Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Integr Cancer Ther ; 21: 15347354221144311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36565160

RESUMO

In epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC), acquired resistance to EGFR tyrosine kinase inhibitors (TKI) leads to disease progression. Strategies to overcome the resistance are required in treatment for advanced lung cancer. In this study, we investigated the therapeutic effect of afatinib and HangAmDan-B1 (HAD-B1) co-administration in gefitinib-resistant NSCLC using HCC827-GR, NSCLC cell line with gefitinib resistance, and the HCC827-GR cell implanted mouse model. HAD-B1 consists of 4 herbs, Panax notoginseng Radix, Cordyceps militaris, Panax ginseng C. A. Mey, and Boswellia carteri Birdwood, and has been reported to be effective in patients with advanced lung cancer in clinical practice. Our findings demonstrated that HAD-B1 combined with afatinib markedly inhibited cell proliferation and induced apoptosis compared to afatinib monotherapy and HAD-B1 monotherapy. Inhibition of HCC827-GR cell proliferation by HAD-B1 occurred through MET amplification and reduced phosphorylation, and the synergistic effect of afatinib and HAD-B1 induced cell cycle arrest and apoptosis in HCC827-GR cells via the downregulation of ERK and mTOR signaling pathways. In hematology and biochemistry tests, HAD-B1 alleviated the toxicity of tumor. In conclusion, HAD-B1 combined with afatinib would be a promising therapeutic strategy for NSCLC with EGFR-TKI resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Afatinib/farmacologia , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Mutação
3.
Integr Cancer Ther ; 18: 1534735419830765, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866688

RESUMO

Epidermal growth factor receptor mutation-positive non-small cell lung cancer is cared for mainly by target therapeutics in the clinical treatment at present. We investigated the antitumor effect of HangAmDan-B1 (HAD-B1) combined with afatinib on H1975 (L858R/T790M double mutation) lung cancer cells. The combined treatment of HAD-B1 with afatinib inhibited the proliferation of H1975 cells in a dose-dependent manner compared with the treatment of afatinib or HAD-B1 alone. The combined treatment group significantly induced early apoptosis and cell cycle arrest of the cells compared with afatinib- or HAD-B1-treated control group. Profile analysis of cell cycle proteins in H1975 cells treated with the combination of HAD-B1 and afatinib using InnoPharmaScreen antibody microarray showed downregulation of pERK1/2 and upregulation of p16 in the cells. In vivo tumor growth assay in xenograft animal model of human H1975 lung cancer cells revealed that the mean tumor volume in the group treated with the combination of HAD-B1 and afatinib showed a significant reduction compared with the control groups.


Assuntos
Afatinib/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Mutação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA