Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.621
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131383, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580030

RESUMO

The development of antibiotic-loaded microneedles has been hindered for years by limited excipient options, restricted drug-loading space, poor microneedle formability, and short-term drug retention. Therefore, this study proposes a dissolving microneedle fabricated from the host-defense peptide ε-poly-l-lysine (EPL) as an antibacterial adjuvant system for delivering antibiotics. EPL serves not only as a major matrix material for the microneedle tips, but also as a broad-spectrum antibacterial agent that facilitates the intracellular accumulation of the antibiotic doxycycline (DOX) by increasing bacterial cell membrane permeability. Furthermore, the formation of physically crosslinked networks of EPL affords microneedle tips with improved formability, good mechanical properties, and amorphous nanoparticles (approximately 7.2 nm) of encapsulated DOX. As a result, a high total loading content of both antimicrobials up to 2319.1 µg/patch is achieved for efficient transdermal drug delivery. In a Pseudomonas aeruginosa-induced deep cutaneous infection model, the EPL microneedles demonstrates potent and long-term effects by synergistically enhancing antibiotic activities and prolonging drug retention in infected lesions, resulting in remarkable therapeutic efficacy with 99.91 % (3.04 log) reduction in skin bacterial burden after a single administration. Overall, our study highlights the distinct advantages of EPL microneedles and their potential in clinical antibacterial practice when loaded with amorphous DOX nanoparticles.


Assuntos
Antibacterianos , Doxiciclina , Nanopartículas , Agulhas , Polilisina , Polilisina/química , Doxiciclina/administração & dosagem , Doxiciclina/farmacologia , Doxiciclina/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Camundongos , Sistemas de Liberação de Medicamentos , Administração Cutânea , Pele/efeitos dos fármacos , Pele/microbiologia , Infecções por Pseudomonas/tratamento farmacológico
2.
Int Immunopharmacol ; 131: 111824, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38461633

RESUMO

BACKGROUND: Psoriasis is an inflammatory skin disease that occurs repeatedly over time. The natural product of sesquiterpene lactones, Parthenolide (Par), is isolated from Tanacetum parthenium L. (feverfew) which has significant effects on anti-inflammatory. The therapeutic effect of the medication itself is crucial, but different routes of administration of the same drug can also produce different effects. PURPOSE: The aim of our research sought to investigate the ameliorating effects of Par in psoriasis-like skin inflammation and its related mechanism of action. RESULTS: In the IMQ-induced model, intragastric administration of Par reduced the Psoriasis Area and Severity Index (PASI) score, improved skin erythema, scaling, and other symptoms. And Par decreased the expression of Ki67, keratin14, keratin16 and keratin17, and increased the expression of keratin1. Par could reduce IL-36 protein expressions, meanwhile the expression of Il1b, Cxcl1 and Cxcl2 mRNA were also decreased. Par regulated the expression levels of F4/80, MPO and NE. However, skin transdermal administration of Par was more effective. Similarly, Par attenuated IL-36γ, IL-1ß and caspase-1 activated by Poly(I:C) in in vitro and ex vivo. In addition, Par also reduced NE, PR3, and Cathepsin G levels in explant skin tissues. CONCLUSION: Par ameliorated psoriasis-like skin inflammation in both in vivo and in vitro, especially after treatment with transdermal drug delivery, possibly by inhibiting neutrophil extracellular traps and thus by interfering IL-36 signaling pathway. It indicated that Par provides a new research strategy for the treatment of psoriasis-like skin inflammation and is expected to be a promising drug.


Assuntos
Dermatite , Armadilhas Extracelulares , Psoríase , Sesquiterpenos , Animais , Camundongos , Imiquimode/farmacologia , Administração Cutânea , Armadilhas Extracelulares/metabolismo , Pele , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Sesquiterpenos/uso terapêutico , Sesquiterpenos/farmacologia , Dermatite/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
3.
Expert Opin Drug Metab Toxicol ; 20(4): 235-248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553411

RESUMO

INTRODUCTION: Psoriasis is a chronic inflammatory cutaneous disease that causes patients psychosocial distress. Topical therapies are utilized for mild-to-moderate disease and for more severe disease in conjunction with systemic therapies. Topical corticosteroids are a cornerstone of treatment for psoriasis, but long-term use can cause stria and cutaneous atrophy and as well as systemic side effects such as topical steroid withdrawal. Non-steroidal topical therapies tend to be safer than topical corticosteroids for long-term use. AREAS COVERED: We conducted a literature review on the pharmacokinetic (PK) and pharmacodynamic (PD) properties of topical therapies for psoriasis. We discuss how the PK and PD characteristics of these therapies inform clinicians on efficacy and toxicity when prescribing for patients. EXPERT OPINION: Topical corticosteroids, used intermittently, are very safe and effective. Long-term, continuous use of topical corticosteroids can cause systemic side effects. Several generic and newly approved non-steroidal options are available, but no head-to-head studies compare the effectiveness of the generics (vitamin D analogs, tacrolimus, pimecrolimus) against the newer therapies (roflumilast, tapinarof). Patients often do not respond to topical therapies due to poor adherence to treatment regimens. For patients resistant to topical treatment, phototherapy or systemic therapy may be an option.


Assuntos
Corticosteroides , Psoríase , Humanos , Administração Cutânea , Corticosteroides/farmacocinética , Corticosteroides/farmacologia , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Fármacos Dermatológicos/efeitos adversos , Fármacos Dermatológicos/farmacocinética , Fármacos Dermatológicos/farmacologia , Glucocorticoides/farmacocinética , Glucocorticoides/farmacologia , Adesão à Medicação , Psoríase/tratamento farmacológico , Índice de Gravidade de Doença , Fatores de Tempo
4.
Am J Clin Dermatol ; 25(3): 465-471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38453786

RESUMO

Acne is one of the most common dermatological conditions to affect women of childbearing age, so it is important to consider the safety of long-term acne treatments on women who could become pregnant. In this review article, we clarify what management options are available to treat acne during pregnancy. Topical treatments, typically first-line for acne, such as azelaic acid, clindamycin, erythromycin, metronidazole, benzoyl peroxide, salicylic acid, dapsone, and retinoids, were reviewed. Systemic treatments, such as zinc supplements, cephalexin, cefadroxil, amoxicillin, azithromycin, erythromycin, and corticosteroids, typically second-line for acne, were also reviewed. Alternative treatments such as light therapy and cosmetic procedures were also evaluated. Due to recommendation of sunscreen utilization during acne treatments, sunscreen usage during pregnancy was also assessed. Management of acne during unplanned pregnancy was discussed in further detail regarding safety and adverse effects. Through summarized tables and examples of studies demonstrating safety and efficacy of treatments, the following is a resource for providers and patients to utilize for management of acne during pregnancy.


Assuntos
Acne Vulgar , Fármacos Dermatológicos , Complicações na Gravidez , Humanos , Acne Vulgar/tratamento farmacológico , Acne Vulgar/terapia , Gravidez , Feminino , Fármacos Dermatológicos/uso terapêutico , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/efeitos adversos , Complicações na Gravidez/terapia , Complicações na Gravidez/tratamento farmacológico , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Protetores Solares/administração & dosagem , Gravidez não Planejada , Fototerapia/métodos , Administração Cutânea
5.
Mol Pharm ; 21(5): 2298-2314, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38527915

RESUMO

Hypertrophic scars (HS) still remain an urgent challenge in the medical community. Traditional Chinese medicine (TCM) has unique advantages in the treatment of HS. However, due to the natural barrier of the skin, it is difficult for the natural active components of TCM to more effectively penetrate the skin and exert therapeutic effects. Therefore, the development of an efficient drug delivery system to facilitate enhanced transdermal absorption of TCM becomes imperative for its clinical application. In this study, we designed a compound Salvia miltiorrhiza-Blumea balsamifera nanoemulsion gel (CSB-NEG) and investigated its therapeutic effects on rabbit HS models. The prescription of CSB-NEG was optimized by single-factor, pseudoternary phase diagram, and central composite design experiments. The results showed that the average particle size and PDI of the optimized CSB-NE were 46.0 ± 0.2 nm and 0.222 ± 0.004, respectively, and the encapsulation efficiency of total phenolic acid was 93.37 ± 2.56%. CSB-NEG demonstrated excellent stability and skin permeation in vitro and displayed a significantly enhanced ability to inhibit scar formation compared to the CSB physical mixture in vivo. After 3 weeks of CSB-NEG treatment, the scar appeared to be flat, pink, and flexible. Furthermore, this treatment also resulted in a decrease in the levels of the collagen I/III ratio and TGF-ß1 and Smad2 proteins while simultaneously promoting the growth and remodeling of microvessels. These findings suggest that CSB-NEG has the potential to effectively address the barrier properties of the skin and provide therapeutic benefits for HS, offering a new perspective for the prevention and treatment of HS.


Assuntos
Cicatriz Hipertrófica , Emulsões , Géis , Salvia miltiorrhiza , Absorção Cutânea , Coelhos , Animais , Cicatriz Hipertrófica/tratamento farmacológico , Salvia miltiorrhiza/química , Absorção Cutânea/efeitos dos fármacos , Emulsões/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Modelos Animais de Doenças , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Administração Cutânea , Tamanho da Partícula , Masculino , Nanopartículas/química , Medicina Tradicional Chinesa/métodos , Orelha/patologia , Sistemas de Liberação de Medicamentos/métodos
6.
Langmuir ; 40(10): 5098-5105, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412279

RESUMO

As a serious public health issue, malaria threatens the health of millions of people. Artemisinin, a gift from traditional Chinese medicine, has been used in the treatment of malaria and has shown good therapeutic efficiency. However, due to its low solubility, poor bioavailability, and short half-life time, some smart delivery strategies are still required. Herein, a multifunctional DES prepared from ibuprofen and menthol was prepared. This DES was shown to efficiently promote the solubility of artemisinin up to 400-fold. Then, it was further applied as the oil phase to construct an O/W microemulsion with the help of Tween-80 + Span-20 mixed surfactants. The prepared microemulsion displayed high efficiency in improving the permeability of artemisinin, which can be ascribed to the presence of the permeation enhancer menthol in DES and the microstructure of the O/W microemulsion. Moreover, the simultaneous permeation of artemisinin and ibuprofen further indicated the potential benefits of the presented formulation in the treatment of malaria. To sum up, the microemulsion based on multifunctional DES presented herein provided an effective method for transdermal delivery of artemisinin.


Assuntos
Artemisininas , Malária , Humanos , Ibuprofeno/química , Solventes Eutéticos Profundos , Solventes , Sistemas de Liberação de Medicamentos/métodos , Mentol , Emulsões/química , Administração Cutânea , Tensoativos/química , Malária/tratamento farmacológico
7.
J Pharm Sci ; 113(2): 407-418, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37972891

RESUMO

In Vitro Permeation Test (IVPT) is commonly used to evaluate skin penetration of chemicals and performance of dermatological products. For a permeant with low aqueous solubility, an additive that is expected not to alter the skin barrier can be used in the receptor solution to improve permeant solubility. The objective of this study was to (a) evaluate the effects of these additives in IVPT receptor solution on skin permeability of model permeants and skin electrical resistance and (b) determine the solubility of the permeants in these receptor solutions. Bovine serum albumin (BSA), 2-hydroxypropyl-beta-cyclodextrin (HPCD), ethanol, nonionic surfactant Brij-98, and propylene glycol were the additives, and phosphate buffered saline (PBS) was the control. Steady-state skin permeability coefficients and resistances were determined. The receptor solutions examined in this study did not cause a significant increase in skin permeability or decrease in resistance (less than 40 % changes) except 25 % ethanol. The receptor solution containing 25 % ethanol induced an approximately twofold average increase in skin permeability and reduced skin electrical resistance by approximately threefold. The receptor solution of 2.5 % HPCD provided the highest levels of solubility for the model lipophilic permeants, while 0.2 % Brij-98 and 5 % ethanol showed the lowest solubility enhancement from those in PBS.


Assuntos
Óleos de Plantas , Polietilenoglicóis , Absorção Cutânea , Pele , Administração Cutânea , Pele/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina , Permeabilidade , Etanol
8.
J Biomater Sci Polym Ed ; 35(3): 364-396, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37982815

RESUMO

Natural products are generally preferred medications owing to their low toxicity and irritancy potential. However, a good number of herbal therapeutics (HT) exhibit solubility, permeability and stability issues that eventually affect oral bioavailability. Transdermal administration has been successful in resolving some of these issues which has lead in commercialization of a few herbal transdermal products. Polymeric Microneedles (MNs) has emerged as a promising platform in transdermal delivery of HT that face problems in permeating the skin. Several biocompatible and biodegradable polymers used in the fabrication of MNs have been discussed. MNs have been exploited for cutaneous delivery of HT in management of skin ailments like skin cancer, acne, chronic wounds and hypertrophic scar. Considering the clinical need, MNs are explored for systemic delivery of potent HT for management of diverse disorders like asthma, disorders of central nervous system and nicotine replacement as it obviates first pass metabolism and elicits a quicker onset of therapeutic response. MNs of HT have found good number of aesthetic applications in topical delivery of HT to the skin. Interestingly, MNs have emerged as an attractive option as a minimally invasive diagnostic aid in sampling biomarkers from plants, skin and ocular interstitial fluid. The review updates the progress made by MN technology of HT for multiple therapeutic interventions along with the future challenges. An attempt is made to illustrate the challenging formulation strategies employed in the fabrication of polymeric MNs of HT. Efforts are on to extend the potential applications of polymeric MNs to HT for diverse therapeutic applications.


Assuntos
Abandono do Hábito de Fumar , Administração Cutânea , Sistemas de Liberação de Medicamentos , Agulhas , Dispositivos para o Abandono do Uso de Tabaco , Pele , Polímeros/metabolismo
9.
Sci Rep ; 13(1): 21681, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38066008

RESUMO

The current piece of research intends to evaluate the potential of combining etodolac with deformable-emulsomes, a flexible vesicular system, as a promising strategy for the topical therapy of arthritis. The developed carrier system featured nanometric dimensions (102 nm), an improved zeta potential (- 5.05 mV), sustained drug release (31.33%), and enhanced drug deposition (33.13%) of DE-gel vis-à-vis conventional system (10.34% and 14.71%). The amount of permeation of the developed nano formulation across skin layers was demonstrated through CLSM and dermatokinetics studies. The safety profile of deformable-emulsomes has been investigated through in vitro HaCaT cell culture studies and skin compliance studies. The efficacy of the DE-gel formulation was sevenfold higher in case of Xylene induced ear edema model and 2.2-folds in CFA induced arthritis model than that of group treated with conventional gel (p < 0.01). The main technological rationale lies in the use of phospholipid and sodium deoxycholate-based nanoscale flexible lipoidal vesicles, which effectively encapsulate drug molecules within their interiors. This encapsulation enhances the molecular interactions and facilitates the transportation of the drug molecule effectively to the target-site. Hence, these findings offer robust scientific evidence to support additional investigation into the potential utility of flexible vesicular systems as a promising drug delivery alternative for molecules of this nature.


Assuntos
Artrite , Etodolac , Humanos , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo , Absorção Cutânea , Artrite/tratamento farmacológico , Artrite/metabolismo , Tamanho da Partícula , Administração Cutânea
10.
AAPS PharmSciTech ; 24(8): 229, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964102

RESUMO

This study aimed to prepare colchicine (CO), 4-hydroxyacetophenone (HA), and protocatechuic acid (CA) contained in transdermal rubber plasters into a more releasable and acrylate pressure-sensitive adhesive (PSA) to optimize traditional Touguling rubber plasters (TOU) with enhanced transdermal permeability by using deep eutectic solvents (DES) technology. We compared the difference in the release behavior of CO between rubber plaster and PSA, determined the composition of the patch through pharmacodynamic experiments, explored the transdermal behavior of the three components, optimized the patch formula factors, and improved the penetration of CO through the skin. We also focused on elucidating the interactions among the three components of DES and the intricate relationship between DES and the skin. The melting point of DES was determined using DSC, while FTIR, 13C NMR, and ATR-FTIR were used to explore the intricate molecular mechanisms underlying the formation of DES, as well as its enhancement of skin permeability. The results of this investigation confirmed the successful formation of DES, marked by a discernible melting point at 27.33°C. The optimized patch, formulated with a molar ratio of 1:1:1 for CO, HA, and CA, significantly enhanced skin permeability, with the measured skin permeation quantities being 32.26 ± 2.98 µg/cm2, 117.67 ± 7.73 µg/cm2, and 56.79 ± 1.30 µg/cm2 respectively. Remarkably, the optimized patch also demonstrated similar analgesic and anti-inflammatory effects compared to commercial diclofenac diethylamide patches in different pharmacodynamics studies. The formation of DES altered drug compatibility with skin lipids and increased retention, driven by the interaction among the three component molecules through hydrogen bonding, effectively shielding the skin-binding sites and enhancing component permeation. In summary, the study demonstrated that optimized DES patches can concurrently enhance the penetration of CO, HA, and CA, thereby providing a promising approach for the development of DES in transdermal drug delivery systems. The findings also shed light on the molecular mechanisms underlying the transdermal behavior of DES and offer insights for developing more effective traditional Chinese medicine transdermal drug delivery systems.


Assuntos
Solventes Eutéticos Profundos , Absorção Cutânea , Colchicina/metabolismo , Colchicina/farmacologia , Borracha/metabolismo , Borracha/farmacologia , Administração Cutânea , Pele/metabolismo , Adesivo Transdérmico
11.
Curr Drug Targets ; 24(16): 1260-1270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953621

RESUMO

The objective of this review is to thoroughly investigate herbal nano gels as a promising drug delivery approach for the management of various chronic and acute disorders. Herbal nano gels are a novel and promising drug delivery technique, offering special benefits for better therapeutic efficacy. This review offers a comprehensive analysis of the herbal nano gels with a particular emphasis on their evaluation concerning conventional dosage forms, polymer selection criteria, drug release mechanisms, and applications. The comparison study demonstrates that herbal nano gels have different benefits over conventional dose forms. In the areas of oral administration for improved bioavailability and targeted delivery to the gastrointestinal tract, topical drug delivery for dermatological conditions, and targeted delivery strategies for the site-specific treatment of cancer, inflammatory diseases, and infections, they demonstrate encouraging results in transdermal drug delivery for systemic absorption. A promising platform for improved medication delivery and therapeutic effectiveness is provided by herbal nanogels. Understanding drug release mechanisms further contributes to the controlled and sustained delivery of herbal therapeutics. Some of the patents are discussed and the comparative analysis showcases their superiority over conventional dosage forms, and the polymer selection criteria ensure the design of efficient and optimized formulations. Herbal-based nano gels have become a potential approach for improving drug administration. They provide several advantages such as better stability, targeted delivery, and controlled release of therapeutic components. Herbal nano gels are a promising therapeutic approach with the ability to combat a wide range of conditions like cancer, wound healing and also improve patient compliance.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Humanos , Nanogéis , Sistemas de Liberação de Medicamentos/métodos , Géis , Administração Cutânea
12.
AAPS PharmSciTech ; 24(8): 240, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989918

RESUMO

The objective of the present research was to develop fluconazole-loaded transferosomal bigels for transdermal delivery by employing statistical optimization (23 factorial design-based). Thin-film hydration was employed to prepare fluconazole-loaded transferomal suspensions, which were then incorporated into bigel system. A 23 factorial design was employed where ratios of lipids to edge activators, lipids (soya lecithin to cholesterol), and edge activators (sodium deoxycholate to Tween 80) were factors. Ex vivo permeation flux (Jss) of transferosomal bigels across porcine skin was analyzed as response. The optimal setting for optimized formulation (FO) was A= 4.96, B= 3.82, and C= 2.16. The optimized transferosomes showed 52.38 ± 1.76% DEE, 76.37 nm vesicle size, 0.233 PDI, - 20.3 mV zeta potential, and desirable deformability. TEM of optimized transferosomes exhibited a multilamelar structure. FO bigel's FE-SEM revealed a globule-shaped vesicular structure. Further, the optimized transferosomal suspension was incorporated into thyme oil (0.1% w/w)-containing bigel (TO-FO). Ex vivo transdermal fluconazole permeation from different transferosomal bigels was sustained over 24 h. The highest permeation flux (4.101 µg/cm2/h) was estimated for TO-FO bigel. TO-FO bigel presented 1.67-fold more increments of antifungal activity against Candida albicans than FO bigel. The prepared thyme oil (0.1% w/w)-containing transfersomal bigel formulations can be used as topical delivery system to treat candida related fungal infections.


Assuntos
Lipossomos , Absorção Cutânea , Lipossomos/metabolismo , Fluconazol/metabolismo , Administração Cutânea , Lecitinas/metabolismo , Sistemas de Liberação de Medicamentos , Pele/metabolismo
13.
Colloids Surf B Biointerfaces ; 229: 113474, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37540959

RESUMO

Eulophia macrobulbon (EM) extract-loaded transferosomes represent an advanced approach for enhancing skin permeation of bioactive compounds. The formulations improving skin permeation and characterizations of transferosomes were studied, including morphology, entrapment efficiency (EE), vesicle size, polydispersity index (PDI), zeta potential, and skin permeation in the Strat-M® synthetic membrane. Vesicle size increased with increasing transition temperature (Tm) of phosphatidylcholine and the hydrophilic-lipophilic balance (HLB) of the surfactant used as an edge activator. EM extract-loaded transferosomes with varying amounts of phosphatidylcholine, surfactants, and EM extract showed non-significant differences in EE, PDI, and zeta potential. The results demonstrated that the EM extract-loaded transferosomes improved membrane permeability better than the EM solution. The EM solution exhibited a shorter lag time. Considering the advantages of the EM extract-loaded transferosomes and EM solutions, a combination of both formulations was developed in this study. The results showed that the lag time decreased and membrane permeation increased. This study highlights a novel system combining EM extract-loaded transferosomes and an EM solution, exhibiting considerable improvement in skin permeation and presenting the potential for an efficient transdermal drug delivery system for natural bioactive compounds.


Assuntos
Lipossomos , Absorção Cutânea , Lipossomos/metabolismo , Pele/metabolismo , Administração Cutânea , Lecitinas/metabolismo , Tensoativos/metabolismo
14.
J Biomater Sci Polym Ed ; 34(17): 2356-2375, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37622439

RESUMO

A chronic skin disorder called atopic dermatitis (AD) is brought on by the deterioration of the skin's barrier function marked by inflammation, dryness, and bacterial infection along with immunological changes. Althaea officinalis (AO), known for its anti-inflammatory and immunomodulatory properties, has been explored as a potential treatment for AD. This study aimed to develop and evaluate a novel transliposomes (TL) formulation containing AO for AD treatment. Using rotary evaporation, AO-TL formulations were created and optimized employing Box Behnken Design. The optimized AO-TL formulation showed consistent characteristics: vesicle size of 145.8 nm, polydispersity index of 0.201, zeta potential of -28.22 mV, and entrapment efficiency of 86.21%. TEM imaging shows the spherical shapes of the vesicle. These findings demonstrate the formulation's stability and ability to encapsulate AO effectively. In vitro drug release studies revealed that the AO-TL formulation released 81.28% of the drug, outperforming conventional AO dispersion (56.80%). Additionally, when applied to rat skin, the TL gel demonstrated deeper penetration (30 µm) in comparison to the standard solution (5.0 µm) based on confocal laser scanning microscopy (CLSM). Ex vivo and dermatokinetics studies showed improved penetration of drug-loaded transliposomes gel in rat skin than the conventional AO gel. Overall, the optimized AO-TL formulation offers promising characteristics and performance for the topical treatment of AD. Its drug release, antioxidant activity, and deeper penetration suggest enhanced therapeutic effects. Further research and clinical trials are needed to validate its efficacy and safety in AD patients.


Assuntos
Althaea , Dermatite Atópica , Ratos , Humanos , Animais , Absorção Cutânea , Administração Cutânea , Portadores de Fármacos/metabolismo , Dermatite Atópica/tratamento farmacológico , Pele , Tamanho da Partícula
15.
Drug Des Devel Ther ; 17: 2355-2368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588013

RESUMO

Purpose: In China, herbal preparation is commonly administered transdermally for treating pediatric diarrhea. However, few studies have probed into their antidiarrheal mechanisms. This study was designed to investigate the antidiarrheal effect of Renzhu ointment (Renzhuqigao, RZQG) and its underlying mechanisms via transdermal administration. Methods: The main components of RZQG were confirmed by gas chromatography-mass spectrometry (GC-MS). The effect of RZQG on L-type voltage-dependent calcium channel (L-VDCC) was evaluated by CaCl2- and ACh-induced contraction in isolated colon. The antidiarrheal efficacy of RZQG was further investigated by the senna-induced diarrhea mice based on the frequency of loose stools, diarrhea rate and index, fecal moisture content, and the basal tension of the colon. Additionally, the protein expression of CACNA1C, CACNA1D, cAMP, and PKA were detected with Western blot and immunohistochemistry (IHC). Results: GC-MS analysis determined 14 components in RZQG. In vitro, RZQG relaxed the CaCl2- and ACh-induced tension, while nifedipine (a L-VDCC inhibitor) and H-89 (a PKA inhibitor) decreased the relaxation. In vivo, animal model showed that transdermal administration of RZQG exhibited a significant reduction in the frequency of loose stools, diarrhea rate and index, fecal moisture content and the basal tension. Compared to the model group, the colon of mice treated with RZQG showed lower expression of CACNA1C, CACNA1D, cAMP, and PKA. IHC results showed that cAMP was downregulated in colonic smooth muscle after RZQG treatment. Conclusion: RZQG improved diarrhea symptoms and down-regulated the expression of CACNA1C and CACNA1D via transdermal administration, which is closely associated with the cAMP/PKA signaling pathway in colonic smooth muscle.


Assuntos
Antidiarreicos , Canais de Cálcio Tipo L , Animais , Camundongos , Administração Cutânea , Antidiarreicos/farmacologia , Cloreto de Cálcio , Pomadas , Senosídeos , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Fármacos Gastrointestinais , Modelos Animais de Doenças
16.
Int J Biol Macromol ; 252: 126464, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619682

RESUMO

Current study reports the combined technique of microneedle array patches and thermoresponsive gels. Microneedles array patch mediated insitu skin depots were evaluated for sustain drug delivery using sodium alginate/Poly (vinylcaprolactam) thermoresponsive gels. Their phase transition property from sol-gel state was monitored with AR2000 rheometer. Ibuprofen sodium was loaded in optimized formulations. The non-soluble cross-linked microneedle array patches (MAPs) were prepared from variable biocompatible polymers using silicone micromoulds. The fabricated MAPs were evaluated for mechanical stability, inskin dissolution, insertion forces and moisture contents. The penetration depth of MAPs in neonatal rabbit skin was tracked by optical coherence tomography. The optimized MAPs (GP10000) were used as microporation source in skin owing to their stable nature. Pores formation in skin samples after MAPs treatment was confirmed by optical coherence tomography, dye binding and skin integrity analysis. The invitro permeation of Ibuprofen sodium from formulations was studied using Franz cells across intact skin and MAPs applied skin. It was concluded from the results that Ibuprofen sodium permeation was observed for longer time through MAPs treated skin as compared to intact skin. Confocal study confirmed the diffusion of drug loaded formulations in deeper tissues with higher intensity.


Assuntos
Alginatos , Ibuprofeno , Animais , Coelhos , Ibuprofeno/farmacologia , Alginatos/química , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Géis , Sódio , Adesivo Transdérmico
17.
Biomed Pharmacother ; 166: 115316, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572638

RESUMO

Melanoma is a highly aggressive form of skin cancer with limited therapeutic options. Chemo-photothermal combination therapy has demonstrated potential for effectively treating melanoma, and transdermal administration is considered the optimal route for treating skin diseases due to its ability to bypass first-pass metabolism and enhance drug concentration. However, the stratum corneum presents a formidable challenge as a significant barrier to drug penetration in transdermal drug delivery. Lipid-nanocarriers, particularly cubosomes, have been demonstrated to possess significant potential in augmenting drug permeation across the stratum corneum. Herein, cubosomes co-loaded with doxorubicin (DOX, a chemotherapeutic drug) and indocyanine green (ICG, a photothermal agent) (DOX-ICG-cubo) transdermal drug delivery system was developed to enhance the therapeutic efficiency of melanoma by improving drug permeation. The DOX-ICG-cubo showed high encapsulation efficiency of both DOX and ICG, and exhibited good stability under physiological conditions. In addition, the unique cubic structure of the DOX-ICG-cubo was confirmed through transmission electron microscopy (TEM) images, polarizing microscopy, and small angle X-ray scattering (SAXS). The DOX-ICG-cubo presented high photothermal conversion efficiency, as well as pH and thermo-responsive DOX release. Notably, the DOX-ICG-cubo exhibited enhanced drug permeation efficiency, good biocompatibility, and improved in vivo anti-melanoma efficacy through the synergistic effects of chemo-photothermal therapy. In conclusion, DOX-ICG-cubo presented a promising strategy for melanoma treatment.


Assuntos
Hipertermia Induzida , Melanoma , Nanopartículas , Humanos , Verde de Indocianina , Fototerapia/métodos , Terapia Fototérmica , Administração Cutânea , Espalhamento a Baixo Ângulo , Difração de Raios X , Doxorrubicina/farmacologia , Melanoma/tratamento farmacológico , Nanopartículas/química , Linhagem Celular Tumoral
18.
Nanomedicine (Lond) ; 18(14): 963-985, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37503870

RESUMO

Background: Melanoma is the most aggressive and deadly form of skin cancer. The stratum corneum of the skin is a major obstacle to dermal and transdermal drug delivery. Ultradeformable nanovesicular transferosome has the capacity for deeper skin penetration and its incorporation into hydrogel forms a transgelosome that has better skin permeability and patient compliance. Method: Here, the quality-by-design-based development and optimization of nanovesicular transgelosome of standardized Piper longum fruit ethanolic extract (PLFEE) for melanoma therapy are reported. Results: Compared with standardized PLFEE-loaded plain gel, the transgelosome displayed optimal pharmaceutical properties and improved ex vivo skin permeability and in vivo tumor regression in B16F10 melanoma-bearing C57BL/6 mice. Conclusion: The results reflect the potential of transgelosome for melanoma therapy.


Melanoma is a deadly form of skin cancer that originates from melanocytes in the skin. Skin is a major barrier to drug delivery. Transferosome is a liquid nanoformulation that has the capacity for deeper skin penetration. The transferosome was prepared from standardized Piper longum fruit ethanolic extract (PLFEE) and loaded into gel to form a transgelosome for improved skin application and patient compliance. Compared with extract-loaded plain gel, the transgelosome showed good pharmaceutical properties with better activity in melanoma (B16F10)-bearing female C57BL/6 mice. The therapeutic activity of the standard anticancer drug dacarbazine was improved with the prepared PLFEE transgelosome.


Assuntos
Melanoma , Piper , Camundongos , Animais , Camundongos Endogâmicos C57BL , Melanoma/tratamento farmacológico , Extratos Vegetais , Pele , Administração Cutânea , Etanol
20.
J Biomed Opt ; 28(6): 060901, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37288448

RESUMO

Significance: Skin is the largest organ and also the first barrier of body. Skin diseases are common, and cutaneous microcirculation is relative to various diseases. Researchers attempt to develop novel imaging techniques to obtain the complex structure, components, and functions of skin. Modern optical techniques provide a powerful tool with non-invasiveness, but the imaging performance suffers from the turbid character of skin. In vivo skin optical clearing technique has been proposed to reduce tissue scattering and enhance penetration depth of light and became a hot topic of research. Aim: The aim of this review is to provide a comprehensive overview of recent development of in vivo skin optical clearing methods, how in vivo skin optical clearing enhances imaging performance, and its applications in study and light therapy of various diseases. Approach: Based on the references published over the last decade, the important milestones on the mechanism, methods, and its fundamental and clinical applications of in vivo skin optical clearing technique are provided. Results: With the deepening understanding of skin optical clearing mechanisms, efficient in vivo skin optical clearing methods were constantly screened out. These methods have been combined with various optical imaging techniques to improve imaging performances and acquire deeper and finer skin-related information. In addition, in vivo skin optical clearing technique has been widely applied in assisting study of diseases as well as achieving safe, high-efficiency light-induced therapy. Conclusions: In the last decade, in vivo skin optical clearing technique has developed rapidly and played an important role in skin-related studies.


Assuntos
Absorção Cutânea , Pele , Pele/diagnóstico por imagem , Pele/metabolismo , Administração Cutânea , Fototerapia , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA