Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Urol ; 30(5): 689-695, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32701724

RESUMO

PURPOSE OF REVIEW: To acquaint urologists with aristolochic acid nephropathy, an iatrogenic disease that poses a distinct threat to global public health. In China alone, 100 million people may currently be at risk. We illustrate the power of molecular epidemiology in establishing the cause of this disease. RECENT FINDINGS: Molecular epidemiologic approaches and novel mechanistic information established a causative linkage between exposure to aristolochic acid and urothelial carcinomas of the bladder and upper urinary tract. Noninvasive tests are available that detect urothelial cancers through the genetic analysis of urinary DNA. Combined with cytology, some of these tests can detect 95% of patients at risk of developing bladder and/or upper urothelial tract cancer. Robust biomarkers, including DNA-adduct and mutational signature analysis, unequivocally identify aristolochic acid-induced tumours. The high mutational load associated with aristolochic acid-induced tumours renders them candidates for immune-checkpoint therapy. SUMMARY: Guided by recent developments that facilitate early detection of urothelial cancers, the morbidity and mortality associated with aristolochic acid-induced bladder and upper tract urothelial carcinomas may be substantially reduced. The molecular epidemiology tools that define aristolochic acid-induced tumours may be applicable to other studies assessing potential environmental carcinogens.


Assuntos
Ácidos Aristolóquicos/toxicidade , Nefropatia dos Bálcãs/induzido quimicamente , Adutos de DNA/metabolismo , Medicamentos de Ervas Chinesas/efeitos adversos , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias Urológicas/induzido quimicamente , Carcinógenos , Adutos de DNA/genética , Humanos
2.
Proc Natl Acad Sci U S A ; 117(1): 573-583, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852820

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is a leading cause of corneal endothelial (CE) degeneration resulting in impaired visual acuity. It is a genetically complex and age-related disorder, with higher incidence in females. In this study, we established a nongenetic FECD animal model based on the physiologic outcome of CE susceptibility to oxidative stress by demonstrating that corneal exposure to ultraviolet A (UVA) recapitulates the morphological and molecular changes of FECD. Targeted irradiation of mouse corneas with UVA induced reactive oxygen species (ROS) production in the aqueous humor, and caused greater CE cell loss, including loss of ZO-1 junctional contacts and corneal edema, in female than male mice, characteristic of late-onset FECD. UVA irradiation caused greater mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damage in female mice, indicative of the sex-driven differential response of the CE to UVA, thus accounting for more severe phenotype in females. The sex-dependent effect of UVA was driven by the activation of estrogen-metabolizing enzyme CYP1B1 and formation of reactive estrogen metabolites and estrogen-DNA adducts in female but not male mice. Supplementation of N-acetylcysteine (NAC), a scavenger of reactive oxygen species (ROS), diminished the morphological and molecular changes induced by UVA in vivo. This study investigates the molecular mechanisms of environmental factors in FECD pathogenesis and demonstrates a strong link between UVA-induced estrogen metabolism and increased susceptibility of females for FECD development.


Assuntos
Citocromo P-450 CYP1B1/metabolismo , Adutos de DNA/efeitos da radiação , Dano ao DNA/efeitos da radiação , Estrogênios/metabolismo , Distrofia Endotelial de Fuchs/etiologia , Raios Ultravioleta/efeitos adversos , Acetilcisteína/administração & dosagem , Animais , Humor Aquoso/efeitos dos fármacos , Humor Aquoso/metabolismo , Humor Aquoso/efeitos da radiação , Adutos de DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Mitocondrial/metabolismo , DNA Mitocondrial/efeitos da radiação , Modelos Animais de Doenças , Endotélio Corneano/efeitos dos fármacos , Endotélio Corneano/patologia , Endotélio Corneano/efeitos da radiação , Feminino , Sequestradores de Radicais Livres/administração & dosagem , Distrofia Endotelial de Fuchs/diagnóstico , Distrofia Endotelial de Fuchs/tratamento farmacológico , Distrofia Endotelial de Fuchs/patologia , Humanos , Masculino , Camundongos , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença
3.
J Biol Chem ; 294(32): 11960-11968, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31217280

RESUMO

Cisplatin is the most commonly used chemotherapeutic drug for managing solid tumors. However, toxicity and the innate or acquired resistance of cancer cells to the drug limit its usefulness. Cisplatin kills cells by forming cisplatin-DNA adducts, most commonly the Pt-d(GpG) diadduct. We recently showed that, in mice, repair of this adduct 2 h following injection is controlled by two circadian programs. 1) The circadian clock controls transcription of 2000 genes in liver and, via transcription-directed repair, controls repair of the transcribed strand (TS) of these genes in a rhythmic fashion unique to each gene's phase of transcription. 2) The excision repair activity itself is controlled by the circadian clock with a single phase at which the repair of the nontranscribed strand (NTS) and the rest of the genome takes place. Here, we followed the repair kinetic for long periods genome-wide both globally and at single nucleotide resolution by the Excision Repair-sequencing (XR-seq) method to better understand cisplatin DNA damage and repair. We find that transcription-driven repair is nearly complete after 2 days, whereas weeks are required for repair of the NTS and the rest of the genome. TS repair oscillates in rhythmically expressed genes up to 2 days post injection, and in all expressed genes, we see a trend in TS repair with time from the 5' to 3' end. These findings help to understand the circadian- and transcription-dependent and -independent control of repair in response to cisplatin, and should aid in designing cisplatin chemotherapy regimens with improved therapeutic indexes.


Assuntos
Relógios Circadianos/fisiologia , Cisplatino/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA , Fígado/metabolismo , Animais , Cisplatino/análise , Cisplatino/farmacologia , Adutos de DNA/análise , Dano ao DNA/efeitos dos fármacos , Feminino , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de DNA/métodos , Fatores de Tempo
4.
Toxicology ; 420: 29-38, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30940547

RESUMO

Aristolochic acid (AA) dependent human nephropathy results either from environmental exposure to Aristolochiaceae plant subspecies or their use in traditional phytotherapy. The toxic components are structurally related nitrophenanthrene carboxylic acids, i.e. Aristolochic acid I (AAI) and II (AAII). AAI is considered to be the major cause of Aristolochic acid nephropathy, characterized by severe renal fibrosis and upper urothelial cancer. Following enzymatic activation in kidney and/or liver, AAI metabolites react with genomic DNA to form persistent DNA adducts with purines. To determine whether AAI can be activated in human renal cells to form DNA adducts, we exposed telomerase immortalized renal proximal tubular epithelial cells (RPTEC/TERT1), the human embryonic kidney (HEK293) cell line, as well as primary human kidney cells (pHKC) to AAI in vitro. We modified an isotope dilution ultra-performance liquid chromatography/tandem mass spectrometry (ID-UPLC-MS/MS) based method for the quantification of dA-AAI adducts in genomic DNA. In addition, time dependent accumulation of adducts in renal cortex and bladder tissue from AAI/II treated Eker rats were used to validate the detection method. AAI-induced toxicity in human renal cells was determined by dA-AAI adduct quantification, the impact on cell viability, and NQO1 expression and activity. Our findings demonstrated adduct formation in all cell lines, although only pHKC and RPTEC/TERT1 expressed NQO1. The highest adduct formation was detected in pHKC despite low NQO1 expression, while we observed much lower adduct levels in NQO1-negative HEK293 cells. Adduct formation and decreased cell viability correlated only weakly. Therefore, our data suggested that i.) enzymes other than NQO1 could be at least equally important for AA bioactivation in human renal proximal tubule cells, and ii.) the suggested correlation between adduct levels and viability appears to be questionable.


Assuntos
Ácidos Aristolóquicos/toxicidade , Adutos de DNA/metabolismo , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Ativação Metabólica , Idoso , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Rim/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Mutação , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Cultura Primária de Células , Ratos Transgênicos , Proteína 2 do Complexo Esclerose Tuberosa/genética
5.
Chem Res Toxicol ; 32(1): 38-48, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30520628

RESUMO

Diosbulbin B (DBB) and 8-epidiosbulbin E acetate (EEA), belonging to furan-containing diterpenoid lactones, are the primary components of Dioscorea bulbifera L. (DB), a traditional Chinese medicine herb. Our earlier studies indicated that consumption of DBB or EEA induced acute hepatotoxicities. Both DBB and EEA were bioactivated by P450 3A4 to generate the corresponding cis-enedial reactive metabolites which are associated with the hepatotoxicities. It has been proposed that the electrophilic intermediates attack cellular nucleophiles such as protein or DNA, thought to be a mechanism of triggering toxicities. The purposes of our present study were to define the interaction of the electrophilic reactive metabolites originating from DBB and EEA with 2'-deoxyguanosine (dGuo), 2'-deoxycytidine (dCyd), and 2'-deoxyadenosine (dAdo) and to characterize DNA adducts arising from the reactive metabolites of DBB and EEA. The reactive metabolites of DBB and EEA were found to covalently bind to the exocyclic and endocyclic nitrogens of dCyd, dGuo, and dAdo to generate oxadiazabicyclo[3.3.0]octaimine adducts. The reactive metabolites of DBB and EEA also attacked dGuo, dAdo, and dCyd of calf thymus DNA. The DNA adducts possibly contribute to the toxicologies of DBB and EEA.


Assuntos
Adutos de DNA/metabolismo , DNA/metabolismo , Diterpenos/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Ativação Metabólica , Animais , Bovinos , DNA/síntese química , DNA/química , Adutos de DNA/síntese química , Adutos de DNA/química , Dioscorea/química , Diterpenos/síntese química , Diterpenos/química , Medicamentos de Ervas Chinesas/síntese química , Medicamentos de Ervas Chinesas/química , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Medicina Tradicional Chinesa , Conformação Molecular
6.
J Agric Food Chem ; 66(50): 13260-13267, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30449111

RESUMO

Egg yolk immunoglobulins (IgY), as nutraceutical supplement for therapeutic or prophylactic intervention, have been extensively studied. The effects of IgY on small molecular toxin-induced toxicity in animals are unclear. In the present study, the protection of highly purified and specific anti-AFB1 IgY against AFB1-induced genotoxicity and oxidative damage on the rat liver model were investigated. Our results revealed that AFB1 induced significant oxidative damage markers, as well as AFB1-induced protein expression in antioxidant, pro- and antiapoptosis processes in rat liver. These effects could be significantly inhibited by cogavage with anti-AFB1 IgY in a dose-dependent manner. However, anti-AFB1 IgY did not significantly induce hepatic CAT and SOD1. To explore mechanisms, metabolite experiments were established to evaluate the influence of anti-AFB1 IgY on the absorption of AFB1 in rats. Middle and high doses of anti-AFB1 IgY reduced hepatic AFB1-DNA adducts by 43.3% and 52.9%, AFB1- N7-guanine urinary adducts by 19.6% and 34.4%, and AFB1-albumin adducts by 10.5% and 21.1%, respectively. The feces of high dose anti-AFB1 IgY cogavaged rats contained approximately 2-fold higher AFB1 equivalents at 3-6 h after ingestion than AFB1 group feces, indicating IgY inhibited AFB1 uptake. These results had provided insight that anti-AFB1 IgY could prevent animal organs from damage caused by AFB1 and will be beneficial for the application of detoxification antibody as a supplement in food.


Assuntos
Aflatoxina B1/toxicidade , Dano ao DNA/efeitos dos fármacos , Gema de Ovo/química , Imunoglobulinas/administração & dosagem , Hepatopatias/genética , Animais , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Adutos de DNA/genética , Adutos de DNA/metabolismo , Suplementos Nutricionais/análise , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Hepatopatias/tratamento farmacológico , Hepatopatias/etiologia , Hepatopatias/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
7.
J Med Food ; 21(2): 199-202, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29451459

RESUMO

We previously showed rats fed with apiaceous vegetables, but not with their putative chemopreventive phytochemicals, reduced colonic DNA adducts formed by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a dietary procarcinogen. We report here the effects of feeding apiaceous and cruciferous vegetables versus their purified predominant phytochemicals, either alone or combined, on prostate and pancreatic PhIP-DNA adduct formation. In experiment I, male Wistar rats received three supplemented diets: CRU (cruciferous vegetables), API (apiaceous vegetables), and CRU+API (both types of vegetables). In experiment II, rats received three diets supplemented with phytochemicals matched to their levels in the vegetables from experiment I: P + I (phenethyl isothiocyanate and indole-3-carbinol), FC (furanocoumarins; 5-methoxypsoralen, 8-methoxypsoralen, and isopimpinellin), and COMBO (P + I and FC combined). After 6 days of feeding, PhIP was injected (10 mg/kg body weight) and animals were killed on day 7. PhIP-DNA adducts were analyzed by LC-MS/MS. In prostate, PhIP-DNA adducts were reduced by API (33%, P < .05), P + I (45%, P < .001), and COMBO (30%, P < .01). There were no effects observed in pancreas. Our results suggest that fresh vegetables and purified phytochemicals lower PhIP-DNA adducts and may influence cancer risk.


Assuntos
Apiaceae/química , Brassicaceae/química , Carcinógenos/metabolismo , Pâncreas/metabolismo , Próstata/metabolismo , Verduras/metabolismo , Animais , Apiaceae/metabolismo , Brassicaceae/metabolismo , Carcinógenos/análise , Adutos de DNA/análise , Adutos de DNA/genética , Adutos de DNA/metabolismo , Imidazóis/análise , Imidazóis/metabolismo , Masculino , Pâncreas/química , Próstata/química , Ratos , Ratos Wistar , Verduras/química
8.
Int J Mol Sci ; 19(1)2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301278

RESUMO

Ovarian cancer has the highest fatality rate among the gynecologic cancers. The side effects, high relapse rate, and drug resistance lead to low long-term survival rate (less than 40%) of patients with advanced ovarian cancer. Theaflavin-3,3'-digallate (TF3), a black tea polyphenol, showed less cytotoxicity to normal ovarian cells than ovarian cancer cells. We aimed to investigate whether TF3 could potentiate the inhibitory effect of cisplatin against human ovarian cancer cell lines. In the present study, combined treatment with TF3 and cisplatin showed a synergistic cytotoxicity against A2780/CP70 and OVCAR3 cells. Treatment with TF3 could increase the intracellular accumulation of platinum (Pt) and DNA-Pt adducts and enhanced DNA damage induced by cisplatin in both cells. Treatment with TF3 decreased the glutathione (GSH) levels and upregulated the protein levels of the copper transporter 1 (CTR1) in both cells, which led to the enhanced sensitivity of both ovarian cancer cells to cisplatin. The results imply that TF3 might be used as an adjuvant to potentiate the inhibitory effect of cisplatin against advanced ovarian cancer.


Assuntos
Biflavonoides/farmacologia , Catequina/análogos & derivados , Proteínas de Transporte de Cátions/metabolismo , Cisplatino/farmacologia , Glutationa/metabolismo , Neoplasias Ovarianas/metabolismo , Catequina/farmacologia , Linhagem Celular Tumoral , Transportador de Cobre 1 , Adutos de DNA/metabolismo , Dano ao DNA , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Ovarianas/patologia , Regulação para Cima/efeitos dos fármacos
9.
Cancer Prev Res (Phila) ; 11(3): 157-164, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29158340

RESUMO

We previously showed that metabolic activation of the environmental and tobacco smoke constituent dibenzo[a,l]pyrene (DB[a,l]P) to its active fjord region diol epoxide (DB[a,l]PDE) is required to induce DNA damage, mutagenesis, and squamous cell carcinoma (SCC) in the mouse oral cavity. In contrast to procarcinogens, which were employed previously to induce SCC, DB[a,l]PDE does not require metabolic activation to exert its biological effects, and thus, this study was initiated to examine, for the first time, whether black raspberry powder (BRB) inhibits postmetabolic processes, such as DNA damage, mutagenesis, and tumorigenesis. Prior to long-term chemoprevention studies, we initially examined the effect of BRB (5% added to AIN-93M diet) on DNA damage in B6C3F1 mice using LC/MS-MS and on mutagenesis in the lacI gene in the mouse oral cavity. We showed that BRB inhibited DB[a,l]PDE-induced DNA damage (P < 0.05) and mutagenesis (P = 0.053) in the oral cavity. Tumor incidence in the oral cavity (oral mucosa and tongue) of mice fed diet containing 5% BRB was significantly (P < 0.05) reduced from 93% to 66%. Specifically, the incidence of benign tumor was significantly (P < 0.001) reduced from 90% to 31% (62% to 28% in the oral cavity and 28% to 2% in the tongue), a nonsignificant reduction of malignant tumors from 52% to 45%. Our preclinical findings demonstrate for the first time that the chemopreventive efficacy of BRB can be extended to direct-acting carcinogens that do not require phase I enzymes and is not just limited to procarcinogens. Cancer Prev Res; 11(3); 157-64. ©2017 AACR.


Assuntos
Carcinogênese/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Boca/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rubus/química , Animais , Benzopirenos , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Adutos de DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Compostos de Epóxi , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Boca/metabolismo , Boca/patologia , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/genética , Neoplasias Bucais/prevenção & controle , Fitoterapia
10.
J Agric Food Chem ; 65(50): 10925-10932, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29231728

RESUMO

Benzo[a]pyrene (B[a]P), a type of polycyclic aromatic hydrocarbon, is present in the atmosphere surrounding our environment. Although B[a]P is a procarcinogen, enzymatically metabolized benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) could intercalate into DNA to form bulky BPDE-DNA adducts as an ultimate carcinogenic product in human keratinocytes. The aim of this study was to evaluate the protective effect of mulberry extract, purified from the fruit of Morus Alba L., on B[a]P-induced cytotoxicity in human keratinocytes and its mechanisms of action. In this study, we confirmed that B[a]P induced nuclear translocation and the activation of aryl hydrocarbon receptor (AhR) were decreased by pretreatment of mulberry extract. Mulberry extract could decrease DNA damage through the suppression of B[a]P derived DNA adduct formation and restoration of cell cycle retardation at S phase in a dose-dependent manner. Additionally, cyanidin-3-glucoside (C3G), a major active compound of mulberry extract, showed biological activities to protect the cells from B[a]P exposure, similar to the effectivity of the mulberry extract. These results indicated that the inhibitory effect of C3G against B[a]P inducing skin cancer is attributable to repress the AhR signaling pathway.


Assuntos
Benzo(a)pireno/toxicidade , Morus/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Antocianinas/farmacologia , Adutos de DNA/genética , Adutos de DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Feminino , Glucosídeos/farmacologia , Humanos , Técnicas In Vitro , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Pessoa de Meia-Idade , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Pele/citologia , Pele/metabolismo
11.
Chem Biol Interact ; 278: 74-83, 2017 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-28916335

RESUMO

Mitochondrial oxidative stress plays a major role in the pathogenesis of myocardial apoptosis in metabolic syndrome (MS) patients. In this study, we investigated the effect of troxerutin (TX), an antioxidant on mitochondrial oxidative stress and apoptotic markers in heart of mice fed fat and fructose-rich diet. Adult male Mus musculus mice were fed either control diet or high fat, high fructose diet (HFFD) for 60 days to induce MS. Mice from each dietary group were divided into two on the 16th day and were either treated or untreated with TX (150 mg/kg bw, p.o) for the next 45 days. At the end of the study, mitochondrial reactive oxygen species (ROS) generation, oxidative stress markers, levels of intracellular calcium, cardiolipin content, cytochrome c release and apoptotic markers were examined in the myocardium. HFFD-feeding resulted in diminution of antioxidants and increased ROS production, lipid peroxidation and oxidatively modified adducts of 8-OHG, 4-HNE and 3-NT. Further increase in Ca2+ levels, low levels of calcium transporters and decrease in cardiolipin content were noted. Changes in the mitochondrial structure were observed by electron microscopy. Furthermore, cytochrome c release, increase in proapoptotic proteins (APAF-1, BAX, caspases-9 and-3) and decrease in antiapoptotic protein (BCL-2) in HFFD-fed mice suggest myocardial apoptosis. These changes were significantly restored by TX supplementation. TX administration effectively attenuated cardiac apoptosis and exerted a protective role by increasing antioxidant potential and by improving mitochondrial function. Thus, TX could be a promising therapeutic candidate for treating cardiac disease in MS patients.


Assuntos
Apoptose/efeitos dos fármacos , Dieta Hiperlipídica , Hidroxietilrutosídeo/análogos & derivados , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Cálcio/metabolismo , Cardiolipinas/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Citocromos c/metabolismo , Adutos de DNA/metabolismo , Frutose/toxicidade , Coração/efeitos dos fármacos , Hidroxietilrutosídeo/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
12.
Int J Cancer ; 141(6): 1078-1090, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28388839

RESUMO

Endogenous estrogens become carcinogens when dangerous metabolites, the catechol estrogen quinones, are formed. In particular, the catechol estrogen-3,4-quinones can react with DNA to produce an excess of specific depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating subsequent cancer-initiating mutations. Unbalanced estrogen metabolism yields excessive catechol estrogen-3,4-quinones, increasing formation of depurinating estrogen-DNA adducts and the risk of initiating cancer. Evidence for this mechanism of cancer initiation comes from various types of studies. High levels of depurinating estrogen-DNA adducts have been observed in women with breast, ovarian or thyroid cancer, as well as in men with prostate cancer or non-Hodgkin lymphoma. Observation of high levels of depurinating estrogen-DNA adducts in high risk women before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Formation of analogous depurinating dopamine-DNA adducts is hypothesized to initiate Parkinson's disease by affecting dopaminergic neurons. Two dietary supplements, N-acetylcysteine and resveratrol complement each other in reducing formation of catechol estrogen-3,4-quinones and inhibiting formation of estrogen-DNA adducts in cultured human and mouse breast epithelial cells. They also inhibit malignant transformation of these cells. In addition, formation of adducts was reduced in women who followed a Healthy Breast Protocol that includes N-acetylcysteine and resveratrol. When initiation of cancer is blocked, promotion, progression and development of the disease cannot occur. These results suggest that reducing formation of depurinating estrogen-DNA adducts can reduce the risk of developing a variety of types of human cancer.


Assuntos
Adutos de DNA/metabolismo , Estrogênios/metabolismo , Neoplasias/etiologia , Neoplasias/prevenção & controle , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , Animais , Dopamina/metabolismo , Humanos , Neoplasias/metabolismo , Doença de Parkinson/metabolismo , Purinas/metabolismo
13.
Chin J Nat Med ; 15(1): 15-40, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28259249

RESUMO

Wogonin is a plant flavonoid compound extracted from Scutellaria baicalensis (Huang-Qin or Chinese skullcap) and has been studied thoroughly by many researchers till date for its anti-viral, anti-oxidant, anti-cancerous and neuro-protective properties. Numerous experiments conducted in vitro and in vivo have demonstrated wogonin's excellent tumor inhibitory properties. The anti-cancer mechanism of wogonin has been ascribed to modulation of various cell signaling pathways, including serine-threonine kinase Akt (also known as protein kinase B) and AMP-activated protein kinase (AMPK) pathways, p53-dependent/independent apoptosis, and inhibition of telomerase activity. Furthermore, wogonin also decreases DNA adduct formation with a carcinogenic compound 2-Aminofluorene and inhibits growth of drug resistant malignant cells and their migration and metastasis, without any side effects. Recently, newly synthesized wogonin derivatives have been developed with impressive anti-tumor activity. This review is the succinct appraisal of the pertinent articles on the mechanisms of anti-tumor properties of wogonin. We also summarize the potential of wogonin and its derivatives used alone or as an adjunct therapy for cancer treatment. Furthermore, pharmacokinetics and side effects of wogonin and its analogues have also been discussed.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Neoplasias/metabolismo , Fitoterapia , Scutellaria baicalensis/química , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Adutos de DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Flavanonas/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
14.
Carcinogenesis ; 35(10): 2365-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25053626

RESUMO

We have previously shown that kava and its flavokavain-free Fraction B completely blocked 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice with a preferential reduction in NNK-induced O (6)-methylguanine (O (6)-mG). In this study, we first identified natural (+)-dihydromethysticin (DHM) as a lead compound through evaluating the in vivo efficacy of five major compounds in Fraction B on reducing O (6)-mG in lung tissues. (+)-DHM demonstrated outstanding chemopreventive activity against NNK-induced lung tumorigenesis in A/J mice with 97% reduction of adenoma multiplicity at a dose of 0.05mg/g of diet (50 ppm). Synthetic (±)-DHM was equally effective as the natural (+)-DHM in these bioassays while a structurally similar analog, (+)-dihydrokavain (DHK), was completely inactive, revealing a sharp in vivo structure-activity relationship. Analyses of an expanded panel of NNK-induced DNA adducts revealed that DHM reduced a subset of DNA adducts in lung tissues derived from 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the active metabolite of NNK). Preliminary 17-week safety studies of DHM in A/J mice at a dose of 0.5mg/g of diet (at least 10× its minimum effective dose) revealed no adverse effects, suggesting that DHM is likely free of kava's hepatotoxic risk. These results demonstrate the outstanding efficacy and promising safety margin of DHM in preventing NNK-induced lung tumorigenesis in A/J mice, with a unique mechanism of action and high target specificity.


Assuntos
Dano ao DNA/efeitos dos fármacos , Kava/química , Neoplasias Pulmonares/prevenção & controle , Nitrosaminas/toxicidade , Pironas/química , Pironas/farmacologia , Animais , Carcinógenos/toxicidade , Adutos de DNA/metabolismo , Relação Dose-Resposta a Droga , Feminino , Guanina/análogos & derivados , Guanina/farmacocinética , Fígado/efeitos dos fármacos , Neoplasias Pulmonares/induzido quimicamente , Camundongos , Camundongos Endogâmicos , Relação Estrutura-Atividade , Nicotiana/química
15.
Carcinogenesis ; 35(9): 2055-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24776219

RESUMO

DNA adducts are a measure of internal exposure to genotoxicants. However, the measurement of DNA adducts in molecular epidemiology studies often is precluded by the lack of fresh tissue. In contrast, formalin-fixed paraffin-embedded (FFPE) tissues frequently are accessible, although technical challenges remain in retrieval of high quality DNA suitable for biomonitoring of adducts. Aristolochic acids (AA) are human carcinogens found in Aristolochia plants, some of which have been used in the preparation of traditional Chinese herbal medicines. We previously established a method to measure DNA adducts of AA in FFPE tissue. In this study, we examine additional features of formalin fixation that could impact the quantity and quality of DNA and report on the recovery of AA-DNA adducts in mice exposed to AA. The yield of DNA isolated from tissues fixed with formalin decreased over 1 week; however, the levels of AA-DNA adducts were similar to those in fresh frozen tissue. Moreover, DNA from FFPE tissue served as a template for PCR amplification, yielding sequence data of comparable quality to DNA obtained from fresh frozen tissue. The estimates of AA-DNA adducts measured in freshly frozen tissue and matching FFPE tissue blocks of human kidney stored for 9 years showed good concordance. Thus, DNA isolated from FFPE tissues may be used to biomonitor DNA adducts and to amplify genes used for mutational analysis, providing clues regarding the origin of human cancers for which an environmental cause is suspected.


Assuntos
Ácidos Aristolóquicos/metabolismo , Carcinógenos/metabolismo , Adutos de DNA/genética , Animais , Adutos de DNA/isolamento & purificação , Adutos de DNA/metabolismo , Análise Mutacional de DNA/normas , Fixadores/química , Formaldeído/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inclusão em Parafina , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray/normas , Fixação de Tecidos
16.
PLoS One ; 9(3): e90908, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651647

RESUMO

Dietary supplementation with natural chemoprotective agents is receiving considerable attention because of health benefits and lack of toxicity. In recent in vivo and in vitro experimental studies, diets rich in n-3 polyunsaturated fatty acids have been shown to provide significant anti-tumor action. In this investigation, the effects of control fatty acids (oleic acid (OA), linoleic acid (LA)) and n-3 PUFA, e.g., docosahexaenoic acid (DHA) on the uptake and metabolism of the carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) was investigated in A549 cells, a human adenocarcinoma alveolar basal epithelial cell line. A549 cells activate BaP through the cytochrome P450 enzyme system to form reactive metabolites, a few of which covalently bind to DNA and proteins. Therefore, multiphoton microscopy spectral analysis combined with linear unmixing was used to identify the parent compound and BaP metabolites formed in cells, in the presence and absence of fatty acids. The relative abundance of select metabolites was associated with altered P450 activity as determined using ethoxyresorufin-O-deethylase activity in cells cultured in the presence of BSA-conjugated fatty acids. In addition, the parent compound within cellular membranes increases significantly in the presence of each of the fatty acids, with the greatest accumulation observed following DHA treatment. DHA treated cells exhibit significantly lower pyrene-like metabolites indicative of lower adducts including DNA adducts compared to control BSA, OA or LA treated cells. Further, DHA reduced the abundance of the proximate carcinogen BaP 7,8-dihydrodiol and the 3-hydroxybenzo[a]pyrene metabolites compared to other treatments. The significant changes in BaP metabolites in DHA treated cells may be mediated by the effects on the physicochemical properties of the membrane known to affect enzyme activity related to phase I and phase II metabolism. In summary, DHA is a highly bioactive chemo-protective agent capable of modulating BaP-induced DNA adducts.


Assuntos
Adenocarcinoma/metabolismo , Benzo(a)pireno/metabolismo , Ácidos Graxos/farmacologia , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão , Animais , Butionina Sulfoximina/farmacologia , Bovinos , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/metabolismo , Adutos de DNA/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Glutationa/metabolismo , Humanos , Fótons , Soroalbumina Bovina/metabolismo
17.
Asian Pac J Cancer Prev ; 15(2): 749-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24568490

RESUMO

BACKGROUND: Purple rice has become a natural product of interest which is widely used for health promotion. This study investigated the preventive effect of purple rice extract (PRE) mixed diet on DMH initiation of colon carcinogenesis. MATERIALS AND METHODS: Rats were fed with PRE mixed diet one week before injection of DMH (40 mg/kg of body weight once a week for 2 weeks). They were killed 12 hrs after a second DMH injection to measure the level of O6-methylguanine and xenobiotic metabolizing enzyme activities. RESULTS: In rats that received PRE, guanine methylation was reduced in the colonic mucosa, but not in the liver, whereas PRE did not affect xenobiotic conjugation, with reference to glutathione-S-transferase or UDP-glucuronyl transferase. After 5 weeks, rats that received PRE with DMH injection had fewer ACF in the colon than those treated with DMH alone. Interestingly, a PRE mixed diet inhibited the activity of bacterial ß-glucuronidase in rat feces, a critical enzyme for free methylazoxymethanol (MAM) release in the rat colon. These results indicated that purple rice extract inhibited ß-glucuronidase activity in the colonic lumen, causing a reduction of MAM-induced colonic mucosa DNA methylation, leaded to decelerated formation of aberrant crypt foci in the rat colon. CONCLUSIONS: The supplemented purple rice extract might thus prevent colon carcinogenesis by the alteration of the colonic environment, and thus could be further developed for neutraceutical products for colon cancer prevention.


Assuntos
1,2-Dimetilidrazina/toxicidade , Focos de Criptas Aberrantes/prevenção & controle , Colo/efeitos dos fármacos , Suplementos Nutricionais , Glucuronidase/antagonistas & inibidores , Oryza/química , Extratos Vegetais/farmacologia , Focos de Criptas Aberrantes/induzido quimicamente , Focos de Criptas Aberrantes/metabolismo , Animais , Carcinógenos/toxicidade , Colo/metabolismo , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/metabolismo , Escherichia coli/enzimologia , Glucuronidase/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Oryza/metabolismo , Ratos , Ratos Wistar
18.
Mol Aspects Med ; 36: 1-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23994691

RESUMO

Elucidation of estrogen carcinogenesis required a few fundamental discoveries made by studying the mechanism of carcinogenesis of polycyclic aromatic hydrocarbons (PAH). The two major mechanisms of metabolic activation of PAH involve formation of radical cations and diol epoxides as ultimate carcinogenic metabolites. These intermediates react with DNA to yield two types of adducts: stable adducts that remain in DNA unless removed by repair and depurinating adducts that are lost from DNA by cleavage of the glycosyl bond between the purine base and deoxyribose. The potent carcinogenic PAH benzo[a]pyrene, dibenzo[a,l]pyrene, 7,12-dimethylbenz[a]anthracene and 3-methylcholanthrene predominantly form depurinating DNA adducts, leaving apurinic sites in the DNA that generate cancer-initiating mutations. This was discovered by correlation between the depurinating adducts formed in mouse skin by treatment with benzo[a]pyrene, dibenzo[a,l]pyrene or 7,12-dimethylbenz[a]anthracene and the site of mutations in the Harvey-ras oncogene in mouse skin papillomas initiated by one of these PAH. By applying some of these fundamental discoveries in PAH studies to estrogen carcinogenesis, the natural estrogens estrone (E1) and estradiol (E2) were found to be mutagenic and carcinogenic through formation of the depurinating estrogen-DNA adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua. These adducts are generated by reaction of catechol estrogen quinones with DNA, analogously to the DNA adducts obtained from the catechol quinones of benzene, naphthalene, and the synthetic estrogens diethylstilbestrol and hexestrol. This is a weak mechanism of cancer initiation. Normally, estrogen metabolism is balanced and few estrogen-DNA adducts are formed. When estrogen metabolism becomes unbalanced, more catechol estrogen quinones are generated, resulting in higher levels of estrogen-DNA adducts, which can be used as biomarkers of unbalanced estrogen metabolism and, thus, cancer risk. The ratio of estrogen-DNA adducts to estrogen metabolites and conjugates has repeatedly been found to be significantly higher in women at high risk for breast cancer, compared to women at normal risk. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of breast cancer. Significantly higher adduct ratios have been observed in women with breast, thyroid or ovarian cancer. In the women with ovarian cancer, single nucleotide polymorphisms in the genes for two enzymes involved in estrogen metabolism indicate risk for ovarian cancer. When polymorphisms produce high activity cytochrome P450 1B1, an activating enzyme, and low activity catechol-O-methyltransferase, a protective enzyme, in the same woman, she is almost six times more likely to have ovarian cancer. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of ovarian cancer. Significantly higher ratios of estrogen-DNA adducts to estrogen metabolites and conjugates have also been observed in men with prostate cancer or non-Hodgkin lymphoma, compared to healthy men without cancer. These results also support a critical role of estrogen-DNA adducts in the initiation of cancer. Starting from the perspective that unbalanced estrogen metabolism can lead to increased formation of catechol estrogen quinones, their reaction with DNA to form adducts, and generation of cancer-initiating mutations, inhibition of estrogen-DNA adduct formation would be an effective approach to preventing a variety of human cancers. The dietary supplements resveratrol and N-acetylcysteine can act as preventing cancer agents by keeping estrogen metabolism balanced. These two compounds can reduce the formation of catechol estrogen quinones and/or their reaction with DNA. Therefore, resveratrol and N-acetylcysteine provide a widely applicable, inexpensive approach to preventing many of the prevalent types of human cancer.


Assuntos
Carcinógenos/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Adutos de DNA/toxicidade , Estradiol/metabolismo , Estrogênios de Catecol/metabolismo , Estrona/metabolismo , Mutagênicos/toxicidade , Neoplasias/induzido quimicamente , Animais , Biomarcadores Tumorais/metabolismo , Carcinógenos/metabolismo , Adutos de DNA/metabolismo , Feminino , Humanos , Masculino , Mutagênicos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
19.
Food Chem Toxicol ; 62: 32-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23959103

RESUMO

Basil-containing plant food supplements (PFS) can contain estragole which can be metabolised into a genotoxic and carcinogenic 1'-sulfoxymetabolite. This study describes the inhibition of sulfotransferase (SULT)-mediated bioactivation of estragole by compounds present in basil-containing PFS. Results reveal that PFS consisting of powdered basil material contain other compounds with considerable in vitro SULT-inhibiting activity, whereas the presence of such compounds in PFS consisting of basil essential oil was limited. The inhibitor in powdered basil PFS was identified as nevadensin. Physiologically based kinetic (PBK) modeling was performed to elucidate if the observed inhibitory effects can occur in vivo. Subsequently, risk assessment was performed using the Margin of Exposure (MOE) approach. Results suggest that the consequences of the in vivo matrix-derived combination effect are significant when estragole would be tested in rodent bioassays with nevadensin at ratios detected in PFS, thereby increasing MOE values. However, matrix-derived combination effects may be limited at lower dose levels, indicating that the importance of matrix-derived combination effects for risk assessment of individual compounds should be done on a case-by-case basis considering dose-dependent effects. Furthermore, this study illustrates how PBK modeling can be used in risk assessment of PFS, contributing to further reduction in the use of experimental animals.


Assuntos
Anisóis/efeitos adversos , Suplementos Nutricionais/análise , Medição de Risco/métodos , Derivados de Alilbenzenos , Animais , Anisóis/administração & dosagem , Anisóis/farmacologia , Fracionamento Químico , Adutos de DNA/metabolismo , Suplementos Nutricionais/efeitos adversos , Relação Dose-Resposta a Droga , Flavonas/toxicidade , Inocuidade dos Alimentos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ocimum basilicum/química , Ratos Sprague-Dawley , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/metabolismo
20.
Environ Toxicol Pharmacol ; 36(2): 320-331, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23708313

RESUMO

Epidemiological studies indicated that there is an increased risk of respiratory tract cancer among cooks and bakers. The cooking oil fumes are believed to conduct this risk, and many studies have focused on evaluating the mutagenicity and finding the mutagenic components in oil fumes. COFs contains two major classes of compounds. One class consists of polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene, benzo[b]fluoranthene, fluoranthene, and benzo[g,h,i]perylene. BaP is a known immunosuppressant. It can also alter cell cycle progression, induce inflammation, and impair DNA repair and apoptotic processes leading to aberrant cellular functioning. This study investigates the effect of toxicity of cooking oil fumes (COFs) in primary ICR mice' fetal lung type II-like epithelium cells (AEC II). The cells were cultured in different concentrations (0, 12.5, 25, 50, 100, and 200µg/ml) of COFs for different time periods. The results showed that cell viability decreased in a dose- and time- dependent manner, which is accompanied by increased malondialdehyde (MDA) level and decreased superoxide dismutase (SOD) and glutathione (GSH) activities. Moreover, comet assay suggested DNA damage, as well as increased production of DNA adducts induced by PAHs. The present study also shows that COFs may disturb cell cycles even at a very low dose. In summary, the present study indicates that COFs may lead to toxicity in AEC II cells.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Culinária , Pulmão/efeitos dos fármacos , Óleos de Plantas/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Adutos de DNA/metabolismo , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Pulmão/patologia , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Óleo de Amendoim , Superóxido Dismutase/metabolismo , Fatores de Tempo , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA