RESUMO
BACKGROUND: Alzheimer's disease (AD) is the most common type of neurodegenerative disease in the contemporary era, and it is still clinically incurable. Eriodictyol, a natural flavonoid compound that is mainly present in citrus fruits and some Chinese herbal medicines, has been reported to exert anti-inflammatory, antioxidant, anticancer and neuroprotective effects. However, few studies have examined the anti-AD effect and molecular mechanism of eriodictyol. METHODS: APP/PS1 mice were treated with eriodictyol and the cognitive function of mice was assessed using behavioral tests. The level of amyloid-ß (Aß) aggregation and hyperphosphorylation of Tau in the mouse brain were detected by preforming a histological analysis and Western blotting. HT-22 cells induced by amyloid-ß peptide (1-42) (Aß1-42) oligomers were treated with eriodictyol, after which cell viability was determined and the production of p-Tau was tested using Western blotting. Then, the characteristics of ferroptosis, including iron aggregation, lipid peroxidation and the expression of glutathione peroxidase type 4 (GPX4), were determined both in vivo and in vitro using Fe straining, Western blotting and qPCR assays. Additionally, the expression level of vitamin D receptor (VDR) and the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway were tested using Western blotting and qPCR assays. Afterward, HT-22 cells with VDR knockout were used to explore the potential mechanisms, and the relationship between VDR and Nrf2 was further assessed by performing a coimmunoprecipitation assay and bioinformatics analysis. RESULTS: Eriodictyol obviously ameliorated cognitive deficits in APP/PS1 mice, and suppressed Aß aggregation and Tau phosphorylation in the brains of APP/PS1 mice. Moreover, eriodictyol inhibited Tau hyperphosphorylation and neurotoxicity in HT-22 cells induced by Aß1-42 oligomer. Furthermore, eriodictyol exerted an antiferroptosis effect both in vivo and in vitro, and its mechanism may be associated with the activation of the Nrf2/HO-1 signaling pathway. Additionally, further experiments explained that the activation of Nrf2/HO-1 signaling pathway by eriodictyol treatment mediated by VDR. CONCLUSIONS: Eriodictyol alleviated memory impairment and AD-like pathological changes by activating the Nrf2/HO-1 signaling pathway through a mechanism mediated by VDR, which provides a new possibility for the treatment of AD.
Assuntos
Ferroptose/efeitos dos fármacos , Flavanonas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Receptores de Calcitriol/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Biomarcadores , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Flavanonas/química , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Fosforilação , Agregação Patológica de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas tau/metabolismoRESUMO
Non-enzymatic reaction involving carbonyl of reducing sugars and amino groups in proteins produces advanced glycation end products (AGEs). AGE accumulation in vivo is a crucial factor in the progression of metabolic and pathophysiological mechanisms like obesity, diabetes, coronary artery disease, neurological disorders, and chronic renal failure. The body's own defense mechanism, synthetic inhibitors, and natural inhibitors can all help to prevent the glycation of proteins. Synthetic inhibitors have the potential to suppress the glycation of proteins through a variety of pathways. They could avoid Amadori product development by tampering with the addition of sugars to the proteins. Besides which, the free radical scavenging and blocking crosslink formation could be another mechanism behind their anti-glycation properties. In comparison with synthetic substances, naturally occurring plant products have been found to be comparatively non-toxic, cheap, and usable in an ingestible form. This review gives a brief introduction of the Maillard reaction; formation, characterization and pathology related to AGEs, potential therapeutic approaches against glycation, natural and synthetic inhibitors of glycation and their probable mechanism of action. The scientific community could get benefit from the combined knowledge about important molecules, which will further guide to the design and development of new pharmaceutical compounds.
Assuntos
Glicosilação/efeitos dos fármacos , Proteínas/metabolismo , Animais , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Complicações do Diabetes , Diabetes Mellitus/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas/química , Relação Estrutura-AtividadeRESUMO
Alzheimer's disease (AD), one type of dementia, is a complex disease affecting people globally with limited drug treatment. Thus, natural products are currently of interest as promising candidates because of their cost-effectiveness and multi-target abilities. Diplazium esculentum (Retz.) Sw., an edible fern, inhibited acetylcholinesterase in vitro, inferring that it might be a promising candidate for AD treatment by supporting cholinergic neurons. However, evidence demonstrating anti-AD properties of this edible plant via inhibiting of neurotoxic peptides production, amyloid beta (Aß), both in vitro and in vivo is lacking. Thus, the anti-AD properties of D. esculentum extract both in vitro and in Drosophila models of Aß-mediated toxicity were elucidated. Findings showed that an ethanolic extract exhibited high phenolics and flavonoids, contributing to antioxidant and inhibitory activities against AD-related enzymes. Notably, the extract acted as a BACE-1 blocker and reduced amyloid beta 42 (Aß42) peptides in Drosophila models, resulting in improved locomotor behaviors. Information gained from this study suggested that D. esculentum showed potential for AD amelioration and prevention. Further investigations in vertebrates or humans are required to determine the effective doses of D. esculentum against AD, particularly via amyloidogenic pathway.
Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Gleiquênias/química , Extratos Vegetais/farmacologia , Agregação Patológica de Proteínas/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Comportamento Animal , Produtos Biológicos , Biomarcadores , Modelos Animais de Doenças , Drosophila , Expressão Gênica , Humanos , Fragmentos de Peptídeos/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológicoRESUMO
Parkinson's disease (PD) is characterized by four pathognomonic hallmarks: (1) motor and non-motor deficits; (2) neuroinflammation and oxidative stress; (3) pathological aggregates of the α-synuclein (α-syn) protein; (4) neurodegeneration of the nigrostriatal system. Recent evidence sustains that the aggregation of pathological α-syn occurs in the early stages of the disease, becoming the first trigger of neuroinflammation and subsequent neurodegeneration. Thus, a therapeutic line aims at striking back α-synucleinopathy and neuroinflammation to impede neurodegeneration. Another therapeutic line is restoring the compromised dopaminergic system using neurotrophic factors, particularly the glial cell-derived neurotrophic factor (GDNF). Preclinical studies with GDNF have provided encouraging results but often lack evaluation of anti-α-syn and anti-inflammatory effects. In contrast, clinical trials have yielded imprecise results and have reported the emergence of severe side effects. Here, we analyze the discrepancy between preclinical and clinical outcomes, review the mechanisms of the aggregation of pathological α-syn, including neuroinflammation, and evaluate the neurorestorative properties of GDNF, emphasizing its anti-α-syn and anti-inflammatory effects in preclinical and clinical trials.
Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas , alfa-Sinucleína/metabolismo , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Doenças Neuroinflamatórias/etiologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologiaRESUMO
Aggregation of proteins is a prominent hallmark of virtually all neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Little progress has been made in their treatment to slow or prevent the formation of aggregates by post-translational modification and regulation of cellular responses to misfolded proteins. Here, we introduce a label-free, laser-based photothermal treatment of polyglutamine (polyQ) aggregates in a C. elegans nematode model of huntingtin-like polyQ aggregation. As a proof of principle, we demonstrated that nanosecond laser pulse-induced local photothermal heating can directly disrupt the aggregates so as to delay their accumulation, maintain motility, and extend the lifespan of treated nematodes. These beneficial effects were validated by confocal photothermal, fluorescence, and video imaging. The results obtained demonstrate that our theranostics platform, integrating photothermal therapy without drugs or other chemicals, combined with advanced imaging to monitor photothermal ablation of aggregates, initiates systemic recovery and thus validates the concept of aggregate-disruption treatments for neurodegenerative diseases in humans.
Assuntos
Doença de Huntington/etiologia , Doença de Huntington/metabolismo , Agregados Proteicos/efeitos da radiação , Agregação Patológica de Proteínas/metabolismo , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Humanos , Doença de Huntington/patologia , Doença de Huntington/terapia , Lasers , Terapia com Luz de Baixa Intensidade , Peptídeos/metabolismo , Terapia Fototérmica , Agregação Patológica de Proteínas/terapia , Proteínas Recombinantes de Fusão/metabolismoRESUMO
The extracts of 7 herbs were screened and compared for their functional ability to inhibit the aggregation of trypsin as an appropriate model protein for in vitro fibrillation in aqueous ethanol at pH 7.0. Turbidity measurements, total phenolic content determination, aggregation kinetics, Congo red binding assay as well as transmission electron microscopy were used to analyse the inhibition of amyloid fibril formation. This correlated with the total phenolic content of the herb extracts. The peppermint extract proved to be the most potent anti-amyloidogenic agent. Results showed that the peppermint extract exerted dose-dependent inhibitory effect on trypsin fibril formation.
Assuntos
Óleos de Plantas/farmacologia , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Mentha piperita/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Óleos de Plantas/metabolismoRESUMO
Parkinson's disease (PD) is a movement disorder associated with severe loss of mainly dopaminergic neurons in the substantia nigra. Pathological hallmarks include Lewy bodies, and loss of neuromelanin, due to degeneration of neuromelanin-containing dopaminergic neurons. Despite being described over 200 years ago, the etiology of PD remains unknown. Here, we highlight the roles of reactive oxygen species (ROS), iron, alpha synuclein (α-syn) and neuromelanin in a toxic feedback loop culminating in neuronal death and spread of the disease. Dopaminergic neurons are particularly vulnerable due to decreased antioxidant concentration with aging, constant exposure to ROS and presence of neurotoxic compounds (e.g. ortho-quinones). ROS and iron increase each other's levels, creating a state of oxidative stress. α-Syn aggregation is influenced by ROS and iron but also increases ROS and iron via its induced mitochondrial dysfunction and ferric-reductase activity. Neuromelanin's binding affinity is affected by increased ROS and iron. Furthermore, during neuronal death, neuromelanin is degraded in the extracellular space, releasing its bound toxins. This cycle of events continues to neighboring neurons in the form of a toxic loop, causing PD pathology. The increase in ROS and iron may be an important target for therapies to disrupt this toxic loop, and therefore diets rich in certain 'nutraceuticals' may be beneficial. Turmeric is an attractive candidate, as it is known to have anti-oxidant and iron chelating properties. More studies are needed to test this theory and if validated, this would be a step towards development of lifestyle-based therapeutic modalities to complement existing PD treatments.
Assuntos
Curcuma , Ferro/fisiologia , Melaninas/fisiologia , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/fisiologia , Animais , Autofagia , Química Encefálica , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Retroalimentação Fisiológica , Ferroptose , Homeostase , Humanos , Ferro/análise , Camundongos , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Fitoterapia , Agregação Patológica de Proteínas , Substância Negra/químicaRESUMO
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease caused by degeneration of dopaminergic neurons in the substantia nigra. Existing pharmaceutical treatments offer alleviation of symptoms but cannot delay disease progression and are often associated with significant side effects. Clinical studies have demonstrated that acupuncture may be beneficial for PD treatment, particularly in terms of ameliorating PD symptoms when combined with anti-PD medication, reducing the required dose of medication and associated side effects. During early stages of PD, acupuncture may even be used to replace medication. It has also been found that acupuncture can protect dopaminergic neurons from degeneration via antioxidative stress, anti-inflammatory, and antiapoptotic pathways as well as modulating the neurotransmitter balance in the basal ganglia circuit. Here, we review current studies and reflect on the potential of acupuncture as a novel and effective treatment strategy for PD. We found that particularly during the early stages, acupuncture may reduce neurodegeneration of dopaminergic neurons and regulate the balance of the dopaminergic circuit, thus delaying the progression of the disease. The benefits of acupuncture will need to be further verified through basic and clinical studies.
Assuntos
Terapia por Acupuntura , Neurônios Dopaminérgicos/fisiologia , Doença de Parkinson/terapia , Antiparkinsonianos/uso terapêutico , Apoptose , Gânglios da Base/fisiopatologia , Bibliometria , Ensaios Clínicos como Assunto , Terapia Combinada , Dopamina/metabolismo , Humanos , Rede Nervosa/fisiopatologia , Doenças Neuroinflamatórias , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Agregação Patológica de Proteínas , Resultado do Tratamento , alfa-Sinucleína/análiseRESUMO
Amylin (hIAPP) amyloid formation plays an important role in the pathogenesis of type 2 diabetes (T2D), which makes it a promising therapeutic target for T2D. In this study, we established a screening tool for identifying chemicals affecting hIAPP amyloid formation based on a reported genetic tool, which constantly tracks protein aggregates in Saccharomyces cerevisiae. In order to obtain the hIAPP with better aggregation ability, the gene of hIAPP was tandemly ligated to create 1×, 2×, 4× or 6×-hIAPP expressing strains. By measuring the cell density and fluorescence intensity of green fluorescent protein (GFP) regulated by the aggregation status of hIAPP, it was found that four intramolecular ligated hIAPP (4×hIAPP) could form obvious amyloids with mild toxicity. The validity and reliability of the screening tool were verified by testing six reported hIAPP inhibitors, including curcumin, epigallocatechin gallate and so on. Combined with surface plasmon resonance (SPR) and the screening tool, which could be a screening system for hIAPP inhibitors, we found that crocin specifically binds to hIAPP and acts inhibit amyloid formation of hIAPP. The effect of crocin was further confirmed by Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) analysis. Thus, a screening system for hIAPP amyloid inhibitors and a new mechanism of crocin on anti-T2D were obtained as a result of this study.
Assuntos
Carotenoides/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Agregação Patológica de Proteínas/tratamento farmacológico , Carotenoides/química , Diabetes Mellitus Tipo 2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipoglicemiantes/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregação Patológica de Proteínas/metabolismoRESUMO
Data from preclinical studies propose nicotinamide adenine dinucleotide (NAD+) as a neuroprotective and bioenergetics stimulant agent to treat Alzheimer's disease (AD); however, there seems to be inconsistency between behavioral and molecular outcomes. We performed this systematic review to provide a better understanding of the effects of NAD+ in rodent AD models and to summarize the literature.Studies were identified by searching PubMed, EMBASE, Scopus, Google Scholar, and the reference lists of relevant review articles published through December 2020. The search strategy was restricted to articles about NAD+, its derivatives, and their association with cognitive function in AD rodent models. The initial search yielded 320 articles, of which 11 publications were included in our systematic review.Based on the primary outcomes, it was revealed that NAD+ improves learning and memory. The secondary endpoints also showed neuroprotective effects of NAD+ on different AD models. The proposed neuroprotective mechanisms included, but were not limited to, the attenuation of the oxidative stress, inflammation, and apoptosis, while enhancing the mitochondrial function.The current systematic review summarizes the preclinical studies on NAD+ precursors and provides evidence favoring the pro-cognitive effects of such components in rodent models of AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , NAD/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético , Camundongos , Camundongos Transgênicos , Mitocôndrias/fisiologia , NAD/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Niacina/farmacologia , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Ratos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Proteínas tau/metabolismoRESUMO
Small molecule modulators of mitochondrial function have been attracted much attention in recent years due to their potential therapeutic applications for neurodegenerative diseases. The mitochondrial translocator protein (TSPO) is a promising target for such compounds, given its involvement in the formation of the mitochondrial permeability transition pore in response to mitochondrial stress. In this study, we performed a ligand-based pharmacophore design and virtual screening, and identified a potent hit compound, 7 (VH34) as a TSPO ligand. After validating its biological activity against amyloid-ß (Aß) induced mitochondrial dysfunction and in acute and transgenic Alzheimer's disease (AD) model mice, we developed a library of analogs, and we found two most active compounds, 31 and 44, which restored the mitochondrial membrane potential, ATP production, and cell viability under Aß-induced mitochondrial toxicity. These compounds recovered learning and memory function in acute AD model mice with improved pharmacokinetic properties.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Camundongos , Mitocôndrias/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Regulador Transcricional ERG/antagonistas & inibidores , Regulador Transcricional ERG/metabolismoRESUMO
Endoplasmic reticulum (ER) stress is a common threat to photoreceptors during the pathogenesis of chronic retinopathies and often results in irreversible visual impairment. 2,3,5,6-Tetramethylpyrazine (TMP), which possesses many beneficial pharmacological activities, is a potential drug that could be used to protect photoreceptors. In the present study, we found that the cellular growth rate of 661 W cells cultured under low glucose conditions was lower than that of control cells, while the G2/M phase of the cell cycle was longer. We further found that the mitochondrial membrane potential (ΔΨm) was lower and that ER stress factor expression was increased in 661 W cells cultured under low glucose conditions. TMP reversed these trends. Visual function and cell counts in the outer nuclear layer (ONL) were low and the TUNEL-positive rate in the ONL was high in a C3H mouse model of spontaneous retinal degeneration. Similarly, visual function was decreased, and the TUNEL-positive rate in the ONL was increased in fasted C57/BL6j mice compared with control mice. On the other hand, ER stress factor expression was found to be increased in the retinas of both mouse models, as shown by reverse transcription real-time PCR (RT-qPCR) and western blotting. TMP reversed the physiological and molecular biological variations observed in both mouse models, and ATF4 expression was enhanced again. Further investigation by using western blotting illustrated that the proportion of insoluble prion protein (PRP) versus soluble PRP was reduced both in vitro and in vivo. Taken together, these results suggest that TMP increased the functions of photoreceptors by alleviating ER stress in vitro and in vivo, and the intrinsic mechanism was the ATF4-mediated inhibition of PRP aggregation. TMP may potentially be used clinically as a therapeutic agent to attenuate the functional loss of photoreceptors during the pathogenesis of chronic retinopathies. KEY MESSAGES: ⢠Already known: TMP is a beneficial drug mainly used in clinic to enhance organ functions, and the intrinsic mechanism is still worthy of exploring. ⢠New in the study: We discovered that TMP ameliorated retinal photoreceptors function via ER stress alleviation, which was promoted by ATF4-mediated inhibition of PRP aggregation. ⢠Application prospect: In prospective clinical practices, TMP may potentially be used in the clinic as a therapeutic agent to attenuate the photoreceptors functional reduction in chronic retinopathies.
Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Priônicas/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Pirazinas/farmacologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Degeneração Retiniana/prevenção & controle , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Eletrorretinografia , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Jejum , Feminino , Glucose/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas Priônicas/química , Agregação Patológica de Proteínas/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/fisiopatologia , Método Simples-Cego , Solubilidade , Organismos Livres de Patógenos Específicos , Transcrição Gênica/efeitos dos fármacosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Terminalia chebula Retz. (T.chebula) is an important medicinal plant in Tibetan medicine and Ayurveda. T.chebula is known as the "King of Tibetan Medicine", due to its widespread clinical pharmacological activity such as anti-inflammatory, antioxidative, antidiabetic as well as anticancer in lots of in vivo and in vitro models. In this study, we use transgenic and/or RNAi Caenorhabditis elegans (C.elegans) model to simulation the AD pathological features induced by Aß, to detect the effect of TWE on improving Aß-induced toxicity and the corresponding molecular mechanism. AIM OF STUDY: The study aimed to tested the activities and its possible mechanism of T.chebula to against Aß1-42 induced toxicity and Aß1-42 aggregation. MATERIALS AND METHODS: Using transgenic C.elegans strain CL2006 and CL4176 as models respond to paralytic induced by Aß toxicity. The transcription factors DAF-16 and SKN-1 were analyzed used a fluorescence microscope in transgenic strains (DAF-16:GFP, SKN-1:GFP). The function of DAF-16 and SKN-1 was further investigated using loss-of-function strains by feeding RNA interference (RNAi) bacteria. To evaluate the aggregation level of Aß in the transgenic C.elegans, Thioflavin S (ThS) staining and WB visualized the levels of Aß monomers and oligomers. RESULTS: TWE treatment can significantly improve the paralysis of transgenic C.elegans caused by Aß aggregation (up to 14%). The Aß aggregates in transgenic C.elegans are significantly inhibited under TWE exposure (up to 70%). TWE increases the nuclear localization of the key transcription factor DAF-16 and HSF-1, which in turn leads to the expression of downstream Hsp-16.2 protein and exerts its inhibitory effect on Aß aggregation. Meanwhile, paralysis improved has not observed in SKN-1 mutation and/or RNAi C.elegans. CONCLUSION: Our results indicate that TWE can protect C.elegans against the Aß1-42-induced toxicity, inhibition Aß1-42 aggregation and delaying Aß-induced paralysis. The neuroprotective effect of TWE involves the activation of DAF-16/HSF-1/Hsp-16.2 pathway.
Assuntos
Peptídeos beta-Amiloides/toxicidade , Fragmentos de Peptídeos/toxicidade , Extratos Vegetais/uso terapêutico , Agregação Patológica de Proteínas/induzido quimicamente , Agregação Patológica de Proteínas/prevenção & controle , Terminalia , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Relação Dose-Resposta a Droga , Humanos , Fragmentos de Peptídeos/antagonistas & inibidores , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Agregação Patológica de Proteínas/patologiaRESUMO
Alzheimer's disease (AD) is the most common form of dementia characterized by presence of extracellular amyloid plaques and intracellular neurofibrillary tangles composed of tau protein. Currently there are close to 50 million people living with dementia and this figure is expected to increase to 75 million by 2030 putting a huge burden on the economy due to the health care cost. Considering the effects on quality of life of patients and the increasing burden on the economy, there is an enormous need of new disease modifying therapies to tackle this disease. The current therapies are dominated by only symptomatic treatments including cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers but no disease modifying treatments exist so far. After several failed attempts to develop drugs against amyloidopathy, tau targeting approaches have been in the main focus of drug development against AD. After an overview of the tauopathy in AD, this review summarizes recent findings on the development of small molecules as therapeutics targeting tau modification, aggregation, and degradation, and tau-oriented multi-target directed ligands. Overall, this work aims to provide a comprehensive and critical overview of small molecules which are being explored as a lead candidate for discovering drugs against tauopathy in AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/química , Proteínas tau/metabolismo , Animais , Benzodioxóis/farmacologia , Inibidores da Colinesterase/farmacologia , Colinesterases/metabolismo , Curcumina/farmacologia , Humanos , Terapia de Alvo Molecular , Emaranhados Neurofibrilares/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação , Placa Amiloide/metabolismo , Agregação Patológica de Proteínas/prevenção & controle , Processamento de Proteína Pós-Traducional , Quinazolinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tiadiazóis/farmacologiaRESUMO
Autophagic defects are a hallmark of neurodegenerative disorders, such as Parkinson's disorder (PD). Enhancing autophagy to remove impaired mitochondria and toxic protein aggregation is an essential component of PD treatment. In particular, activation of autophagy confers neuroprotection in cellular and preclinical models of neurodegenerative diseases. In this study, we investigated the therapeutic mechanisms of electroacupuncture (EA) treatment in mice with established PD and evaluated the relationship between EA, autophagy, and different neurons in the mouse brain. We report that EA improves PD motor symptoms in mice and enhances (1) autophagy initiation (increased Beclin 1), (2) autophagosome biogenesis (increased Atg5, Atg7, Atg9A, Atg12, Atg16L, Atg3, and LC3-II), (3) autophagy flux/substrate degradation (decreased p62), and (4) mitophagy (increased PINK1 and DJ-1) in neurons of the substantia nigra, striatum, hippocampus, and cortex (affected brain areas of PD, Huntington disease, and Alzheimer's disease). EA enhances autophagy initiation, autophagosome biogenesis, mitophagy, and autophagy flux/substrate degradation in certain brain areas. Our findings are the first to show that EA regulates neuronal autophagy and suggest that this convenient, inexpensive treatment has exciting therapeutic potential in neurodegenerative disorders.
Assuntos
Terapia por Acupuntura/métodos , Autofagia/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Eletroacupuntura , Neurônios/fisiologia , Neuroproteção , Doença de Parkinson/etiologia , Doença de Parkinson/terapia , Animais , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/terapia , Agregação Patológica de ProteínasRESUMO
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive accumulation of senile plaques, which are primarily composed of misfolded amyloid ß-peptide (Aß). Aß aggregates are believed to be a key factor in the pathogenesis of AD, affecting the nervous system in human body. The therapeutic potential of tea-derived polyphenolic compounds, (-)-epigallocatechin (EGC) and (-)-epicatechin-3-gallate (ECG), for AD was investigated by assessing their effects on the Cu2+/Zn2+-induced or self-assembled Aß40 aggregation using thioflavine T fluorescent spectrometry, inductively coupled plasma mass spectrometry, UV-Vis spectroscopy, transmission electron microscope, silver staining, immunohistochemistry, and immunofluorescence assays. EGC and ECG mildly bind to Cu2+ and Zn2+, and diminish the Cu2+- or Zn2+-induced or self-assembled Aß aggregates; they also modulate the Cu2+/Zn2+-Aß40 induced neurotoxicity on mouse neuroblastoma Neuro-2a cells by reducing the production of ROS. Metal chelating, hydrogen bonding or Van Der Waals force may drive the interaction between the polyphenolic compounds and Aß. The results demonstrate that green tea catechins EGC and ECG are able to alleviate the toxicity of Aß oligomers and fibrils. Particularly, ECG can cross the blood-brain barrier to reduce the Aß plaques in the brain of APP/PS1 mice, thereby protecting neurons from injuries. The results manifest the potential of green tea for preventing or ameliorating the symptoms of AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Catequina/análogos & derivados , Agregação Patológica de Proteínas/tratamento farmacológico , Chá/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Catequina/química , Catequina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , Relação Estrutura-AtividadeRESUMO
Natural products have played a dominant role in the discovery of lead compounds for the development of drugs aimed at the treatment of human diseases. This electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS)-based study demonstrates that dietary antioxidants, isolated components from the stigmas of saffron (Crocus sativus L.) may be effective in inhibiting Aß fibrillogenesis, a neuropathological hallmark of Alzheimer's Disease (AD). This study reveals a substantial alteration in the monomer/oligomer distribution of Aß1-40, concomitant with re-direction of fibril formation, induced by the natural product interaction. These alterations on the Aß1-40 aggregation pathway are most prominent for trans-crocin-4 (TC4). Use of ESI-IMS-MS, electron microscopy alongside Thioflavin-T kinetics, and the interpretation of 3-dimensional Driftscope plots indicate a correlation of these monomer/oligomer distribution changes with alterations to Aß1-40 amyloid formation. The latter could prove instrumental in the development of novel aggregation inhibitors for the prevention, or treatment of AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Crocus/química , Extratos Vegetais/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/uso terapêutico , Carotenoides/farmacologia , Humanos , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Agregação Patológica de Proteínas/patologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em TandemRESUMO
A mismatch between ß-oxidation and the tricarboxylic acid cycle (TCA) cycle flux in mitochondria produces an accumulation of lipid metabolic intermediates, resulting in both blunted metabolic flexibility and decreased glucose utilization in the affected cells. The ability of the cell to switch to glucose as an energy substrate can be restored by reducing the reliance of the cell on fatty acid oxidation. The inhibition of the carnitine system, limiting the carnitine shuttle to the oxidation of lipids in the mitochondria, allows cells to develop a high plasticity to metabolic rewiring with a decrease in fatty acid oxidation and a parallel increase in glucose oxidation. We found that 3-(2,2,2-trimethylhydrazine)propionate (THP), which is able to reduce cellular carnitine levels by blocking both carnitine biosynthesis and the cell membrane carnitine/organic cation transporter (OCTN2), was reported to improve mitochondrial dysfunction in several diseases, such as Huntington's disease (HD). Here, new THP-derived carnitine-lowering agents (TCL), characterized by a high affinity for the OCTN2 with a minimal effect on carnitine synthesis, were developed, and their biological activities were evaluated in both in vitro and in vivo HD models. Certain compounds showed promising biological activities: reducing protein aggregates in HD cells, ameliorating motility defects, and increasing the lifespan of HD Drosophila melanogaster.
Assuntos
Drosophila melanogaster/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Longevidade/efeitos dos fármacos , Metilidrazinas/farmacologia , Membro 5 da Família 22 de Carreadores de Soluto/antagonistas & inibidores , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Animais , Carnitina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Drosophila melanogaster/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Agregação Patológica de Proteínas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Membro 5 da Família 22 de Carreadores de Soluto/genética , Transfecção , Resultado do TratamentoRESUMO
Allium roseum is an important medicinal and aromatic plant, specific to the North African flora and a rich source of important nutrients and bioactive molecules including flavonoids and organosulfur compounds whose biological activities and pharmacological properties are well known. In the present study, the inhibition of amyloid beta protein toxicity by the ethanolic extract of this plant is investigated for the first time. Preliminary biochemical analyses identified kæmpferol and luteolin-7-o-glucoside as the more abundant phenolic compounds. The effects of A. roseum extract (ARE) on aggregation and aggregate cytotoxicity of amyloid beta-42 (Aß42), whose brain aggregates are a hallmark of Alzheimer's disease, were investigated by biophysical (ThT assay, Dynamic light scattering and transmission electron microscopy) and cellular assays (cytotoxicity, aggregate immunolocalization, ROS measurement and intracellular Ca2+ imaging). The biophysical data suggest that ARE affects the structure of the Aß42 peptide, inhibits its polymerization, and interferes with the path of fibrillogenesis. The data with cultured cells shows that ARE reduces Aß42 aggregate toxicity by inhibiting aggregate binding to the cell membrane and by decreasing both oxidative stress and intracellular Ca2+. Accordingly, ARE could act as a neuroprotective factor against Aß aggregate toxicity in Alzheimer's disease.
Assuntos
Allium/química , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Extratos Vegetais/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Avaliação Pré-Clínica de Medicamentos , Difusão Dinâmica da Luz , Etanol/química , Humanos , Microscopia Eletrônica de Transmissão , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Agregação Patológica de Proteínas/patologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
Curcumin and related compounds have been validated to remove even well-developed human ß-amyloid plaques from the brain of transgenic mice, in vivo. However, their molecular mechanism of the plaque buster activity is rather unknown. Computational chemistry was employed here to better understand the ß-amyloid protein elimination. According to our docking studies, a tautomeric "keto-enol" flip-flop mechanism is proposed that may chop up ß-amyloid plaques in Alzheimer's due to removing each hairpin-foldamers one by one from both ends of aggregated fibrils. According to the experimented models, other bi-stable "keto-enol" pharmacophores might be identified to break up amyloid plaques and enhance rapid clearance of toxic aggregates in Alzheimer's disease.