Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Front Neural Circuits ; 15: 659280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322001

RESUMO

Corticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns. We have used laminar current-source density (CSD) recordings of tone-evoked responses and could show that, particularly, lesion of CT neurons in layer VI affected cortical frequency processing. Specifically, we found a decreased gain of best-frequency input in thalamocortical (TC)-recipient input layers that correlated with the relative lesion of layer VI neurons, but not layer V neurons. Using cortical silencing with the GABA a -agonist muscimol and layer-specific intracortical microstimulation (ICMS), we found that direct activation of infragranular layers recruited a local recurrent cortico-thalamo-cortical loop of synaptic input. This recurrent feedback was also only interrupted when lesioning layer VI neurons, but not cells in layer V. Our study thereby shows distinct roles of these two types of CT neurons suggesting a particular impact of CT feedback from layer VI to affect the local feedforward frequency processing in auditory cortex.


Assuntos
Apoptose/fisiologia , Córtex Auditivo/fisiologia , Retroalimentação Fisiológica/fisiologia , Lasers/efeitos adversos , Neurônios/fisiologia , Tálamo/fisiologia , Estimulação Acústica/métodos , Animais , Apoptose/efeitos dos fármacos , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/patologia , Retroalimentação Fisiológica/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Gerbillinae , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Tálamo/efeitos dos fármacos , Tálamo/patologia
2.
J Neurosci ; 41(33): 7148-7159, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34210784

RESUMO

Following stroke, the survival of neurons and their ability to reestablish connections is critical to functional recovery. This is strongly influenced by the balance between neuronal excitation and inhibition. In the acute phase of experimental stroke, lethal hyperexcitability can be attenuated by positive allosteric modulation of GABAA receptors (GABAARs). Conversely, in the late phase, negative allosteric modulation of GABAAR can correct the suboptimal excitability and improves both sensory and motor recovery. Here, we hypothesized that octadecaneuropeptide (ODN), an endogenous allosteric modulator of the GABAAR synthesized by astrocytes, influences the outcome of ischemic brain tissue and subsequent functional recovery. We show that ODN boosts the excitability of cortical neurons, which makes it deleterious in the acute phase of stroke. However, if delivered after day 3, ODN is safe and improves motor recovery over the following month in two different paradigms of experimental stroke in mice. Furthermore, we bring evidence that, during the subacute period after stroke, the repairing cortex can be treated with ODN by means of a single hydrogel deposit into the stroke cavity.SIGNIFICANCE STATEMENT Stroke remains a devastating clinical challenge because there is no efficient therapy to either minimize neuronal death with neuroprotective drugs or to enhance spontaneous recovery with neurorepair drugs. Around the brain damage, the peri-infarct cortex can be viewed as a reservoir of plasticity. However, the potential of wiring new circuits in these areas is restrained by a chronic excess of GABAergic inhibition. Here we show that an astrocyte-derived peptide, can be used as a delayed treatment, to safely correct cortical excitability and facilitate sensorimotor recovery after stroke.


Assuntos
Inibidor da Ligação a Diazepam/uso terapêutico , Agonistas de Receptores de GABA-A/uso terapêutico , Neurônios/efeitos dos fármacos , Neuropeptídeos/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Receptores de GABA-A/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Adulto , Animais , Astrócitos/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Inibidor da Ligação a Diazepam/deficiência , Inibidor da Ligação a Diazepam/fisiologia , Implantes de Medicamento , Potenciais Somatossensoriais Evocados , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Hidrogéis , Infarto da Artéria Cerebral Média/tratamento farmacológico , Trombose Intracraniana/tratamento farmacológico , Trombose Intracraniana/etiologia , Luz , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/toxicidade , Neurônios/fisiologia , Neuropeptídeos/deficiência , Neuropeptídeos/fisiologia , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/deficiência , Fragmentos de Peptídeos/fisiologia , Ratos , Rosa Bengala/efeitos da radiação , Rosa Bengala/toxicidade , Método Simples-Cego , Acidente Vascular Cerebral/etiologia
3.
J Ethnopharmacol ; 267: 113511, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148434

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nelumbo nucifera are used in folk medicine for anti-depressant, anti-convulsant, neuroprotective, and many other purposes. AIM OF THE STUDY: The present work evaluated the sleep potentiating effects of water extract from lotus seed in rat, and the neuropharmacological mechanisms underlying these effects. MATERIALS AND METHODS: Pentobarbital-induced sleep test and electroencephalogram (EEG) analysis were applied to investigate sleep latency, duration, total sleeping time and sleep quality of Lotus extract. In addition, real-time PCR and HPLC analysis were applied to analyze the signaling pathway. RESULTS: We found that the amounts of the possible active compounds GABA (2.33 mg/g) and L-tryptophan (2.00 mg/g) were higher than quinidine (0.55 mg/g) and neferine (0.16 mg/g) in lotus seed extract. High dose (160 mg/kg) administration of lotus extract led to a tendency towards decreased sleep latency time and an increase in sleep duration time compared to the control group in a pentobarbital-induced sleep model (p < 0.05). After high dose administration, total sleep and NREM were significantly increased compared to control, while wake time and REM were significantly decreased. Lotus extract-treated rats showed significantly reduced wake time and increased sleep time in a caffeine-induced model of arousal. The transcription level of GABAA receptor, GABAB receptor, and serotonin receptor tended to increase with dose, and lotus extract showed a strong dose-dependent binding capacity to the GABAA receptor. CONCLUSION: The above results strongly suggest that GABA contained in lotus seed extract acts as a sleep potentiating compound, and that sleep-potentiating activity involves GABAA receptor binding.


Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Nelumbo , Extratos Vegetais/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Medicamentos Indutores do Sono/farmacologia , Sono/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia , Animais , Relação Dose-Resposta a Droga , Agonistas de Receptores de GABA-A/isolamento & purificação , Masculino , Camundongos Endogâmicos ICR , Nelumbo/química , Extratos Vegetais/isolamento & purificação , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transdução de Sinais , Medicamentos Indutores do Sono/isolamento & purificação , Latência do Sono/efeitos dos fármacos , Fatores de Tempo , Ácido gama-Aminobutírico/isolamento & purificação
4.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178439

RESUMO

While the descending dopaminergic control system is not fully understood, it is reported that the hypothalamic A11 nucleus is its principle source. To better understand the impact of this system, particularly the A11 nucleus, on neuropathic pain, we created a chronic constriction injury model of the infraorbital nerve (ION-CCI) in rats. ION-CCI rats received intraperitoneal administrations of quinpirole (a dopamine D2 receptor agonist). ION-CCI rats received microinjections of quinpirole, muscimol [a gamma-aminobutyric acid type A (GABAA) receptor agonist], or neurotoxin 6-hydroxydopamine (6-OHDA) into the A11 nucleus. A von Frey filament was used as a mechanical stimulus on the maxillary whisker pad skin; behavioral and immunohistochemical responses to the stimulation were assessed. After intraperitoneal administration of quinpirole and microinjection of quinpirole or muscimol, ION-CCI rats showed an increase in head-withdrawal thresholds and a decrease in the number of phosphorylated extracellular signal-regulated kinase (pERK) immunoreactive (pERK-IR) cells in the superficial layers of the trigeminal spinal subnucleus caudalis (Vc). Following 6-OHDA microinjection, ION-CCI rats showed a decrease in head-withdrawal thresholds and an increase in the number of pERK-IR cells in the Vc. Our findings suggest the descending dopaminergic control system is involved in the modulation of trigeminal neuropathic pain.


Assuntos
Nervos Cranianos/metabolismo , Dopamina/metabolismo , Traumatismos do Nervo Facial/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Hiperalgesia/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Muscimol/farmacologia , Neuralgia/metabolismo , Oxidopamina/farmacologia , Medição da Dor/métodos , Limiar da Dor/fisiologia , Fosforilação/efeitos dos fármacos , Quimpirol/farmacologia , Ratos , Ratos Wistar , Receptores de Dopamina D2/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
Mol Brain ; 13(1): 15, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019580

RESUMO

Anxiety disorder is highly prevalent worldwide and represents a chronic and functionally disabling condition, with high levels of psychological stress characterized by cognitive and physiological symptoms. Scopoletin (SP), a main active compound in Angelica dahurica, is traditionally used for the treatment of headache, rhinitis, pain, and other conditions. Here, we evaluated the effects of SP in a mouse model of complete Freund's adjuvant (CFA)-induced chronic inflammation anxiety. SP (2.0, 10.0, 50.0 mg/kg) administration for 2 weeks dose-dependently ameliorated CFA-induced anxiety-like behaviors in the open field test and elevated plus maze test. Moreover, we found that SP treatment inhibited microglia activation and decreased both peripheral and central IL-1ß, IL-6, and TNF-α levels in a dose-dependent manner. Additionally, the imbalance in excitatory/inhibitory receptors and neurotransmitters in the basolateral nucleus after CFA injection was also modulated by SP administration. Our findings indicate that the inhibition of the nuclear factor-kappa B and mitogen-activated protein kinase signaling pathways involving anti-inflammatory activities and regulation of the excitatory/inhibitory balance can be attributed to the anxiolytic effects of SP. Moreover, our molecular docking analyses show that SP also has good affinity for gamma-aminobutyric acid (GABA) transaminase and GABAA receptors. Therefore, these results suggest that SP could be a candidate compound for anxiolytic therapy and for use as a structural base for developing new drugs.


Assuntos
Angelica/química , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Agonistas de Receptores de GABA-A/uso terapêutico , Fitoterapia , Escopoletina/uso terapêutico , 4-Aminobutirato Transaminase/antagonistas & inibidores , Tonsila do Cerebelo/química , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Ansiolíticos/farmacologia , Ansiedade/etiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Teste de Labirinto em Cruz Elevado , Adjuvante de Freund/toxicidade , Agonistas de Receptores de GABA-A/farmacologia , Inflamação/induzido quimicamente , Inflamação/psicologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Neurotransmissores/metabolismo , Teste de Campo Aberto , Conformação Proteica , Receptores de Neurotransmissores/metabolismo , Escopoletina/farmacologia
6.
Proc Natl Acad Sci U S A ; 116(31): 15706-15715, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308218

RESUMO

Intravenous anesthetic agents are associated with cardiovascular instability and poorly tolerated in patients with cardiovascular disease, trauma, or acute systemic illness. We hypothesized that a new class of intravenous (IV) anesthetic molecules that is highly selective for the slow type of γ-aminobutyric acid type A receptor (GABAAR) could have potent anesthetic efficacy with limited cardiovascular effects. Through in silico screening using our GABAAR model, we identified a class of lead compounds that are N-arylpyrrole derivatives. Electrophysiological analyses using both an in vitro expression system and intact rodent hippocampal brain slice recordings demonstrate a GABAAR-mediated mechanism. In vivo experiments also demonstrate overt anesthetic activity in both tadpoles and rats with a potency slightly greater than that of propofol. Unlike the clinically approved GABAergic anesthetic etomidate, the chemical structure of our N-arylpyrrole derivative is devoid of the chemical moieties producing adrenal suppression. Our class of compounds also shows minimal to no suppression of blood pressure, in marked contrast to the hemodynamic effects of propofol. These compounds are derived from chemical structures not previously associated with anesthesia and demonstrate that selective targeting of GABAAR-slow subtypes may eliminate the hemodynamic side effects associated with conventional IV anesthetics.


Assuntos
Anestésicos , Agonistas de Receptores de GABA-A , Pirróis , Receptores de GABA-A/metabolismo , Anestésicos/química , Anestésicos/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Etomidato/química , Etomidato/farmacologia , Agonistas de Receptores de GABA-A/química , Agonistas de Receptores de GABA-A/farmacologia , Humanos , Camundongos , Pirróis/química , Pirróis/farmacologia , Ratos , Receptores de GABA-A/genética , Xenopus laevis
7.
Hum Exp Toxicol ; 38(1): 25-35, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29774754

RESUMO

The endocrine disruptor di-(2-ethylhexyl) phthalate (DEHP) is used in a variety of consumer products made with polyvinyl chloride and also in the manufacture of medical devices. DEHP disrupts reproductive tract development in an antiandrogenic manner and also may induce neurobehavioral changes. The aim of this study was to investigate the effects of chronic postnatal exposure to DEHP (30 mg/kg body weight/day, orally from birth to day 60) on the neuroendocrine regulation of the gonadal axis and its impact on the anxiety-like behavior in adult male rats, as well as the probable participation of the GABAergic system in these effects. DEHP produced a significant increase in plasmatic luteinizing hormone and follicle stimulating hormone, as well as significant testosterone decrease, accompanied with a decrease in hypothalamic gamma-aminobutyric acid (GABA) concentration. On the other hand, DEHP increased the anxiety-like behavior in the elevated plus maze test, evidenced by a significant decrease in the percentages of time spent in the open arms and the frequency in the open arm entries and a significant increase in the percentage of time spent in closed arms. Neuroendocrine and behavioral effects were reversed by GABA agonists, muscimol (2 mg/kg i.p. ) and baclofen (10 mg/kg i.p.). In conclusion, chronic DEHP postnatal exposure induced a disruption in the neuroendocrine regulation of the testicular axis in young adult male rats, and this effect was correlated with an anxiety-like behavior. Since GABA agonists reversed these effects, the results suggest that GABA could participate in the modulation of reproductive and behavioral DEHP effects.


Assuntos
Ansiedade/metabolismo , Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Feminino , Hormônio Foliculoestimulante/sangue , Agonistas de Receptores de GABA-A/farmacologia , Agonistas dos Receptores de GABA-B/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hormônio Luteinizante/sangue , Masculino , Ratos Wistar , Reprodução/efeitos dos fármacos , Testosterona/sangue
8.
Int J Biol Macromol ; 119: 1113-1128, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30098361

RESUMO

Development of resistance against existing anti-epileptic drugs has alarmed the scientific innovators to find novel potential chemical starting points for the treatment of epilepsy and GABAA inhibition is a promising drug target strategy against epilepsy. The crystal structure of a subtype-selective ß3-homopentameric ligand-gated ion channel of GABAA receptor has been used for the first time for screening the Asinex library for discovery of GABAA agonists as potential anti-epileptic agents. Co-crystallized ligand established the involvement of part of the ß7-ß8 loop (Glu155 and Tyr157) and ß9-ß10 loop (Phe200 and Tyr205) residues as the crucial amino acids in effective binding, an essential feature, being hydrogen bond or ionic interaction with Glu155 residue. Top ranked hits were further subjected to binding energy estimation, ADMET analysis and ligand efficiency matric calculations as consecutive filters. About 19 compounds qualifying all parameters possessed interaction of one positively charged group with Glu155 with good CNS drug-like properties. Simulation studies were performed on the apo protein, its complex with co-crystallized ligand and the best hit qualifying all screening parameters. The best hit was also analyzed using Quantum mechanical studies, off-target analysis and hit modification. The off-target analysis emphasized that these agents did not have any other predicted side-effects.


Assuntos
Epilepsia/tratamento farmacológico , Agonistas de Receptores de GABA-A/química , Agonistas de Receptores de GABA-A/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Receptores de GABA-A/metabolismo , Benzamidinas/química , Benzamidinas/metabolismo , Benzamidinas/farmacologia , Benzamidinas/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Agonistas de Receptores de GABA-A/metabolismo , Agonistas de Receptores de GABA-A/uso terapêutico , Humanos , Ligantes , Conformação Proteica , Receptores de GABA-A/química , Relação Estrutura-Atividade , Interface Usuário-Computador
9.
Neuropharmacology ; 135: 572-580, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29634983

RESUMO

Unlike in the central nervous system (CNS), in the adult peripheral nervous system (PNS), activation of GABAA receptors (GABAAR) is excitatory because of the relatively high concentration of intracellular chloride in these neurons. Indeed, exogenous GABA and muscimol, a GABAAR agonist, exacerbate acute inflammatory hypersensitivity in rodents. However, it remains unclear whether peripheral GABAAR and the endogenous GABA play an important role in persistent inflammatory hypersensitivity. In this study, we thus investigated how peripheral GABAAR affects pain hypersensitivity by using the complete Freund's adjuvant (CFA)-induced persistent inflammatory pain mouse model. We found that intraplantar (i.pl.) administration of GABAAR antagonists, picrotoxin, and 1(S),9(R)-(-)-bicuculline methiodide significantly inhibited both spontaneous nociceptive (paw licking and flinching) behavior and mechanical hypersensitivity in CFA-injected mice at day 3 (D3), but not in naïve mice. Interestingly, CFA-induced mechanical hypersensitivity was significantly reversed by anti-GABA antibody (anti-GABA, i.pl.). In addition, RT-qPCR revealed that glutamate decarboxylase Gad1 (GAD 67) and Gad2 (GAD 65) mRNA expression was also upregulated in the ipsilateral hind paw of CFA-injected mice at D3. Finally, 5α-pregnan-3α-ol-20-one (3α,5α-THP), a selective positive allosteric modulator of GABAAR, produced mechanical hypersensitivity in naïve mice in a dose-dependent manner. Taken together, our results indicate that peripheral GABAAR and endogenous GABA, possibly produced by the inflamed tissue, potentiate CFA-induced persistent inflammatory hypersensitivity, suggesting that they can be used as a therapeutic target for alleviating inflammatory pain.


Assuntos
Hiperalgesia/metabolismo , Inflamação/metabolismo , Receptores de GABA-A/metabolismo , Animais , Anticorpos/farmacologia , Adjuvante de Freund , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Glutamato Descarboxilase/metabolismo , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Tato , Ácido gama-Aminobutírico/imunologia , Ácido gama-Aminobutírico/metabolismo
10.
Behav Brain Res ; 344: 1-8, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408282

RESUMO

Figure-ground segregation is a fundamental visual ability that allows an organism to separate an object from its background. Our earlier research has shown that nucleus rotundus (Rt), a thalamic nucleus processing visual information in pigeons, together with its inhibitory complex, nucleus subpretectalis/interstitio-pretecto-subpretectalis (SP/IPS), are critically involved in figure-ground discrimination (Acerbo et al., 2012; Scully et al., 2014). Here, we further investigated the role of SP/IPS by conducting bilateral microinjections of GABAergic receptor antagonist and agonists (bicuculline and muscimol, respectively) and non-NMDA glutamate receptor antagonist (CNQX) after the pigeons mastered figure-ground discrimination task. We used two doses of each drug (bicuculline: 0.1 mM and 0.05 mM; muscimol: 4.4 mM and 8.8 mM; CNQX: 2.15 mM and 4.6 mM) in a within-subject design, and alternated drug injections with baseline (ACSF). The order of injections was randomized across birds to reduce potential carryover effects. We found that a low dose of bicuculline produced a decrement on figure trials but not on background trials, whereas a high dose impaired performance on background trials but not on figure trials. Muscimol produced an equivalent, dose-dependent impairment on both types of trials. Finally, CNQX had no consistent effect at either dose. Together, these results further confirm our earlier hypothesis that inhibitory projections from SP to Rt modulate figure-ground discrimination, and suggest that the Rt and the SP/IPS provide a plausible substrate that could perform figure-ground segregation in avian brain.


Assuntos
Encéfalo/metabolismo , Columbidae/metabolismo , Discriminação Psicológica/fisiologia , Receptores de GABA-A/metabolismo , Percepção Visual/fisiologia , Ácido gama-Aminobutírico/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Bicuculina/farmacologia , Encéfalo/efeitos dos fármacos , Discriminação Psicológica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Muscimol/farmacologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Receptores de Glutamato/metabolismo , Vias Visuais/efeitos dos fármacos , Vias Visuais/metabolismo , Percepção Visual/efeitos dos fármacos
11.
Biochem Biophys Res Commun ; 495(2): 1588-1593, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29223397

RESUMO

Fear- and anxiety-related psychiatric disorders have been one of the major chronic diseases afflicting patients for decades, and new compounds for treating such disorders remain to be developed. (+)-Borneol, a bicyclic monoterpene found in several species of Artemisia and Dipterocarpaceae, is widely used for anxiety, pain and anesthesia in Chinese medicine. Meanwhile, it can potentiate GABA (γ-aminobutyric acid) activity directly in recombinant GABAA receptors. The present study was to investigate the effects of (+)-Borneol on both contextual and cued fear recall. Interestingly, microinjection of (+)-Borneol into the dorsal hippocampus inhibited 24 h and 7 d contextual fear, whereas its infusion into ventral hippocampus only reduced 24 h cued fear responses. Moreover, microinjection of (+)-Borneol into dorsal but not ventral hippocampus suppressed anxiety-like behaviors in the open field test, light/dark exploration and the elevated plus maze test. As selective GABAA receptor antagonist bicuculline reversed the effect of (+)-Borneol on contextual fear paradigm and the drug potentiated GABA-evoked currents in acute hippocampus slices, modulation of the GABAergic neurotransmission may explain the effects of (+)-Borneol. Our findings suggest that (+)-Borneol can serve as a new therapeutic in fear- and anxiety-related disorders.


Assuntos
Ansiedade/tratamento farmacológico , Canfanos/farmacologia , Medo/efeitos dos fármacos , Animais , Ansiedade/fisiopatologia , Ansiedade/psicologia , Condicionamento Psicológico/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medo/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Hipocampo/anatomia & histologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plantas Medicinais , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
12.
Phytother Res ; 32(1): 3-18, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29168225

RESUMO

Anxiety disorders are chronic and functionally disabling conditions with high psychological stress, characterised by cognitive symptoms of excessive worry and focus difficulties and physiological symptoms such as muscle tension and insomnia. Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter within the central nervous system and is a key target of pharmacotherapies in the treatment of anxiety. Although current pharmaceutical treatments are often efficacious, they may cause undesirable side effects including cognitive decrements and withdrawal symptoms. Plant-based "phytomedicines" may provide novel treatment options, to act as an adjunctive or alternative to existing anxiolytic medications. As such, we conducted a systematic review to assess the current body of literature on anxiolytic phytomedicines and/or phytoconstituents. An open-ended search to 5 July 2017 was conducted using MEDLINE (PubMed), Scopus, and Cochrane library online databases and performed in a stepped format from preclinical to clinical investigations. Eligible studies must have had (a) in vitro evidence of GABA-modulating activity, (b) animal studies using anxiety models to test an anxiolytic effect, and (c) human clinical trials. Ten phytomedicines were identified as having preclinical investigations showing interaction with the GABA system, in addition to human clinical trials: kava, valerian, pennywort, hops, chamomile, Ginkgo biloba, passionflower, ashwagandha, skullcap, and lemon balm. Collectively, the literature reveals preclinical and clinical evidence for various phytomedicines modulating GABA-pathways, with comparative anxiolytic effect to the current array of pharmaceuticals, along with good safety and tolerability profiles.


Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Agonistas de Receptores de GABA-A/uso terapêutico , Fitoterapia/métodos , Animais , Agonistas de Receptores de GABA-A/farmacologia , Humanos
13.
Methods Enzymol ; 589: 253-280, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28336066

RESUMO

Protein-based fluorescent biosensors are powerful tools for quantitative detection of biomolecules or drugs with high sensitivity under physiological conditions. However, conventional methods for construction of biosensors require structural data with high resolution or amino acid sequence information in most cases, which hampers applicability of this method to structurally complicated receptor proteins. To sidestep such limitations, we recently developed a new method that employs ligand-directed chemistry coupled with a bimolecular fluorescence quenching and recovery system, which enabled the conversion of various kinds of membrane-bound receptors to "turn-on" type fluorescent sensors. Here, we describe a protocol for construction of "turn-on" type fluorescent biosensors based on the GABAA receptor which permits quantitative analysis of the ligand affinity.


Assuntos
Técnicas Biossensoriais/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores de GABA-A/metabolismo , Animais , Corantes Fluorescentes/análise , Corantes Fluorescentes/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Células HEK293 , Humanos , Ligantes , Microscopia de Fluorescência/métodos , Modelos Moleculares , Imagem Óptica/métodos , Receptores de GABA-A/análise , Espectrometria de Fluorescência/métodos
14.
ACS Chem Neurosci ; 8(6): 1291-1298, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28211669

RESUMO

Schizophrenia is a mental illness characterized by behavioral changes as well as anatomical and neurochemical abnormalities. There has been remarkable progress in the drug discovery for schizophrenia; however, antipsychotics that act through molecular targets, other than monoaminergic receptors, have not been developed. One of the hypotheses of schizophrenia states that GABAergic dysfunction might be implemented in the pathophysiology of this disease. Our recent findings and previous clinical observations have suggested that modulation of GABAergic system through α1-GABAA receptors would represent an original approach for the treatment of schizophrenia. This study presents the synthesis and biological evaluation of a series of fluorinated 3-aminomethyl derivatives of 2-phenylimidazo[1,2-a]-pyridine as potential antipsychotic agents. Compound 7 has a high affinity for GABAA receptor (Ki = 27.2 nM), high in vitro metabolic stability, and antipsychotic-like activity in amphetamine-induced hyperlocomotion test in rats (MED = 10 mg/kg). Compound 7 represents a promising point of entry in the course of development of antipsychotic agents with a nondopaminergic mechanism of action.


Assuntos
Antipsicóticos/síntese química , Antipsicóticos/farmacologia , Agonistas de Receptores de GABA-A/síntese química , Agonistas de Receptores de GABA-A/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Animais , Antipsicóticos/química , Avaliação Pré-Clínica de Medicamentos , Agonistas de Receptores de GABA-A/química , Masculino , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Ratos , Ratos Wistar , Esquizofrenia/tratamento farmacológico
15.
J Neurosci ; 36(32): 8372-89, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27511010

RESUMO

UNLABELLED: Maintaining behaviorally relevant information in spatial working memory (SWM) requires functional synchrony between the dorsal hippocampus and medial prefrontal cortex (mPFC). However, the mechanism that regulates synchrony between these structures remains unknown. Here, we used a unique dual-task approach to compare hippocampal-prefrontal synchrony while rats switched between an SWM-dependent task and an SWM-independent task within a single behavioral session. We show that task-specific representations in mPFC neuronal populations are accompanied by SWM-specific oscillatory synchrony and directionality between the dorsal hippocampus and mPFC. We then demonstrate that transient inactivation of the reuniens and rhomboid (Re/Rh) nuclei of the ventral midline thalamus abolished only the SWM-specific activity patterns that were seen during dual-task sessions within the hippocampal-prefrontal circuit. These findings demonstrate that Re/Rh facilitate bidirectional communication between the dorsal hippocampus and mPFC during SWM, providing evidence for a causal role of Re/Rh in regulating hippocampal-prefrontal synchrony and SWM-directed behavior. SIGNIFICANCE STATEMENT: Hippocampal-prefrontal synchrony has long been thought to be critical for spatial working memory (SWM) and the ventral midline thalamic reuniens and rhomboid nuclei (Re/Rh) have long been considered a potential site for synchronizing the hippocampus and medial prefrontal cortex. However, the hypothesis that Re/Rh are critical for hippocampal-prefrontal synchrony and SWM has not been tested. We first used a dual-task approach to identify SWM-specific patterns of hippocampal-prefrontal synchrony. We then demonstrated that Re/Rh inactivation concurrently disrupted SWM-specific behavior and the SWM-specific patterns of hippocampal-prefrontal synchrony seen during dual-task performance. These results provide the first direct evidence that Re/Rh contribute to SWM by modulating hippocampal-prefrontal synchrony.


Assuntos
Hipocampo/fisiologia , Memória de Curto Prazo/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Memória Espacial/fisiologia , Tálamo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Agonistas de Receptores de GABA-A/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Muscimol/farmacologia , Vias Neurais/efeitos dos fármacos , Ratos , Ratos Long-Evans , Memória Espacial/efeitos dos fármacos , Análise Espectral , Estatísticas não Paramétricas , Tálamo/efeitos dos fármacos
16.
Cereb Cortex ; 26(8): 3461-75, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27178196

RESUMO

The cortex connects to the thalamus via extensive corticothalamic (CT) pathways, but their function in vivo is not well understood. We investigated "top-down" signaling from cortex to thalamus via the cortical layer 5B (L5B) to posterior medial nucleus (POm) pathway in the whisker system of the anesthetized mouse. While L5B CT inputs to POm are extremely strong in vitro, ongoing activity of L5 neurons in vivo might tonically depress these inputs and thereby block CT spike transfer. We find robust transfer of spikes from the cortex to the thalamus, mediated by few L5B-POm synapses. However, the gain of this pathway is not constant but instead is controlled by global cortical Up and Down states. We characterized in vivo CT spike transfer by analyzing unitary PSPs and found that a minority of PSPs drove POm spikes when CT gain peaked at the beginning of Up states. CT gain declined sharply during Up states due to frequency-dependent adaptation, resulting in periodic high gain-low gain oscillations. We estimate that POm neurons receive few (2-3) active L5B inputs. Thus, the L5B-POm pathway strongly amplifies the output of a few L5B neurons and locks thalamic POm sub-and suprathreshold activity to cortical L5B spiking.


Assuntos
Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Potenciais de Ação , Anestesia , Animais , Simulação por Computador , Potenciais Pós-Sinápticos Excitadores , Agonistas de Receptores de GABA-A/farmacologia , Camundongos Transgênicos , Microeletrodos , Modelos Neurológicos , Muscimol/farmacologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/citologia , Optogenética , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos , Tálamo/citologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Vibrissas/inervação , Vibrissas/fisiologia
17.
Pharm Biol ; 54(10): 2141-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27022667

RESUMO

CONTEXT: Myrtus communis L. (Myrtaceae), myrtle, is an evergreen shrub with strong antibacterial, anti-inflammatory, antihyperglycemic and antioxidant activities. Also, it is used as a sedative-hypnotic plant in Iranian traditional medicine. OBJECTIVE: This study evaluates the effect of 80% ethanolic extract of M. communis leaves on sleep and anxiety in mice and rats. MATERIALS AND METHODS: Male NMRI mice were subjected to open field, righting reflex, grip strength and pentylentetrazole-induced seizure tests. Male Wistar rats were used to evaluate the alterations in rapid eye movement (REM) and non-REM (NREM) sleep. They were treated with 25-400 mg/kg doses of the extract intraperitoneally. RESULTS: The applied doses (50-200 mg/kg) of M. communis extract increased vertical (ED50 = 40.2 ± 6.6 mg/kg) and vertical and horizontal activity (ED50 = 251 ± 55 mg/kg), while treatment with 200 and 400 mg/kg attenuated muscle tone significantly compared to vehicle treated animals (p < 0.001 for all) in a dose-independent manner. Also, a significant hypnotic and not anticonvulsant effect was observed when animals were treated with 200 mg/kg of the extract (p < 0.01). In this regard, electroencephalography results showed that REM sleep time was decreased (2.4 ± 0.5%), while total and NREM sleep times were increased significantly compared to the control group of mice (82.5 ± 7.6%). DISCUSSION AND CONCLUSION: The data show the anxiolytic and muscle relaxant effect of the extract without anticonvulsant activities. The anxiolytic, myorelaxant and hypnotic effects without effect on seizure threshold are in line with the effect of a alpha 2 GABA receptor agonist.


Assuntos
Ansiolíticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Eletroencefalografia , Etanol/química , Hipnóticos e Sedativos/farmacologia , Fármacos Neuromusculares/farmacologia , Extratos Vegetais/farmacologia , Sono/efeitos dos fármacos , Solventes/química , Animais , Ansiolíticos/isolamento & purificação , Relação Dose-Resposta a Droga , Eletromiografia , Agonistas de Receptores de GABA-A/farmacologia , Hipnóticos e Sedativos/isolamento & purificação , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Myrtus/química , Fármacos Neuromusculares/isolamento & purificação , Fitoterapia , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Plantas Medicinais , Ratos Wistar , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Fatores de Tempo
18.
Endocrinology ; 157(5): 1740-50, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26950200

RESUMO

Rat sexual maturation is preceded by a reduction of the interpulse interval (IPI) of GnRH neurosecretion. This work aims at studying disruption of that neuroendocrine event in females after early exposure to a very low dose of bisphenol A (BPA), a ubiquitous endocrine disrupting chemical. Female rats were exposed to vehicle or BPA 25 ng/kg·d, 25 µg/kg·d, or 5 mg/kg·d from postnatal day (PND)1 to PND5 or PND15. Exposure to 25 ng/kg·d of BPA for 5 or 15 days was followed by a delay in developmental reduction of GnRH IPI studied ex vivo on PND20. After 15 days of exposure to that low dose of BPA, vaginal opening tended to be delayed. In contrast, exposure to BPA 5 mg/kg·d for 15 days resulted in a premature reduction in GnRH IPI and a trend toward early vaginal opening. RNA sequencing analysis on PND20 indicated that exposure to BPA resulted in opposing dose effects on the mRNA expression of hypothalamic genes involved in gamma aminobutyric acid A (GABAA) neurotransmission. The study of GnRH secretion in vitro in the presence of GABAA receptor agonist/antagonist confirmed an increased or a reduced GABAergic tone after in vivo exposure to the very low or the high dose of BPA, respectively. Overall, we show for the first time that neonatal exposure to BPA leads to opposing dose-dependent effects on the neuroendocrine control of puberty in the female rat. A very low and environmentally relevant dose of BPA delays neuroendocrine maturation related to puberty through increased inhibitory GABAergic neurotransmission.


Assuntos
Compostos Benzidrílicos/administração & dosagem , Disruptores Endócrinos/administração & dosagem , Estrogênios não Esteroides/administração & dosagem , Neurônios GABAérgicos/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/metabolismo , Fenóis/administração & dosagem , Maturidade Sexual/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Bicuculina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Neurônios GABAérgicos/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Muscimol/farmacologia , Ratos , Ratos Wistar
19.
J Neurophysiol ; 115(4): 2083-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26888102

RESUMO

The GABAergic agonist muscimol is used to inactivate brain regions in order to reveal afferent inputs in isolation. However, muscimol's use in primary auditory cortex (A1) has been questioned on the grounds that it may unintentionally suppress thalamocortical inputs. We tested whether muscimol can preferentially suppress cortical, but not thalamocortical, circuits in urethane-anesthetized mice. We recorded tone-evoked current source density profiles to determine frequency receptive fields (RFs) for three current sinks: the "layer 4" sink (fastest onset, middle-layer sink) and current sinks 100 µm above ("layer 2/3") and 300 µm below ("layer 5/6") the main input. We first determined effects of muscimol dose (0.01-1 mM) on the characteristic frequency (CF) tone-evoked layer 4 sink. An "ideal" dose (100 µM) had no effect on CF-evoked sink onset latency or initial response but reduced peak amplitude by >80%, implying inhibition of intracortical, but not thalamocortical, activity. We extended the analysis to current sinks in layers 2/3 and 5/6 and for all three sinks determined RF breadth (quarter-octave steps, 20 dB above CF threshold). Muscimol reduced RF breadth 42% in layer 2/3 (from 2.4 ± 0.14 to 1.4 ± 0.11 octaves), 14% in layer 4 (2.2 ± 0.12 to 1.9 ± 0.10 octaves), and not at all in layer 5/6 (1.8 ± 0.10 to 1.7 ± 0.12 octaves). The results provide an estimate of the laminar and spectral extent of thalamocortical projections and support the hypothesis that intracortical pathways contribute to spectral integration in A1.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Potenciais de Ação , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Camundongos , Muscimol/farmacologia , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/fisiologia , Tálamo/citologia , Tálamo/fisiologia
20.
Epilepsy Res ; 120: 79-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26773250

RESUMO

OBJECTIVE: Using the gamma-butyrolactone (GBL) model of absence seizures in Long-Evans rats, this study investigated if 2.5-6 Hz paroxysmal discharges (PDs) induced by GBL were synchronized among the thalamocortical system and the hippocampus, and whether inactivation of the hippocampus affected PDs. METHODS: Local field potentials were recorded by chronically implanted depth electrodes in the neocortex (frontal, parietal, visual), ventrolateral thalamus and dorsal hippocampal CA1 area. In separate experiments, multiple unit recordings were made at the hippocampal CA1 pyramidal cell layer, or the mid-septotemporal hippocampus was inactivated by local infusion of GABAA receptor agonist muscimol. RESULTS: As PDs developed following GBL injection, coherence of local field potentials at 2.5-6 Hz increased between the hippocampus and thalamus, and between the hippocampus and the neocortex. Hippocampal theta rhythm was disrupted when GBL induced immobility in the rats. The probability of hippocampal multiple unit firing significantly increased at 40-80 ms prior to the negative peak of thalamic PDs. Coherence between hippocampal multiple unit activity and thalamic field potentials at 2.5-6 Hz was significantly increased after GBL injection. Muscimol infusion to inactivate the mid-septotemporal hippocampus, as compared to saline infusion, significantly decreased the peak frequency of the PDs induced by GBL, decreased 30-120 Hz hippocampal gamma power, and hastened the transition of PDs to 1-2 Hz slow waves. SIGNIFICANCE: During GBL induced 2.5-6 Hz PDs, a hallmark of absence seizure, increased synchronization between the hippocampus and the thalamocortical network was indicated by frequency and temporal correlation analysis. These results suggest that the hippocampus was entrained by thalamocortical activity in the present model of absence seizures. Prolonged synchronization of the hippocampus may result in synaptic alterations that may explain the cognitive and memory deficits in some patients with absence seizures and absence status epilepticus.


Assuntos
Epilepsia Tipo Ausência/fisiopatologia , Hipocampo/fisiopatologia , Convulsões/fisiopatologia , 4-Butirolactona , Animais , Córtex Cerebral/fisiopatologia , Sincronização Cortical/fisiologia , Modelos Animais de Doenças , Eletrodos Implantados , Agonistas de Receptores de GABA-A/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Muscimol/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Neurônios/fisiologia , Ratos Long-Evans , Receptores de GABA-A/metabolismo , Tálamo/fisiopatologia , Ritmo Teta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA