RESUMO
Respiratory viruses can cause life-threatening illnesses. The focus of treatment is on supportive therapies and direct antivirals. However, antivirals may cause resistance by exerting selective pressure. Modulating the host response has emerged as a viable therapeutic approach for treating respiratory infections. Additionally, considering the probable future respiratory virus outbreaks emphasizes the need for broad-spectrum therapies to be prepared for the next pandemics. One of the principal bioactive constituents found in the seed extract of Aesculus hippocastanum L. (AH) is ß-escin. The clinical therapeutic role of ß-escin and AH has been associated with their anti-inflammatory effects. Regarding their mechanism of action, we and others have shown that ß-escin and AH affect NF-κB signaling. Furthermore, we have reported the virucidal and broad-spectrum antiviral properties of ß-escin and AH against enveloped viruses such as RSV, in vitro and in vivo. In this study, we demonstrate that ß-escin and AH have antiviral and virucidal activities against SARS-CoV-2 and CCoV, revealing broad-spectrum antiviral activity against coronaviruses. Likewise, they exhibited NF-κB and cytokine modulating activities in epithelial and macrophage cell lines infected with coronaviruses in vitro. Hence, ß-escin and AH are promising broad-spectrum antiviral, immunomodulatory, and virucidal drugs against coronaviruses and respiratory viruses, including SARS-CoV-2.
Assuntos
Aesculus , COVID-19 , Vírus , Escina/farmacologia , SARS-CoV-2/metabolismo , Aesculus/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Vírus/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêuticoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Fraxini cortex, which has been widely used as a traditional Chinese medicine for 2000 years, is made from the dried bark of four plant species: Fraxinus chinensis subsp. rhynchophylla (Hance) A.E.Murray, Fraxinus chinensis Roxb., Fraxinus chinensis subsp. chinensis and Fraxinus stylosa Lingelsh.. In Chinese traditional medicine, it possesses the properties of heat-clearing and dampness-drying, asthma relief and cough suppression, as well as vision improvement. It is utilized for treating bacterial disorders, enteritis, leukorrhea, chronic bronitis, painful red eyes with swelling, lacrimation due to windward exposure, psoriasis, and other diseases or related symptoms. AIM OF THE STUDY: Fraxini cortex is abundant in chemical constituents and has garnered significant attention from plant chemists, particularly regarding coumarins, as evidenced by the recently identified three coumarin compounds. Considering the current dearth of systematic reporting on studies pertaining to Fraxini cortex, herein we provide a comprehensive summary of the advancements in phytochemistry, pharmacology, detection methods, and ethnomedicinal applications of Fraxini cortex. MATERIALS AND METHODS: We conducted a comprehensive search across online data sources (Web of Science, Public Medicine (PubMed), China National Knowledge Infrastructure (CNKI), as well as Chinese dissertations) and traditional Chinese medicine classics to gather the necessary literature resources for this review. RESULTS: Briefly, The Fraxini cortex yielded a total of 132 phytochemicals, including coumarins, lignans, secoiridoids, phenylethanol glycosides, flavonoids, triterpenoids, and other compounds. Among them, the main active ingredients are coumarins which possess a diverse range of pharmacological activities such as anti-inflammatory effects, anti-tumor properties, prevention of tissue fibrosis and oxidation damage as well as cardioprotective effects. CONCLUSIONS: All types of research conducted on Fraxini cortex, particularly in the field of ethnopharmacology, phytochemistry, and pharmacology, have been thoroughly reviewed. However, certain traditional applications and pharmacological activities of Fraxini cortex lack scientific evaluation or convincing evidence due to incomplete methodologies and ambiguous results, as well as a lack of clinical data. To validate its pharmacological activity, clinical efficacy, and safety profile, a systematic and comprehensive research evaluation is imperative. As an important traditional Chinese medicine, Fraxini cortex should be further explored to facilitate the development of novel drugs and therapeutics for various diseases. Greater attention should be given to how it can be better utilized.
Assuntos
Medicamentos de Ervas Chinesas , Fraxinus , Medicina Tradicional Chinesa , Compostos Fitoquímicos , Humanos , Animais , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Fraxinus/química , Medicina Tradicional Chinesa/métodos , Etnofarmacologia/métodos , Fitoterapia , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Cumarínicos/química , Medicina Tradicional/métodos , AesculusRESUMO
Eight nitrogenous compounds including five undescribed ones, aeswilnitrousol A (1), aeswilnitrousosides BD (2-4), and 6-(2-hydroxy-3-methylbutylamino)-8-oxoadenine (5) were isolated from the seeds of Aesculus wilsonii. Their structures and absolute configurations were established based on spectroscopic determination, calculated electronic circular dichroism (ECD) analysis, as well as chemical reaction methods. Among the three known compounds, 7 and 8 were obtained from the Aesculus genus for the first time, and 6 was gained from this plant initially. The 13C NMR data of 7 and 8 were reported for the first time. Moreover, the inhibitory effect of all the isolates against LPS-induced nitric oxide production in RAW264.7 macrophages was evaluated. As a result, compounds 2 and 8 exhibited anti-inflammatory activity in a concentration-dependent manner at 10, 25, and 50 µM.
Assuntos
Aesculus , Estrutura Molecular , Aesculus/química , Compostos de Nitrogênio/análise , Anti-Inflamatórios/farmacologia , Sementes/química , Óxido NítricoRESUMO
OBJECTIVE: To quantify phytochemicals using liquid chromatography and mass spectroscopy (LCMS) analysis and explore the therapeutic effect of Aesculus hippocastanum L. (AH) seeds ethanolic extract against gastric ulcers in rats. METHODS: Preliminary phytochemical testing and LCMS analysis were performed according to standard methods. For treatment, the animals were divided into 7 groups including normal control, ulcer control, self-healing, AH seeds low and high doses, ranitidine and per se groups. Rats were orally administered with 10 mg/kg of indomethacin, excluding the normal control group (which received 1% carboxy methyl cellulose) and the per se group (received 200 mg/kg AH seeds extract). The test group rats were then given 2 doses of AH seeds extract (100 and 200 mg/kg, respectively), while the standard group was given ranitidine (50 mg/kg). On the 11th day, rats in all groups were sacrificed, and their stomach was isolated to calculate the ulcer index, and other parameters such as blood prostaglandin (PGE2), tissue superoxide dismutase (SOD), catalase (CAT), malonyldialdehyde (MDA), and glutathione (GSH). All isolated stomach tissues were analyzed for histopathological findings. RESULTS: The phytochemical examination shows that the AH seeds contain alkaloids, flavonoids, saponins, phenolic components, and glycosides. LCMS analysis confirms the presence of quercetin and rutin. The AH seeds extract showed significant improvement in gastric mucosa conditions after indomethacin-induced gastric lesions (P<0.01). Further marked improvement in blood PGE2 and antioxidant enzymes, SOD, CAT, MDA and GSH, were observed compared with self-healing and untreated ulcer-induced groups (P<0.01). Histopathology results confirmed that AH seeds extract improved the mucosal layer and gastric epithelial membrane in treated groups compared to untreated ulcer-induced groups. CONCLUSIONS: LCMS report confirms the presence of quercetin and rutin in AH seeds ethanolic extract. The therapeutic effect of AH seeds extract against indomethacin-induced ulcer in rat model indicated the regenerated membrane integrity, with improved cellular functions and mucus thickness. Further, improved antioxidant enzyme level would help to reduce PGE2 biosynthesis.
Assuntos
Aesculus , Úlcera Gástrica , Ratos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ranitidina/efeitos adversos , Úlcera/tratamento farmacológico , Quercetina , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Indometacina/uso terapêutico , Glutationa , Superóxido Dismutase , Rutina/efeitos adversos , Prostaglandinas/efeitos adversos , Compostos Fitoquímicos/uso terapêuticoRESUMO
Escins constitute an abundant family of saponins (saponosides) and are the most active components in Aesculum hippocastanum (horse chestnut-HC) seeds. They are of great pharmaceutical interest as a short-term treatment for venous insufficiency. Numerous escin congeners (slightly different compositions), as well as numerous regio-and stereo-isomers, are extractable from HC seeds, making quality control trials mandatory, especially since the structure-activity relationship (SAR) of the escin molecules remains poorly described. In the present study, mass spectrometry, microwave activation, and hemolytic activity assays were used to characterize escin extracts (including a complete quantitative description of the escin congeners and isomers), modify the natural saponins (hydrolysis and transesterification) and measure their cytotoxicity (natural vs. modified escins). The aglycone ester groups characterizing the escin isomers were targeted. A complete quantitative analysis, isomer per isomer, of the weight content in the saponin extracts as well as in the seed dry powder is reported for the first time. An impressive 13% in weight of escins in the dry seeds was measured, confirming that the HC escins must be absolutely considered for high-added value applications, provided that their SAR is established. One of the objectives of this study was to contribute to this development by demonstrating that the aglycone ester functions are mandatory for the toxicity of the escin derivative, and that the cytotoxicity also depends on the relative position of the ester functions on the aglycone.
Assuntos
Aesculus , Saponinas , Escina/química , Aesculus/química , Preparações Farmacêuticas , Extratos VegetaisRESUMO
BACKGROUND: Semen Aesculi, a traditional Chinese herbal medicine, has a long history of use for treating chest and abdominal pain with distension. In addition, the horse chestnut (Aesculus hippocastanum L.) is another species of Aesculus in Europe and has notable clinical significance in alleviating chronic venous insufficiency, hemorrhoids, and postoperative edema. Thus, highlighting the comparative study of Semen Aesculi and horse chestnut may broaden clinical applications. OBJECTIVES: To conduct a comprehensive comparative analysis on the chemical profiling of these two varieties and determine whether they have equivalent clinical efficacy by integrating plant metabolomics and multivariate statistical methods. METHODS: Initially, a comprehensive characterisation was performed using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) platform, and in total 44 active ingredients were identified. Then, untargeted metabolomics combined with principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) was applied for the discrimination of a German species and three official Chinese species. Next, 24 marker compounds responsible for the discrimination of different species were screened out and used to predict the species of unknown samples by genetic algorithm-optimised support vector machine (GA-SVM) with a high prediction accuracy. Finally, a heatmap visualisation was employed for clarifying the distribution of the identified active ingredients. RESULTS: The three species of Chinese Semen Aesculi showed distinct separation from each other, while European horse chestnut and Aesculus chinensis Bunge were similar in chemical composition. CONCLUSIONS: This work provided experimental evidence for further expanding the clinical application of Chinese Semen Aesculi and promoted the species identification and quality control of Semen Aesculi.
Assuntos
Aesculus , Espectrometria de Massas em Tandem/métodos , Quimiometria , Sementes , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão/métodosRESUMO
The flavonoid constituents of Aesculus wilsonii, a source of the Chinese medicinal drug Suo Luo Zi, and their in vitro anti-inflammatory effects were investigated. Fifteen flavonoids, including aeswilflavonosides IA-IC (1: â-â3: ) and aeswilflavonosides IIA-IIE (4: â-â8: ), along with seven known derivatives were isolated from a seed extract. Their structures were elucidated by extensive spectroscopic methods, acid and alkaline hydrolysis, and calculated electronic circular dichroism spectra. Among them, compounds 3: and 7: possess a 5-[2-(carboxymethyl)-5-oxocyclopent-yl]pent-3-enylate or oleuropeoylate substituent, respectively, which are rarely reported in flavonoids. Compounds 2, 3, 7: , and 12: â-â15: were found to inhibit lipopolysaccharide-induced nitric oxide production in RAW 264.7 cell lines. In a mechanistic assay, the flavonoid glycosides 2, 3: , and 7: reduced the expressions of interleukin-6 and tumor necrosis factor-alpha induced by lipopolysaccharide. Further investigations suggest that 2: and 3: downregulated the protein expression of tumor necrosis factor-alpha and interleukin-6 by inhibiting the phosphorylation of p38. Compound 7: was found to reduce the production of inducible nitric oxide synthase, and the secretion of tumor necrosis factor-alpha and interleukin-6 through inhibiting nuclear factor kappa-light-chain-enhancer of activated B signaling pathway. Compounds 2, 3: , and 7: possessed moderate inhibitory activity on the expression of signal transducer and activator of transcription-3. Taken together, the data indicate that the flavonoid glycosides of A. wilsonii seeds exhibit nitric oxide release inhibitory activity through mitogen-activated protein kinase (p38), nuclear factor kappa-light-chain-enhancer of activated B, and signal transducer and activator of transcription-3 cross-talk signaling pathways.
Assuntos
Aesculus , NF-kappa B , NF-kappa B/metabolismo , Flavonoides/farmacologia , Aesculus/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Transdução de Sinais , Óxido Nítrico Sintase Tipo II/metabolismo , Glicosídeos/farmacologia , Glicosídeos/metabolismoRESUMO
OBJECTIVE@#To quantify phytochemicals using liquid chromatography and mass spectroscopy (LCMS) analysis and explore the therapeutic effect of Aesculus hippocastanum L. (AH) seeds ethanolic extract against gastric ulcers in rats.@*METHODS@#Preliminary phytochemical testing and LCMS analysis were performed according to standard methods. For treatment, the animals were divided into 7 groups including normal control, ulcer control, self-healing, AH seeds low and high doses, ranitidine and per se groups. Rats were orally administered with 10 mg/kg of indomethacin, excluding the normal control group (which received 1% carboxy methyl cellulose) and the per se group (received 200 mg/kg AH seeds extract). The test group rats were then given 2 doses of AH seeds extract (100 and 200 mg/kg, respectively), while the standard group was given ranitidine (50 mg/kg). On the 11th day, rats in all groups were sacrificed, and their stomach was isolated to calculate the ulcer index, and other parameters such as blood prostaglandin (PGE2), tissue superoxide dismutase (SOD), catalase (CAT), malonyldialdehyde (MDA), and glutathione (GSH). All isolated stomach tissues were analyzed for histopathological findings.@*RESULTS@#The phytochemical examination shows that the AH seeds contain alkaloids, flavonoids, saponins, phenolic components, and glycosides. LCMS analysis confirms the presence of quercetin and rutin. The AH seeds extract showed significant improvement in gastric mucosa conditions after indomethacin-induced gastric lesions (P<0.01). Further marked improvement in blood PGE2 and antioxidant enzymes, SOD, CAT, MDA and GSH, were observed compared with self-healing and untreated ulcer-induced groups (P<0.01). Histopathology results confirmed that AH seeds extract improved the mucosal layer and gastric epithelial membrane in treated groups compared to untreated ulcer-induced groups.@*CONCLUSIONS@#LCMS report confirms the presence of quercetin and rutin in AH seeds ethanolic extract. The therapeutic effect of AH seeds extract against indomethacin-induced ulcer in rat model indicated the regenerated membrane integrity, with improved cellular functions and mucus thickness. Further, improved antioxidant enzyme level would help to reduce PGE2 biosynthesis.
Assuntos
Ratos , Animais , Úlcera Gástrica/patologia , Antioxidantes/uso terapêutico , Ranitidina/efeitos adversos , Aesculus , Úlcera/tratamento farmacológico , Quercetina , Extratos Vegetais/química , Indometacina/uso terapêutico , Glutationa , Superóxido Dismutase , Rutina/efeitos adversos , Prostaglandinas/efeitos adversos , Compostos Fitoquímicos/uso terapêuticoRESUMO
The search for new antimicrobials is essential to address the worldwide issue of antibiotic resistance. The present work aimed at assessing the antimicrobial activity of Aesculus hippocastanum L. (horse chestnut) bark against bacteria involved in urinary tract infections (UTIs). Bioactive compounds were extracted from A. hippocastanum bark using water and ethanol as solvents. The extracts were tested against 10 clinical uropathogenic strains including five Gram-positive and five Gram-negative bacteria. Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 25922 were used as reference bacteria. The susceptibility to antibiotics was assessed using the Kirby Bauer disc diffusion method and the antibacterial activity of the extracts was evaluated using the well diffusion method. The Minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) were asseded by the microdilution method. A. hippocastanum bark possessed a dry matter content of 65.73%. The aqueous extract (AE) and ethanolic extract (EE) showed a volume yield of 77.77% and 74.07% (v/v), and a mass yields of 13.4% and 24.3% (w/w) respectively. All the bacteria were susceptible to amoxiclav, imipenem and ceftriaxone but the clinical strains were resistant to at least one antibiotic. Kocuria rizophilia 1542 and Corynebacterium spp 1638 were the most resistant bacteria both with multidrug resistance index of 0.45. Except AE on Proteus Mirabilis 1543 and Enterococcus faecalis 5960 (0 mm), both AE and EE were active against all the microorganisms tested with inhibition diameters (mm) which ranged from 5.5-10.0 for AE and 8.0-14.5 for EE. The MICs of EEs varied from 1-4 mg/mL while those of AEs varied from 4-16 mg/mL. The ethanolic extracts (EE) were overall more active than the aqueous ones. The A. hippocastanum bark extracts had overall weak antibacterial activity (MIC ≥0.625 mg/mL) and bacteriostatic potential (MBC/MIC ≥16) on both Gram-positive and Gram-negative bacteria.
Assuntos
Aesculus , Anti-Infecciosos , Infecções Urinárias , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Etanol , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Casca de Planta , Extratos Vegetais/farmacologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , ÁguaRESUMO
Fibroblasts are actively involved in the formation of granulation tissue and/or tumor stroma. These cells possess the potential to differentiate into myofibroblasts acquiring a highly contractile phenotype characterized by the expression of α-smooth muscle actin (SMA). Considering TGF-ß1 as the main inducer of myofibroblast differentiation and horse chestnut extract (HCE) as an effective modulator of the wound healing, we have new evidence to demonstrate canonical TGF-ß1/SMAD and non-canonical/non-SMAD signaling in normal fibroblasts, isolated from healthy human skin (human dermal fibroblasts - HDFs), and their malignant counterparts (CAFs) isolated from basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) using western blot and immunofluorescence. Our study revealed that HCE stimulated the deposition of fibronectin by BCC fibroblasts (BCCFs), an effect not seen in other studied fibroblasts. Moreover, HCE in combination with TGF-ß1 showed a synergic effect on the presence of polymerized SMA-stress fibers, particularly visible in CAFs. Interestingly, the TGF-ß1 exposure led to activation of the canonical SMAD signaling in HDFs and BCCFs, whereas treatment of SCC fibroblasts (SCCFs) resulted in activation of the non-canonical AKT and/or ERK1/2 signaling. In conclusion, we observed specific differences in signaling between HDFs and CAFs that should be considered when developing new therapeutic approaches targeting wound/tumor microenvironments.
Assuntos
Aesculus , Fibroblastos Associados a Câncer , Carcinoma Basocelular , Carcinoma de Células Escamosas , Carcinoma de Células Escamosas/tratamento farmacológico , Diferenciação Celular , Células Cultivadas , Fibroblastos , Humanos , Miofibroblastos , Extratos Vegetais/farmacologia , Fator de Crescimento Transformador beta1 , Microambiente TumoralRESUMO
The use of natural surfactants including plant extracts, plant hydrocolloids and proteins in nanoemulsion systems has received commercial interest due to demonstrated safety of use and potential health benefits of plant products. In this study, a whey protein isolate (WPI) from a byproduct of cheese production was used to stabilize a nanoemulsion formulation that contained hempseed oil and the Aesculus hippocastanum L. extract (AHE). A Box-Behnken experimental design was used to set the formulation criteria and the optimal nanoemulsion conditions, used subsequently in follow-up experiments that measured specifically emulsion droplet size distribution, stability tests and visual quality. Regression analysis showed that the concentration of HSO and the interaction between HSO and the WPI were the most significant factors affecting the emulsion polydispersity index and droplet size (nm) (p < 0.05). Rheological tests, Fourier transform infrared spectroscopy (FTIR) analysis and L*a*b* color parameters were also taken to characterize the physicochemical properties of the emulsions. Emulsion systems with a higher concentration of the AHE had a potential metabolic activity up to 84% in a microbiological assay. It can be concluded from our results that the nanoemulsion system described herein is a safe and stable formulation with potential biological activity and health benefits that complement its use in the food industry.
Assuntos
Aesculus/química , Cannabis/química , Emulsões , Nanoestruturas/química , Extratos Vegetais/química , Tensoativos/química , Proteínas do Soro do Leite/química , Reologia , Água/químicaRESUMO
Inflammatory microenvironment after transplantation affects the proliferation and causes senescence of adipose-derived mesenchymal stem cells (hADMSCs) thus compromising their clinical efficacy. Priming stem cells with herbal extracts is considered very promising to improve their viability in the inflammatory milieu. Aesculus indica (A. indica) is used to treat many inflammatory diseases in Asia for decades. Herein, we explored the protective role of A. indica extract on human adipose-derived Mesenchymal Stem Cells (hADMSCs) against Monosodium Iodoacetate (MIA) induced stress in vitro. A. indica ameliorated the injury as depicted by significantly enhanced proliferation, viability, improved cell migration and superoxide dismutase activity. Furthermore, reduced lactate dehydrogenase activity, reactive oxygen species release, senescent and apoptotic cells were detected in A. indica primed hADMSCs. Downregulation of NF-κB pathway and associated inflammatory genes, NF-κB p65/RelA and p50/NF-κB 1, Interleukin 6 (IL-6), Interleukin 1 (IL-1ß), Tumor necrosis factor alpha (TNF-α) and matrix metalloproteinase 13 (MMP-13) were observed in A. indica primed hADMSCs as compared to stressed hADMSCs. Complementary to gene expression, A. indica priming reduced the release of transcription factor p65, inhibitory-κB kinase (IKK) α and ß, IL-1ß and TNF-α proteins expression. Our data elucidates that A. indica extract preconditioning rescued hADMSCs against oxidative stress and improved their therapeutic potential by relieving inflammation through regulation of NF-κB pathway.
Assuntos
Aesculus/química , Anti-Inflamatórios/farmacologia , Ácido Iodoacético/efeitos adversos , Células-Tronco Mesenquimais/citologia , NF-kappa B/metabolismo , Compostos Fitoquímicos/farmacologia , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Anti-Inflamatórios/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/química , Extratos Vegetais/análise , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismoRESUMO
The rapid thermal cracking technology of biomass can convert biomass into bio-oil and is beneficial for industrial applications. Agricultural and forestry wastes are important parts of China's energy, and their high-grade utilization is useful to solve the problem of energy shortages and environmental pollution. To the best of our knowledge, the impact of nanocatalysts on converting biowastes for bio-oil has not been studied. Consequently, we examined the production of bio-oil by pyrolysis of Aesculus chinensis Bunge Seed (ACBS) using nanocatalysts (Fe2O3 and NiO catalysts) for the first time. The pyrolysis products of ACBS include 1-hydroxy-2-propanone (3.97%), acetic acid (5.42%), and furfural (0.66%). These chemical components can be recovered for use as chemical feedstock in the form of bio-oil, thus indicating the potential of ACBS as a feedstock to be converted by pyrolysis to produce value-added bio-oil. The Fe2O3 and NiO catalysts enhanced the pyrolysis process, which accelerated the precipitation of gaseous products. The pyrolysis rates of the samples gradually increased at DTGmax, effectively promoting the catalytic cracking of ACBS, which is beneficial to the development and utilization of ACBS to produce high valorization products. Combining ACBS and nanocatalysts can change the development direction of high valorization agricultural and forestry wastes in the future.
Assuntos
Aesculus , Pirólise , Biocombustíveis , Biomassa , Temperatura Alta , Óleos de Plantas , Polifenóis , SementesRESUMO
Therapeutic secondary metabolites have gained immense attention in recent years due to their effective medicinal properties. Aesculus indica is a medicinally important plant being traditionally used for various ailments. The present study aimed to determine the antioxidant and antiproliferative activities of seeds of A. indica. The crude methanolic seed extract was prepared and subjected to sequential fractionation in increasing polarity. The extract and its fractions were investigated for antioxidant activities using various in vitro assays. Further, the extract along with its potential antioxidant fractions were analyzed for their cytotoxic activity against HepG2, human hepatocyte carcinoma cells through bioassays. The results showed highly significant antioxidant potential of methanolic extract of A. indica seeds and two of its fractions prepared with chloroform and ethyl acetate. The studies on hepatocyte carcinoma cells further revealed that the extract and two of its potential antioxidant fractions significantly induced cytotoxicity and inhibited migration, proliferation, clonogenicity and 3D growth of HepG2 cells. It is therefore, concluded that A. indica possess significant antioxidant and cytotoxic potential against HepG2 cells and with further research can be proposed for therapeutic interventions.
Assuntos
Aesculus , Antioxidantes/farmacologia , Carcinoma Hepatocelular , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas , Extratos Vegetais/farmacologia , Sementes , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Técnicas In VitroRESUMO
Plant polyphenols have beneficial antioxidant effects on human health; practices aimed at preserving their content in foods and/or reusing food by-products are encouraged. The impact of the traditional practice of the water curing procedure of chestnuts, which prevents insect/mould damage during storage, was studied to assess the release of polyphenols from the fruit. Metabolites extracted from pericarp and integument tissues or released in the medium from the water curing process were analyzed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and electrospray-quadrupole-time of flight-mass spectrometry (ESI-qTOF-MS). This identified: (i) condensed and hydrolyzable tannins made of (epi)catechin (procyanidins) and acid ellagic units in pericarp tissues; (ii) polyphenols made of gallocatechin and catechin units condensed with gallate (prodelphinidins) in integument counterparts; (iii) metabolites resembling those reported above in the wastewater from the chestnut curing process. Comparative experiments were also performed on aqueous media recovered from fruits treated with processes involving: (i) tap water; (ii) tap water containing an antifungal Lb. pentosus strain; (iii) wastewater from a previous curing treatment. These analyses indicated that the former treatment determines a 6-7-fold higher release of polyphenols in the curing water with respect to the other ones. This event has a negative impact on the luster of treated fruits but qualifies the corresponding wastes as a source of antioxidants. Such a phenomenon does not occur in wastewater from the other curing processes, where the release of polyphenols was reduced, thus preserving the chestnut's appearance. Polyphenol profiling measurements demonstrated that bacterial presence in water hampered the release of pericarp metabolites. This study provides a rationale to traditional processing practices on fruit appearance and qualifies the corresponding wastes as a source of bioactive compounds for other nutraceutical applications.
Assuntos
Aesculus/química , Antioxidantes/química , Extratos Vegetais/química , Polifenóis/química , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Biflavonoides/química , Biflavonoides/isolamento & purificação , Catequina/química , Catequina/isolamento & purificação , Frutas/química , Humanos , Nozes/química , Extratos Vegetais/farmacologia , Polifenóis/isolamento & purificação , Polifenóis/metabolismo , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Taninos/química , Água/químicaRESUMO
Urinary tract infections (UTIs) are caused by uropathogenic microorganism colonization. UTIs often require an antibiotic therapy that can cause the selection of antibiotic-resistant bacterial strains. A natural bioactive compound may represent a valid therapeutic adjuvant approach, in combination with drug therapy. In this paper, we present a pilot study, based on the administration of an oral food supplement (OFS), containing chestnut tannins and anthocyanins, to nephropathic patients suffering from recurrent UTIs (16 treated patients with 1 cp/day and 10 untreated patients). We performed laboratory tests and quality of life and body composition assessments, at T0 (baseline) and T1 (after 6 weeks OFS assumption). The analysis of OFS was performed by HPLC-DAD-MS for its content in polyphenols and by in vitro tests for its antioxidative and anti-free radical activities. In each capsule, polyphenol content was 6.21 mg (4.57 mg hydrolysable tannins, 0.94 mg anthocyanosides, 0.51 mg proanthocyanidins, 0.18 mg quercetin derivatives). A significant reduction of erythrocyte sedimentation rate was observed only in male patients. Urinalysis showed a significant reduction of leukocytes in both genders, whereas urinary bacterial flora at T1 significantly decreased only in male subjects. Tannins seem to exert an antimicrobial action according to gender, useful to counteract the recurrence of UTIs.
Assuntos
Antocianinas/administração & dosagem , Taninos Hidrolisáveis/administração & dosagem , Insuficiência Renal Crônica/complicações , Infecções Urinárias/prevenção & controle , Aesculus/química , Idoso , Anti-Infecciosos/administração & dosagem , Composição Corporal , Suplementos Nutricionais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fitoterapia , Projetos Piloto , Dados Preliminares , Qualidade de Vida , Recidiva , Fatores Sexuais , Infecções Urinárias/microbiologia , Vaccinium macrocarpon/químicaRESUMO
Nanoemulsion systems receive a significant amount of interest nowadays due to their promising potential in biomedicine and food technology. Using a two-step process, we produced a series of nanoemulsion systems with different concentrations of hemp seed oil (HSO) stabilized with Aesculus hippocastanum L. extract (AHE). Water and commercially-available low-concentrated hyaluronic acid (HA) were used as the liquid phase. Stability tests, including an emulsifying index (EI), and droplet size distribution tests performed by dynamic light scattering (DLS) proved the beneficial impact of AHE on the emulsion's stability. After 7 days of storage, the EI for the water-based system was found to be around 100%, unlike the HA systems. The highest stability was achieved by an emulsion containing 5% HSO and 2 g/L AHE in water, as well as the HA solution. In order to obtain the detailed characteristics of the emulsions, UV-Vis and FTIR spectra were recorded, and the viscosity of the samples was determined. Finally, a visible microscopic analysis was used for the homogeneity evaluation of the samples, and was compared with the DLS results of the water system emulsion, which showed a desirable stability. The presented results demonstrate the possible use of oil emulsions based on a plant extract rich in saponins, such as AHE. Furthermore, it was found that the anti-inflammatory properties of AHE provide opportunities for the development of new emulsion formulations with health benefits.
Assuntos
Aesculus/metabolismo , Cannabis/metabolismo , Emulsificantes/química , Difusão Dinâmica da Luz , Emulsões/química , Nanopartículas/química , Tamanho da Partícula , Óleos de Plantas/química , Sementes/metabolismo , Tensoativos , Temperatura , Viscosidade , ÁguaRESUMO
BACKGROUND: This study evaluated the usability of saponin-rich extracts (soapwort and horse chestnut) as a foaming agent for foam mat drying of pomegranate juice. RESULTS: According to the foaming and stabilization studies, the optimum conditions were determined as 0.4% of soapwort extract, 0.03% of carboxymethyl cellulose as a stabilizer, and 3 min of whipping time. The foams produced using these conditions were dried at different spreading thicknesses and drying temperatures. The results showed that the thicker spreading thicknesses provided a higher antioxidant activity. On the other hand, drying temperature had a significant effect on all measured parameters except moisture content and water activity. The higher drying temperature caused a greater colour change and a lower content of total phenolics, total monomeric anthocyanins, cyanidin-3-glucoside, and delphinidin-3-glucoside. On the other hand, a higher content of ascorbic acid and better antioxidant activity was determined in the samples dried at 70 °C. CONCLUSION: According to the results obtained, spreading thickness of 2 mm and drying temperature of 70 °C were suggested for pomegranate juice powder production by foam mat drying. Overall, it was demonstrated that saponin-rich extracts are a good foaming agent alternative that provides foaming at very low concentrations and a product with high quality. © 2020 Society of Chemical Industry.
Assuntos
Aesculus/química , Sucos de Frutas e Vegetais/análise , Frutas/química , Extratos Vegetais/análise , Punica granatum/química , Saponaria/química , Saponinas/química , Dessecação , Aditivos Alimentares/química , Pós/químicaRESUMO
The objective of this study was to evaluate the optimal Subcritical Water Extraction (SWE) conditions of antioxidants and polyphenols from chestnut shells using Response Surface Methodology (RSM). A central composite design (CCD) was conducted to analyse the time (6-30 min) and temperature (51-249 °C) effects in antioxidant activity (ABTS, DPPH and FRAP) and Total Phenolic Compounds (TPC). TPC ranged from 315.21 to 496.80 mg gallic acid equivalents (GAE)/g DW; the DPPH from 549.23 to 1125.68 mg Trolox equivalents (TE)/g DW; ABTS varied between 631.16 and 965.45 mg ascorbic acid equivalents (AAE)/g DW and FRAP from 2793.95 to 11393.97 mg ferrous sulphate equivalents (FSE)/g DW. The optimal extraction conditions were 30 min/220 °C, revealing excelling scavenging efficiencies against HOCl (IC50 = 0.79 µg/mL) and O2- (IC50 = 12.92 µg/mL) without toxicity on intestinal cells (0.1 µg/mL). The phenolic composition revealed high amounts of pyrogallol and protocatechuic acid. SWE can be a useful extraction technique for the recovery of polyphenolics from chestnut shells.
Assuntos
Aesculus/química , Antioxidantes/química , Fenóis/química , Aesculus/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Nozes/química , Nozes/metabolismo , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/química , Polifenóis/análise , Espectrometria de Massas em Tandem , Temperatura , Água/químicaRESUMO
Plant extracts have been proved as natural antioxidants resources as well as alternative feed additives in livestock and poultry species. Chestnut wood extract (CWE) as a source of hydrolysable tannic acid was used to evaluate the growth performance, nutrient retention, meat quality, antioxidant status, and immune function of broilers. A total of 168, day-old Arbor Acre male broilers (weight 46.59 ± 0.44 g) were randomly divided to 3 treatments, 7 replicate pens per treatment, 8 broilers per pen. The treatments contain a control diet, CON (corn-soybean meal basal diet); an antibiotic diet, CTC (basal diet + 75 mg/kg chlortetracycline); and chestnut wood extract diet, CWE (basal diet + 1,000 mg/kg chestnut tannins). At the finisher phase, final body weight was higher (P < 0.05) in CWE supplemented diet than in CON. Average daily body weight gain was higher (P < 0.05) and feed gain ratio was lower (P < 0.05) in broilers fed CWE than in those fed CON at the finisher phase. Crude protein digestibility was higher (P < 0.05) in broilers offered CWE than that in broilers fed CON and CTC diets. Breast muscle pH value at 24 h (pH24 h) was higher (P < 0.05) in broilers fed CWE than that in those fed CON and CTC diets. The bursa weight was higher (P < 0.05) in broilers offered CWE than that in those fed CON and CTC. Total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) values were higher (P < 0.05) in both breast muscle and thigh muscle of broilers offered CWE supplemented diet than those in broilers fed CON and CTC diets. Similarly, broilers offered with CWE diets showed higher (P < 0.05) T-AOC, GSH-PX, and SOD value in serum than those fed CON and CTC diets. Serum concentration of IgG was higher (P < 0.05) in broilers offered with CWE diets than that in those fed CON and CTC diets. Total cholesterol, low-density lipoprotein cholesterol, and urea-N concentration were lower (P < 0.05) in broilers offered CWE diet than those in broilers fed CON and CTC diets. It was recommended to supply CWE at the 1,000 mg/kg level for improving antioxidant status, cholesterol metabolism, and growth performance without affecting normal meat quality in broilers.