Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4343, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383569

RESUMO

Antibiotic resistance in staphylococcal strains and its impact on public health and agriculture are global problems. The development of new anti-staphylococcal agents is an effective strategy for addressing the increasing incidence of bacterial resistance. In this study, ethanolic extracts of Cannabis sativa L. made from plant parts harvested during the whole vegetation cycle under various nutritional treatments were assessed for in vitro anti-staphylococcal effects. The results showed that all the cannabis extracts tested exhibited a certain degree of growth inhibition against bacterial strains of Staphylococcus aureus, including antibiotic-resistant and antibiotic-sensitive forms. The highest antibacterial activity of the extracts was observed from the 5th to the 13th week of plant growth across all the nutritional treatments tested, with minimum inhibitory concentrations ranging from 32 to 64 µg/mL. Using HPLC, Δ9-tetrahydrocannabinolic acid (THCA) was identified as the most abundant cannabinoid in the ethanolic extracts. A homolog of THCA, tetrahydrocannabivarinic acid (THCVA), reduced bacterial growth by 74%. These findings suggest that the cannabis extracts tested in this study can be used for the development of new anti-staphylococcal compounds with improved efficacy.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Canabinoides/farmacologia , Extratos Vegetais/farmacologia , Staphylococcus , Dronabinol/farmacologia , Antibacterianos/farmacologia , Alucinógenos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Etanol/farmacologia
2.
Cells ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38334660

RESUMO

Research suggests the potential of using cannabinoid-derived compounds to function as anticancer agents against melanoma cells. Our recent study highlighted the remarkable in vitro anticancer effects of PHEC-66, an extract from Cannabis sativa, on the MM418-C1, MM329, and MM96L melanoma cell lines. However, the complete molecular mechanism behind this action remains to be elucidated. This study aims to unravel how PHEC-66 brings about its antiproliferative impact on these cell lines, utilising diverse techniques such as real-time polymerase chain reaction (qPCR), assays to assess the inhibition of CB1 and CB2 receptors, measurement of reactive oxygen species (ROS), apoptosis assays, and fluorescence-activated cell sorting (FACS) for apoptosis and cell cycle analysis. The outcomes obtained from this study suggest that PHEC-66 triggers apoptosis in these melanoma cell lines by increasing the expression of pro-apoptotic markers (BAX mRNA) while concurrently reducing the expression of anti-apoptotic markers (Bcl-2 mRNA). Additionally, PHEC-66 induces DNA fragmentation, halting cell progression at the G1 cell cycle checkpoint and substantially elevating intracellular ROS levels. These findings imply that PHEC-66 might have potential as an adjuvant therapy in the treatment of malignant melanoma. However, it is essential to conduct further preclinical investigations to delve deeper into its potential and efficacy.


Assuntos
Cannabis , Cisteína/análogos & derivados , Melanoma , Melanoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Morte Celular , Agonistas de Receptores de Canabinoides/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RNA Mensageiro/uso terapêutico
3.
Toxicol Mech Methods ; 33(1): 56-64, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35606921

RESUMO

UR-144, a cannabinoid receptor agonist, is widely used alone or in combination with other synthetic cannabinoids (SCs) all over the world. At overdose, cardiovascular symptoms have been reported and the underlying molecular mechanisms of these adverse effects are not known. It is highly important to clarify the toxic effects of UR-144 for the treatment of poisoning. In the present study, the molecular mechanism of cytotoxic effects of UR-144 is evaluated on a cardiomyoblastic cell line using WST-1 and LDH assays. Apoptosis/necrosis, autophagy, and ROS (reactive oxygen species) levels were determined using flow cytometry. Cytoplasmic Ca2+ levels were measured by using a fluorogenic calcium-binding dye. Released and cytoplasmic troponin T levels, a specific marker of cardiotoxicity, were examined with western blot. For the evaluation of the role of DAPK1, on UR-144-induced cell death, DAPK1 activity and DAPK1 protein level were investigated. Its cytotoxic effects increased in a dose-dependent manner for WST-1 and LDH assays, while membrane damage, one of the signs of necrotic cell death, was more remarkable than damage to mitochondria. Cytoplasmic Ca2+ levels rose after high-dose UR-144 treatment and inhibition of DAPK1 activity ameliorated UR-144-induced cytotoxicity. Released troponin T significantly increased at a dose of 200 µM. ROS and total antioxidant capacity of cells were both reduced following high dose UR-144 treatment. The results indicated that UR-144-induced autophagic and necrotic cell death might be a consequence of elevated cytoplasmic Ca2+ levels and DAPK1 activation. However, in vivo/clinical studies are needed to identify molecular mechanisms of cardiotoxic effects of UR-144.


Assuntos
Agonistas de Receptores de Canabinoides , Troponina T , Humanos , Agonistas de Receptores de Canabinoides/farmacologia , Espécies Reativas de Oxigênio , Troponina T/farmacologia , Apoptose , Autofagia , Necrose/induzido quimicamente , Cardiotoxicidade , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas Quinases Associadas com Morte Celular/farmacologia
4.
Zhongguo Zhong Yao Za Zhi ; (24): 6294-6306, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1008828

RESUMO

Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems. Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects. This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Receptores de Canabinoides , Canabinoides/farmacologia , Anti-Inflamatórios/farmacologia
5.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6294-6306, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38211986

RESUMO

Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems. Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects. This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.


Assuntos
Moduladores de Receptores de Canabinoides , Canabinoides , Moduladores de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Receptores de Canabinoides , Canabinoides/farmacologia , Anti-Inflamatórios/farmacologia
6.
Trends Endocrinol Metab ; 33(12): 828-849, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280497

RESUMO

The number of people diagnosed with diabetes mellitus and its complications is markedly increasing worldwide, leading to a worldwide epidemic across all age groups, from children to older adults. Diabetes is associated with premature aging. In recent years, it has been found that peripheral overactivation of the endocannabinoid system (ECS), and in particular cannabinoid receptor 1 (CB1R) signaling, plays a crucial role in the progression of insulin resistance, diabetes (especially type 2), and its aging-related comorbidities such as atherosclerosis, nephropathy, neuropathy, and retinopathy. Therefore, it is suggested that peripheral blockade of CB1R may ameliorate diabetes and diabetes-related comorbidities. The use of synthetic CB1R antagonists such as rimonabant has been prohibited because of their psychiatric side effects. In contrast, phytocannabinoids such as cannabidiol (CBD) and tetrahydrocannabivarin (THCV), produced by cannabis, exhibit antagonistic activity on CB1R signaling and do not show any adverse side effects such as psychoactive effects, depression, or anxiety, thereby serving as potential candidates for the treatment of diabetes and its complications. In addition to these phytocannabinoids, cannabis also produces a substantial number of other phytocannabinoids, terpenes, and flavonoids with therapeutic potential against insulin resistance, diabetes, and its complications. In this review, the pathogenesis of diabetes, its complications, and the potential to use cannabinoids, terpenes, and flavonoids for its treatment are discussed.


Assuntos
Canabinoides , Cannabis , Diabetes Mellitus , Resistência à Insulina , Criança , Humanos , Idoso , Canabinoides/uso terapêutico , Terpenos/uso terapêutico , Agonistas de Receptores de Canabinoides/farmacologia , Diabetes Mellitus/tratamento farmacológico , Flavonoides
7.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163968

RESUMO

As cannabinoid CB2 receptors (CB2R) possess various pharmacological effects-including anti-epilepsy, analgesia, anti-inflammation, anti-fibrosis, and regulation of bone metabolism-without the psychoactive side effects induced by cannabinoid CB1R activation, they have become the focus of research and development of new target drugs in recent years. The present study was intended to (1) establish a double luciferase screening system for a CB2R modulator; (2) validate the agonistic activities of the screened compounds on CB2R by determining cAMP accumulation using HEK293 cells that are stably expressing CB2R; (3) predict the binding affinity between ligands and CB2 receptors and characterize the binding modes using molecular docking; (4) analyze the CB2 receptors-ligand complex stability, conformational behavior, and interaction using molecular dynamics; and (5) evaluate the regulatory effects of the screened compounds on bone metabolism in osteoblasts and osteoclasts. The results demonstrated that the screening system had good stability and was able to screen cannabinoid CB2R modulators from botanical compounds. Altogether, nine CB2R agonists were identified by screening from 69 botanical compounds, and these CB2R agonists exhibited remarkable inhibitory effects on cAMP accumulation and good affinity to CB2R, as evidenced by the molecular docking and molecular dynamics. Five of the nine CB2R agonists could stimulate osteoblastic bone formation and inhibit osteoclastic bone resorption. All these findings may provide useful clues for the development of novel anti-osteoporotic drugs and help elucidate the mechanism underlying the biological activities of CB2R agonists identified from the botanical materials.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Receptor CB2 de Canabinoide/agonistas , Animais , Anti-Inflamatórios/farmacologia , Agonistas de Receptores de Canabinoides/química , Moduladores de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , China , Células HEK293 , Humanos , Ligantes , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Células RAW 264.7 , Receptor CB2 de Canabinoide/metabolismo
8.
Neurol Neurochir Pol ; 56(1): 4-13, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35133644

RESUMO

INTRODUCTION: Cannabis (also known as marijuana) is the most frequently used psychoactive substance in the world. The role of cannabis in medicine is rapidly evolving, and advances in the understanding of its pharmacology have led to numerous proposed uses of these drugs. STATE OF THE ART: Cannabis contains Δ9-tetrahydrocannabinol and cannabidiol as the primary constituents responsible for pharmacological activity. It is now known that there are at least two types of cannabinoid receptors. CB1 receptors are found mainly in the CNS, and their primary role is to inhibit the release of neurotransmitters. CB2 receptors' leading role is to modulate cytokine release and immune cell migration. Colocalisation of cannabinoid receptors with other types of nervous system receptors allows them to interact with many other transmitters such as dopamine, noradrenaline, acetylcholine, gamma-aminobutyric acid, serotonin, and glutamic and aspartic acids. CLINICAL IMPLICATIONS: The rapidly expanding understanding regarding cannabinoids led to initial attempts to treat selected diseases with cannabinoid receptor agonists and antagonists. The most promising of these was the potential possibility of treating diseases for which current therapy is unsatisfactory, such as neurological diseases including multiple sclerosis, spastic muscular tension, extrapyramidal system diseases, neurodegenerative diseases and cerebral ischaemia. Attempts to treat psychiatric diseases (e.g. psychoses, neuroses, mood disorders, and alcohol dependence syndrome) with cannabinoids are much less advanced. FUTURE DIRECTIONS: Cannabis and cannabinoids can be widely used to treat several diseases or alleviate symptoms, but their efficacy for specific indications is not always apparent. Further exploration is needed to understand whether the enhanced sensitivity to the cognitive effects of Δ9-THC depends on brain cannabinoid receptor dysfunction, and how these changes contribute to the cognitive deterioration and core pathophysiology symptoms associated with schizophrenia or other neurological and somatoform disorders.


Assuntos
Canabinoides , Cannabis , Doenças do Sistema Nervoso , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Humanos , Receptores de Canabinoides
9.
Life Sci ; 293: 120279, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032552

RESUMO

BACKGROUND: Curcumin is one of the compounds present in plants of the genus Curcuma sp., being very used not only as condiment but also with medicinal purposes. As an analgesic, papers highlight the efficacy of curcumin in the treatment of various types of pain. AIMS: In this study we evaluated the peripheral antinociceptive effect of curcumin and by which mechanisms this effect is induced. MAIN METHODS: The mice paw pressure test was used on animals which had increased pain sensitivity by intraplantar injection of carrageenan. All the drugs were administered in the right hind paw. KEY FINDINGS: Curcumin was administered to the right hind paw animals induced antinociceptive effect. Non -selective antagonist of opioid receptors naloxone reverted the antinociceptive effect induced by curcumin. Selective antagonists for µ, δ and κ opioid receptors clocinnamox, naltrindole and nor- binaltorphimine, respectively, reverted the antinociceptive effect induced by curcumin. Bestatin, enkephalinases inhibitor that degrade peptides opioids, did not change the nociceptive response. Selective antagonists for CB1 and CB2 cannabinoid receptors, AM251 and AM630, respectively, reversed the antinociceptive effect induced by curcumin. The MAFP inhibitor of the enzyme FAAH which breaks down anandamide, JZL184, enzyme inhibitor MAGL which breaks down the 2-AG, as well as the VDM11 anandamide reuptake inhibitor potentiated the antinociceptive effect of curcumin. SIGNIFICANCE: These results suggest that curcumin possibly peripheral antinociception induced by opioid and cannabinoid systems activation and possibly for endocannabinoids and opioids release.


Assuntos
Analgésicos/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Curcumina/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Receptores Opioides/metabolismo , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Agonistas de Receptores de Canabinoides/farmacologia , Carragenina/toxicidade , Cinamatos/farmacologia , Curcumina/farmacologia , Relação Dose-Resposta a Droga , Endocanabinoides/farmacologia , Endocanabinoides/uso terapêutico , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Derivados da Morfina/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/uso terapêutico
10.
Pharmacol Biochem Behav ; 213: 173320, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990705

RESUMO

Assessing the role of cannabinoid (CB) receptors in behavior is relevant given the trend toward the legalization of medicinal and recreational marijuana. The present research aims at bridging a gap in our understanding of CB-receptor function in animal models of frustrative nonreward. These experiments were designed to (1) determine the effects of chronic administration of the nonselective CB1-receptor agonist WIN 55,212-2 (WIN) on reward downshift in rats and (2) determine whether the effects of chronic WIN were reducible to acute effects. In Experiment 1, chronic WIN (7 daily injections, 10 mg/kg, ip) accelerated the recovery of consummatory behavior after a 32-to-4% sucrose downshift relative to vehicle controls. In addition, chronic WIN eliminated the preference for an unshifted lever when the other lever was subject to a 12-to-2 pellet downshift in free-choice trials, but only in animals with previous experience with a sucrose downshift. In Experiment 2, acute WIN (1 mg/kg, ip) reduced consummatory behavior, but did not affect recovery from a 32-to-4% sucrose downshift. The antagonist SR 141716A (3 mg/kg, ip) also failed to interfere with recovery after the sucrose downshift. In Experiment 3, acute WIN administration (1 mg/kg, ip) did not affect free-choice behavior after a pellet downshift, although it reduced lever pressing and increased magazine entries relative to vehicle controls. The effects of chronic WIN on frustrative nonreward were not reducible to acute effects of the drug. Chronic WIN treatment in rats, like chronic marijuana use in humans, seems to increase resistance to the effects of frustrative nonreward.


Assuntos
Benzoxazinas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Comportamento Consumatório/efeitos dos fármacos , Morfolinas/farmacologia , Naftalenos/farmacologia , Receptores de Canabinoides/metabolismo , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Recompensa , Rimonabanto/farmacologia , Sacarose/farmacologia
11.
Br J Anaesth ; 128(1): 159-173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34844727

RESUMO

BACKGROUND: Cannabinoid type-1 receptors (CB1Rs) are expressed in primary sensory neurones, but their role in pain modulation remains unclear. METHODS: We produced Pirt-CB1R conditional knockout (cKO) mice to delete CB1Rs in primary sensory neurones selectively, and used behavioural, pharmacological, and electrophysiological approaches to examine the influence of peripheral CB1R signalling on nociceptive and inflammatory pain. RESULTS: Conditional knockout of Pirt-CB1R did not alter mechanical or heat nociceptive thresholds, complete Freund adjuvant-induced inflammation, or heat hyperalgesia in vivo. The intrinsic membrane properties of small-diameter dorsal root ganglion neurones were also comparable between cKO and wild-type mice. Systemic administration of CB-13, a peripherally restricted CB1/CB2R dual agonist (5 mg kg-1), inhibited nociceptive pain and complete Freund adjuvant-induced inflammatory pain. These effects of CB-13 were diminished in Pirt-CB1R cKO mice. In small-diameter neurones from wild-type mice, CB-13 concentration-dependently inhibited high-voltage activated calcium current (HVA-ICa) and induced a rightward shift of the channel open probability curve. The effects of CB-13 were significantly attenuated by AM6545 (a CB1R antagonist) and Pirt-CB1R cKO. CONCLUSION: CB1R signalling in primary sensory neurones did not inhibit nociceptive or inflammatory pain, or the intrinsic excitability of nociceptive neurones. However, peripheral CB1Rs are important for the analgesic effects of systemically administered CB-13. In addition, HVA-ICa inhibition appears to be a key ionic mechanism for CB-13-induced pain inhibition. Thus, peripherally restricted CB1R agonists could have utility for pain treatment.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Naftalenos/farmacologia , Dor/tratamento farmacológico , Receptor CB1 de Canabinoide/agonistas , Analgésicos/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/fisiopatologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo
12.
Psychopharmacology (Berl) ; 239(5): 1279-1288, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33932162

RESUMO

OBJECTIVES: Long-term cannabis use has been associated with the appearance of psychotic symptoms and schizophrenia-like cognitive impairments; however these studies may be confounded by concomitant use of tobacco by cannabis users. We aimed to determine if previously observed cannabis-associated deficits in sensory gating would be seen in cannabis users with no history of tobacco use, as evidenced by changes in the P50, N100, and P200 event-related potentials. A secondary objective of this study was to examine the effects of acute nicotine administration on cannabis users with no tobacco use history. METHODS: Three components (P50, N100, P200) of the mid-latency auditory-evoked response (MLAER) were elicited by a paired-stimulus paradigm in 43 healthy, non-tobacco smoking male volunteers between the ages of 18-30. Cannabis users (CU, n = 20) were administered nicotine (6 mg) and placebo gum within a randomized, double-blind design. Non-cannabis users (NU, n = 23) did not receive nicotine. RESULTS: Between-group sensory gating effects were only observed for the N100, with CUs exhibiting a smaller N100 to S1 of the paired stimulus paradigm, in addition to reduced dN100 (indicating poorer gating). Results revealed no significant sensory gating differences with acute administration of nicotine compared to placebo cannabis conditions. CONCLUSIONS: These findings suggest a relationship between gating impairment and cannabis use; however, acute nicotine administration nicotine does not appear to impact sensory gating function.


Assuntos
Cannabis , Alucinógenos , Estimulação Acústica/métodos , Adolescente , Adulto , Agonistas de Receptores de Canabinoides/farmacologia , Eletroencefalografia , Potenciais Evocados Auditivos , Alucinógenos/farmacologia , Humanos , Masculino , Nicotina/efeitos adversos , Filtro Sensorial , Nicotiana , Adulto Jovem
13.
Biomed Pharmacother ; 146: 112505, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34891121

RESUMO

BACKGROUND: Purpose of the present systematic review is to investigate preclinical evidence in favor of the working hypothesis of efficacy of cannabinoids in ocular pain treatment. METHODS: Literature search includes the most relevant repositories for medical scientific literature from inception until November, 24 2021. Data collection and selection of retrieved records adhere to PRISMA criteria. RESULTS: In agreement with a priori established protocol the search retrieved 2471 records leaving 479 results after duplicates removal. Eleven records result from title and abstract screening to meet the inclusion criteria; only 4 results are eligible for inclusion in the qualitative synthesis impeding meta-analysis. The qualitative analysis highlights the antinociceptive and anti-inflammatory efficacy of Δ8-tetrahydrocannabinol, cannabidiol and its derivative HU-308 and of new racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229. Moreover, CB2R agonists RO6871304 and RO6871085 and CB2R ligand HU910 provide evidence of anti-inflammatory efficacy. CB2 agonist HU308 reduces of 241% uveitis-induced leukocyte adhesion and changes lipidome profile. Methodological and design issues raise concern of risk of bias and the amount of studies is too small for generalization. Furthermore, the ocular pain model used can resemble only inflammatory but not neuropathic pain. CONCLUSIONS: The role of the endocannabinoid system in ocular pain is underinvestigated, since only two studies assessing the effects of cannabinoid receptors modulators on pain behavior and other two on pain-related inflammatory processes are found. Preclinical studies investigating the efficacy of cannabinoids in ocular inflammatory and neuropathic pain models are needed to pave the way for clinical translation.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Dor Ocular/tratamento farmacológico , Uveíte/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Canabidiol/farmacologia , Modelos Animais de Doenças , Dronabinol/farmacologia , Avaliação Pré-Clínica de Medicamentos , Leucócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Roedores
14.
Fitoterapia ; 155: 105059, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34637886

RESUMO

The neutral fraction of a juniper (Juniperus communis L.) berries acetone extract could positively modulate the activity of type 1 - cannabinoid receptor (CB1R). Bioactivity-directed fractionation identified the labdane diterpenoid agathadiol (4) as a positive allosteric modulator of CB1R, while closely related analogues were inactive. Agathadiol (4) is a minor constituent of juniper, but could be more conveniently obtained by semisynthesis from agathic acid (8), a major constituent of Manila copal.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Diterpenos/farmacologia , Juniperus/química , Ácidos Dicarboxílicos , Frutas/química , Estrutura Molecular , Receptor CB1 de Canabinoide , Tetra-Hidronaftalenos
15.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681877

RESUMO

The activation of the human cannabinoid receptor type II (CB2R) is known to mediate analgesic and anti-inflammatory processes without the central adverse effects related to cannabinoid receptor type I (CB1R). In this work we describe the synthesis and evaluation of a novel series of N-aryl-2-pyridone-3-carboxamide derivatives tested as human cannabinoid receptor type II (CB2R) agonists. Different cycloalkanes linked to the N-aryl pyridone by an amide group displayed CB2R agonist activity as determined by intracellular [cAMP] levels. The most promising compound 8d exhibited a non-toxic profile and similar potency (EC50 = 112 nM) to endogenous agonists Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) providing new information for the development of small molecules activating CB2R. Molecular docking studies showed a binding pose consistent with two structurally different agonists WIN-55212-2 and AM12033 and suggested structural requirements on the pyridone substituents that can satisfy the orthosteric pocket and induce an agonist response. Our results provide additional evidence to support the 2-pyridone ring as a suitable scaffold for the design of CB2R agonists and represent a starting point for further optimization and development of novel compounds for the treatment of pain and inflammation.


Assuntos
Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Piridonas/química , Receptor CB2 de Canabinoide/agonistas , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Benzoxazinas/química , Benzoxazinas/farmacologia , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endocanabinoides/química , Endocanabinoides/farmacologia , Glicerídeos/química , Glicerídeos/farmacologia , Células HL-60 , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Morfolinas/química , Morfolinas/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Piridonas/farmacologia , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
16.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502379

RESUMO

The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.


Assuntos
Canabinoides/farmacologia , Endocanabinoides/metabolismo , Endocanabinoides/fisiologia , Ansiedade/tratamento farmacológico , Agonistas de Receptores de Canabinoides/farmacologia , Cannabis/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Depressão/tratamento farmacológico , Comportamento Alimentar/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Dor/tratamento farmacológico , Receptores de Canabinoides/metabolismo
17.
Int J Neuropsychopharmacol ; 24(11): 894-906, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338765

RESUMO

BACKGROUND: HIV-associated neurocognitive disorder (HAND) is commonly observed in persons living with HIV (PWH) and is characterized by cognitive deficits implicating disruptions of fronto-striatal neurocircuitry. Such circuitry is also susceptible to alteration by cannabis and other drugs of abuse. PWH use cannabis at much higher rates than the general population, thus prioritizing the characterization of any interactions between HIV and cannabinoids on cognitively relevant systems. Prepulse inhibition (PPI) of the startle response, the process by which the motor response to a startling stimulus is attenuated by perception of a preceding non-startling stimulus, is an operational assay of fronto-striatal circuit integrity that is translatable across species. PPI is reduced in PWH. The HIV transgenic (HIVtg) rat model of HIV infection mimics numerous aspects of HAND, although to date the PPI deficit observed in PWH has yet to be fully recreated in animals. METHODS: PPI was measured in male and female HIVtg rats and wild-type controls following acute, nonconcurrent treatment with the primary constituents of cannabis: Δ 9-tetrahydrocannabinol (THC; 1 and 3 mg/kg, s.c.) and cannabidiol (1, 10, and 30 mg/kg, i.p.). RESULTS: HIVtg rats exhibited a significant PPI deficit relative to wild-type controls. THC reduced PPI in controls but not HIVtg rats. Cannabidiol exerted only minor, genotype-independent effects on PPI. CONCLUSIONS: HIVtg rats exhibit a relative insensitivity to the deleterious effects of THC on the fronto-striatal function reflected by PPI, which may partially explain the higher rates of cannabis use among PWH.


Assuntos
Canabinoides/farmacologia , Infecções por HIV/fisiopatologia , Filtro Sensorial/efeitos dos fármacos , Estimulação Acústica , Animais , Canabidiol/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Feminino , Alucinógenos/farmacologia , Masculino , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Ratos Transgênicos , Reflexo de Sobressalto/efeitos dos fármacos
18.
Eur J Pharmacol ; 909: 174398, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332924

RESUMO

The pharmacological activation of cannabinoid type 2 receptors (CB2R) gained attention due to its ability to mitigate neuroinflammatory events without eliciting psychotropic actions, a limiting factor for the drugs targeting cannabinoid type 1 receptors (CB1R). Therefore, ligands activating CB2R are receiving enormous importance for therapeutic targeting in numerous neurological diseases including neurodegenerative, neuropsychiatric and neurodevelopmental disorders as well as traumatic injuries and neuropathic pain where neuroinflammation is a common accompaniment. Since the characterization of CB2R, many CB2R selective synthetic ligands have been developed with high selectivity and functional activity. Among numerous ligands, JWH133 has been found one of the compounds with high selectivity for CB2R. JWH133 has been reported to exhibit numerous pharmacological activities including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory. Recent studies have shown that JWH133 possesses potent neuroprotective properties in several neurological disorders, including neuropathic pain, anxiety, epilepsy, depression, alcoholism, psychosis, stroke, and neurodegeneration. Additionally, JWH133 showed to protect neurons from oxidative damage and inflammation, promote neuronal survival and neurogenesis, and serve as an immunomodulatory agent. The present review comprehensively examined neuropharmacological activities of JWH133 in neurological disorders including neurodegenerative, neurodevelopmental and neuropsychiatric using synoptic tables and elucidated pharmacological mechanisms based on reported observations. Considering the cumulative data, JWH133 appears to be a promising CB2R agonist molecule for further evaluation and it can be a prototype agent in drug discovery and development for a unique class of agents in neurotherapeutics. Further, regulatory toxicology and pharmacokinetic studies are required to determine safety and proceed for clinical evaluation.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Transtornos Mentais/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Animais , Agonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Transtornos Mentais/patologia , Doenças Neurodegenerativas/patologia , Transtornos do Neurodesenvolvimento/patologia , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo
19.
Behav Brain Res ; 410: 113342, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33961911

RESUMO

Using marijuana has become popular and is allowed for medical purposes in some countries. The effect of marijuana on Parkinson's disease is controversial and Medical marijuana may benefit for motor and non-motor symptoms of patients with Parkinson's disease. No research has been conducted to fully prove the benefits, risks, and uses of marijuana as a treatment for patients with Parkinson's disease. In the present study, several different approaches, including behavioral measures and the western blot method for protein level assay, were used to investigate whether exposure to marijuana affects the motor and synaptic plasticity impairment induced by 6-OHDA. Marijuana consumption significantly decreased apomorphine-induced contralateral rotation, beam travel time, beam freeze time, and catalepsy time, but significantly increased latency to fall in the rotarod test, balance time, and protein level of PSD-95 and dopamine receptor D1 in the 6-OHDA + marijuana group. These results suggest that marijuana may be helpful for motor disorders and synaptic changes in patients with Parkinson's disease.


Assuntos
Comportamento Animal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Proteína 4 Homóloga a Disks-Large/efeitos dos fármacos , Dronabinol/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Maconha Medicinal/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Dopamina D1/efeitos dos fármacos , Adrenérgicos/farmacologia , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Modelos Animais de Doenças , Dronabinol/administração & dosagem , Masculino , Maconha Medicinal/administração & dosagem , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais , Ratos , Ratos Wistar
20.
Brain Res Bull ; 170: 74-80, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33581310

RESUMO

Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most recognized omega-3 unsaturated fatty acids showing neuroprotective activity in animal and clinical studies. Docosahexaenoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA) are non-oxygenated endogenous metabolites of DHA and EPA, which might be in charge of the anti-seizure activity of the parent molecules. We examined the effect of these metabolites on the threshold of clonic seizures induced by pentylenetetrazole (PTZ). DHEA and EPEA possess similar chemical structure to the endogenous cannabinoids. Therefore, involvement of cannabinoid (CB) receptors in the anti-seizure effect of these metabolites was also investigated. DHA, DHEA, EPEA, AM251 (CB1 receptor antagonist), and AM630 (CB2 receptor antagonist) were administered to mice by intracerebroventricular (i.c.v.) route. Threshold of clonic seizures was determined 10 and/or 15 min thereafter by intravenous infusion of PTZ. The effect of DHA and DHEA on seizure threshold was then determined in mice, which were pretreated with AM251 and/or AM630. DHA (300µM), and DHEA (100 and 300 µM) significantly increased seizure threshold, 15 (p < 0.05) and 10 min (p < 0.01) after administration, respectively. DHEA was more potent than its parent lipid, DHA in decreasing seizure susceptibility. EPEA (300 and 1000 µM) did not change seizure threshold. AM251 fully prevented the increasing effect of DHA and DHEA on seizure threshold (p < 0.05). AM630 did not inhibit the effect of DHA and DHEA on seizure threshold. This is the first report indicating that DHEA but not EPEA, possesses anti-seizure action via activating CB1 receptors. DHEA is more potent than its parent ω-3 fatty acid DHA in diminishing seizure susceptibility.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Receptor CB1 de Canabinoide/agonistas , Convulsões/tratamento farmacológico , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Indóis/farmacologia , Masculino , Camundongos , Pentilenotetrazol , Piperidinas/farmacologia , Pirazóis/farmacologia , Convulsões/induzido quimicamente , Convulsões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA