its underlying mechanisms. In this study, we first discovered that GEF stimulated brown adipocyte differentiation by upregulating the expression levels of browning-specific transcription makers (UCP1, PRDM16, and PGC-1α), thereby reducing lipogenesis transcriptional regulator (C/EBPα) expression in 3T3-L1-differentiated adipocytes. Then, 6G (47.81 ± 0.62 mg/g) was identified as one of the main functional compounds in GEF using high-performance liquid chromatography. 6G promoted adipocyte browning, as evidenced by an increase in some brown/beige fat-specific genes (PGC-1α, Cidea, Prdm16, Cited1, SIRT1, Tmem26, and Ucp1) and proteins (UCP1, CEBP/ß, PGC-1α, and PRDM16) expression levels. Moreover, 6G greatly improved mitochondrial respiration and energy metabolism by upregulating the expression levels of some mitochondrial biogenesis markers (Tfam, Nrf1, SIRT1, and p-AMPK/AMPK) and increasing the uncoupled oxygen consumption rate of protons leaked in 3T3-L1 cells. Comparison of the experimental results obtained with an inhibitor (dorsomorphin) and an activator (5-aminoimidazole-4-carboxamide ribonucleotide) suggested that the 6G-associated regulation of the energy metabolism effect was mediated partly through the AMPK signaling pathway. This study provides new insight into the promotion of fat browning and regulation of lipid metabolism by 6G and suggests that 6G likely has potential therapeutic effects on obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Extratos Vegetais/farmacologia , Zingiber officinale/química , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Adipócitos Marrons/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Polifenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
16.
J Food Sci ; 84(12): 3815-3824, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31750946

RESUMO

Brown adipose tissue (BAT) prevents obesity and related diseases by uncoupling oxidative phosphorylation with adenosine triphosphate. Previous studies have demonstrated that polyphenols can promote the thermogenesis of BAT in mice. Chlorogenic acid (CGA) is a common phenolic acid found in fruits and vegetables, as well as traditional Chinese medicine, which is responsible for a variety of physiological activities. However, it is still unclear whether CGA has positive effects on the thermogenesis of BAT. In this study, CGA enhances the thermogenesis and proton leak of brown adipocytes, however, no changes are evident regarding the differentiation of C3 H10 T1/2 into brown adipocytes. Surprisingly, CGA promotes the uptake of glucose by upregulating the glucose transporter 2 and phosphofructokinase. Moreover, CGA increases the number and the function of mitochondrial. Taken together, CGA stimulates thermogenesis of brown adipocytes by promoting the uptake of glucose and the function of mitochondria. PRACTICAL APPLICATION: Chlorogenic acid (CGA) is widely found in fruits, vegetables, and traditional Chinese medicines, which has been considered to have antibacterial and anti-inflammatory function. However, whether it has the function of resisting obesity and promoting thermogenesis is still unclear. In this study, brown adipocyte was used to explore the function and mechanism of CGA on thermogenesis. It provides new ideas for the utilization of foods rich in CGA and traditional Chinese medicine.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Glucose/metabolismo , Mitocôndrias/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Animais , Camundongos
17.
Nutrients ; 11(11)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726767

RESUMO

In this study, we investigated the effects of black ginseng (BG) and ginsenoside Rb1, which induced browning effects in 3T3-L1 and primary white adipocytes (PWATs) isolated from C57BL/6 mice. BG and Rb1 suppressed the expressions of CCAAT/enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-binding transcription factor-1c (SREBP-1c), whereas the expression level of peroxisome proliferator-activated receptor gamma (PPARγ) was increased. Furthermore, BG and Rb1 enhanced the protein expressions of the brown-adipocyte-specific markers PR domain containing 16 (PRDM16), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), and uncoupling protein 1 (UCP1). These results were further supported by immunofluorescence images of mitochondrial biogenesis. In addition, BG and Rb1 induced expressions of brown-adipocyte-specific marker proteins by AMP-activated protein kinase (AMPK) activation. BG and Rb1 exert antiobesity effects by inducing browning in 3T3-L1 cells and PWATs through AMPK-mediated pathway activation. We suggest that BG and Rb1 act as potential functional antiobesity food agents.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Ginsenosídeos/farmacologia , Panax , Extratos Vegetais/farmacologia , Proteína Desacopladora 1/metabolismo , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Biogênese de Organelas , PPAR gama/metabolismo , Panax/química , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/isolamento & purificação , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
18.
Nutrients ; 11(11)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731817

RESUMO

It is well known that perivascular fat tissue (PVAT) dysfunction can induce endothelial cell (EC) dysfunction, an event which is related with various cardiovascular diseases. In this study, we evaluated whether Ecklonia cava extract (ECE) and pyrogallol-phloroglucinol-6,6-bieckol (PPB), one component of ECE, could attenuate EC dysfunction by modulating diet-induced PVAT dysfunction mediated by inflammation and ER stress. A high fat diet (HFD) led to an increase in the number and size of white adipocytes in PVAT; PPB and ECE attenuated those increases. Additionally, ECE and PPB attenuated: (i) an increase in the number of M1 macrophages and the expression level of monocyte chemoattractant protein-1 (MCP-1), both of which are related to increases in macrophage infiltration and induction of inflammation in PVAT, and (ii) the expression of pro-inflammatory cytokines (e.g., tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, chemerin) in PVAT which led to vasoconstriction. Furthermore, ECE and PPB: (i) enhanced the expression of adiponectin and IL-10 which had anti-inflammatory and vasodilator effects, (ii) decreased HFD-induced endoplasmic reticulum (ER) stress and (iii) attenuated the ER stress mediated reduction in sirtuin type 1 (Sirt1) and peroxisome proliferator-activated receptor γ (PPARγ) expression. Protective effects against decreased Sirt1 and PPARγ expression led to the restoration of uncoupling protein -1 (UCP-1) expression and the browning process in PVAT. PPB or ECE attenuated endothelial dysfunction by enhancing the pAMPK-PI3K-peNOS pathway and reducing the expression of endothelin-1 (ET-1). In conclusion, PPB and ECE attenuated PVAT dysfunction and subsequent endothelial dysfunction by: (i) decreasing inflammation and ER stress, and (ii) modulating brown adipocyte function.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Células Endoteliais/efeitos dos fármacos , Doenças Vasculares Periféricas/tratamento farmacológico , Phaeophyceae , Extratos Vegetais/farmacologia , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Animais , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dioxinas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Vasculares Periféricas/etiologia , Floroglucinol/farmacologia , Pirogalol/farmacologia
19.
Phytomedicine ; 64: 153075, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31476558

RESUMO

BACKGROUND: Obesity is one of the major health problems worldwide. The induction of brown adipocyte formation and activity represents a promising therapeutic option by increasing energy expenditure. Asian herbs have the potential to treat obesity, however, pharmacological effects should be well documented at the molecular level first. HYPOTHESIS: A novel hypothesis-driven screening approach identified the root of Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep (PLR) to have potential effects on obesity by stimulating brown adipocytes. STUDY DESIGN: This study explored the metabolic effects of PLR water extract (PLRE) in a high-fat diet-induced obesity mouse model and characterized its secondary metabolite composition. METHODS: Animals were orally treated daily for two weeks and the bioactivity of PLRE evaluated by measuring various parameters including body weight, circulating metabolites, energy expenditure and insulin sensitivity. The chemical composition of the mains components was obtained by HPLC-MS-ELSD-PDA. Based on the dereplication results and semi-quantitative estimation, pure molecules were selected for tests on adipocytes in vitro. RESULTS: PLRE induces brown adipocyte activity and triggers the formation of brown-like cells in inguinal fat tissue, weight loss, and improved glucose metabolism. These effects are primarily caused by cell-autonomous activation of brown adipocytes and not by autonomic nervous system regulation. Even though the analysis of PLRE revealed puerarin as the most abundant secondary metabolite, it showed no effect on brown adipocyte formation and function. Brown adipocyte activity was induced dose-dependently by two other isoflavones, daidzein, and genistein. Daidzein is present in a very small amount in PLRE, but various glycosidic isoflavones, including puerarin, may release daidzein after metabolism. CONCLUSION: This approach demonstrated the positive effects of PLRE on a diet-induced obesity mouse model and provided clues on the mode of action of PLRE at the molecular level.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Pueraria/química , Adipócitos/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Animais , Fármacos Antiobesidade/química , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Genisteína/farmacologia , Resistência à Insulina , Isoflavonas/farmacologia , Camundongos , Obesidade/etiologia , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Pueraria/metabolismo
20.
Nutrients ; 11(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443565

RESUMO

Obesity is a global health threat. Herein, we evaluated the underlying mechanism of anti-obese features of bitter orange (Citrus aurantium Linné, CA). Eight-week-administration of CA in high fat diet-induced obese C57BL/6 mice resulted in a significant decrease of body weight, adipose tissue weight and serum cholesterol. In further in vitro studies, we observed decreased lipid droplets in CA-treated 3T3-L1 adipocytes. Suppressed peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha indicated CA-inhibited adipogenesis. Moreover, CA-treated primary cultured brown adipocytes displayed increased differentiation associated with elevation of thermogenic factors including uncoupling protein 1 and PPARγ coactivator 1 alpha as well. The effects of CA in both adipocytes were abolished in AMP-activated protein kinase alpha (AMPKα)-suppressed environments, suggesting the anti-adipogenic and pro-thermogenic actions of CA were dependent on AMPKα pathway. In conclusion, our results suggest CA as a potential anti-obese agent which regulates adipogenesis and thermogenesis via AMPKα.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Citrus , Dieta Hiperlipídica , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Termogênese/efeitos dos fármacos , Células 3T3-L1 , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/enzimologia , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/enzimologia , Tecido Adiposo/enzimologia , Tecido Adiposo/fisiopatologia , Animais , Fármacos Antiobesidade/isolamento & purificação , Citrus/química , Modelos Animais de Doenças , Ativação Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/enzimologia , Obesidade/fisiopatologia , Extratos Vegetais/isolamento & purificação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA