Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(14): eadl2764, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579001

RESUMO

Despite seizure control by early high-dose pyridoxine (vitamin B6) treatment, at least 75% of pyridoxine-dependent epilepsy (PDE) patients with ALDH7A1 mutation still suffer from intellectual disability. It points to a need for additional therapeutic interventions for PDE beyond pyridoxine treatment, which provokes us to investigate the mechanisms underlying the impairment of brain hemostasis by ALDH7A1 deficiency. In this study, we show that ALDH7A1-deficient mice with seizure control exhibit altered adult hippocampal neurogenesis and impaired cognitive functions. Mechanistically, ALDH7A1 deficiency leads to the accumulation of toxic lysine catabolism intermediates, α-aminoadipic-δ-semialdehyde and its cyclic form, δ-1-piperideine-6-carboxylate, which in turn impair de novo pyrimidine biosynthesis and inhibit NSC proliferation and differentiation. Notably, supplementation of pyrimidines rescues abnormal neurogenesis and cognitive impairment in ALDH7A1-deficient adult mice. Therefore, our findings not only define the important role of ALDH7A1 in the regulation of adult hippocampal neurogenesis but also provide a potential therapeutic intervention to ameliorate the defective mental capacities in PDE patients with seizure control.


Assuntos
Ácido 2-Aminoadípico/análogos & derivados , Aldeído Desidrogenase , Epilepsia , Piridoxina , Humanos , Animais , Camundongos , Piridoxina/farmacologia , Convulsões/tratamento farmacológico , Convulsões/etiologia , Pirimidinas/farmacologia , Cognição
2.
J Ethnopharmacol ; 321: 117541, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052412

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The dried fruit and peduncle of Hovenia dulcis Thunberg (Rhamnaceae) (HD) has been used as a folk medicine to treat liver disease, detoxify alcoholism, and prevent and cure hangovers. AIM OF THE STUDY: We investigated the pharmacology of HD on the kinetics of EtOH and on the enzymes related to alcohol metabolism to seek the scientific evidence of HD to prevent hangover, the effectiveness as a folk medicine. MATERIALS AND METHODS: EtOH was orally administered 30 min after oral administration of HD boiling water extract in rats. Then, the profiles of blood EtOH concentrations were measured. Mice were reared with food containing powdered HD for 7 days, and the activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in liver were measured. Hepa1c1c7 cells were cultured with the medium containing HD extract, and the activities of ADH and ALDH were measured. RESULTS: HD extract reduced the blood EtOH concentrations in rats and induced the activities of ADH and ALDH and mRNA and protein expressions of ADH1B, ALDH1A1, and ALDH2 in the liver of mice and Hepa1c1c7 cells. Dihydromyricetin, one of the ingredients of HD, significantly induced the activities of ADH and ALDH in Hepa1c1c7 cells, however, the fractions containing hydrophilic organic compounds with small molecular weight contributed the most of the activities of HD extract. CONCLUSIONS: We clarified the experimental pharmacological evidences of HD as a folk medicine to detoxify alcoholism and prevent hangovers.


Assuntos
Intoxicação Alcoólica , Alcoolismo , Ratos , Animais , Frutas/metabolismo , Etanol , Aldeído-Desidrogenase Mitocondrial , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo
3.
Neurology ; 101(18): e1828-e1832, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37580162

RESUMO

Inborn errors of metabolism are a diverse group of genetic disorders including many that cause neonatal-onset epilepsy such as pyridoxine-dependent epilepsy (PDE). PDE occurs secondary to biallelic pathogenic variants in ALDH7A1 and can present with refractory neonatal seizures and status epilepticus. Neonatal seizures and encephalopathy are modifiable with pyridoxine (vitamin B6) supplementation. However, the clinical response to pyridoxine supplementation can be delayed. We present the case of a full-term neonate with PDE in which seizure cessation was seen a few hours after intravenous pyridoxine load, but the improvement in EEG background and level of clinical encephalopathy occurred 5 days later. We share this case to provide an example in which clinical improvement in PDE was gradual and required continuation of treatment for several days illustrating the necessity of continuing vitamin B6 supplementation in suspected cases until confirmatory genetic testing is obtained or an alternate cause is found.


Assuntos
Epilepsia , Piridoxina , Recém-Nascido , Humanos , Piridoxina/uso terapêutico , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/uso terapêutico , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Vitamina B 6/uso terapêutico , Convulsões/tratamento farmacológico
4.
Front Immunol ; 14: 1127610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441072

RESUMO

Objective: Random skin flaps have many applications in plastic and reconstructive surgeries. However, distal flap necrosis restricts wider clinical utility. Mitophagy, a vital form of autophagy for damaged mitochondria, is excessively activated in flap ischemia/reperfusion (I/R) injury, thus inducing cell death. Aldehyde dehydrogenase-2 (ALDH2), an allosteric tetrameric enzyme, plays an important role in regulating mitophagy. We explored whether ALDH2 activated by N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) could reduce the risk of ischemic random skin flap necrosis, and the possible mechanism of action. Methods: Modified McFarlane flap models were established in 36 male Sprague-Dawley rats assigned randomly to three groups: a low-dose Alda-1 group (10 mg/kg/day), a high-dose Alda-1 group (20 mg/kg/day) and a control group. The percentage surviving skin flap area, neutrophil density and microvessel density (MVD) were evaluated on day 7. Oxidative stress was quantitated by measuring the superoxide dismutase (SOD) and malondialdehyde (MDA) levels. Blood perfusion and skin flap angiogenesis were assessed via laser Doppler flow imaging and lead oxide-gelatin angiography, respectively. The expression levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α), vascular endothelial growth factor (VEGF), ALDH2, PTEN-induced kinase 1 (PINK1), and E3 ubiquitin ligase (Parkin) were immunohistochemically detected. Indicators of mitophagy such as Beclin-1, p62, and microtubule-associated protein light chain 3 (LC3) were evaluated by immunofluorescence. Results: Alda-1 significantly enhanced the survival area of random skin flaps. The SOD activity increased and the MDA level decreased, suggesting that Alda-1 reduced oxidative stress. ALDH2 was upregulated, and mitophagy-related proteins (PINK1, Parkin, Beclin-1, p62, and LC3) were downregulated, indicating that ALDH2 inhibited mitophagy through the PINK1/Parkin signaling pathway. Treatment with Alda-1 reduced neutrophil infiltration and expressions of inflammatory cytokines. Alda-1 significantly upregulated VEGF expression, increased the MVD, promoted angiogenesis, and enhanced blood perfusion. Conclusion: ALDH2 activation can effectively enhance random skin flap viability via inhibiting PINK1/Parkin-dependent mitophagy. Moreover, enhancement of ALDH2 activity also exerts anti-inflammatory and angiogenic properties.


Assuntos
Traumatismo por Reperfusão , Fator A de Crescimento do Endotélio Vascular , Animais , Masculino , Ratos , Aldeído Desidrogenase/uso terapêutico , Proteína Beclina-1 , Citocinas/uso terapêutico , Isquemia , Necrose , Complicações Pós-Operatórias , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase , Ubiquitina-Proteína Ligases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Mol Nutr Food Res ; 67(10): e2200627, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856009

RESUMO

SCOPE: Acetaldehyde is a highly toxic primary metabolite of ethanol, and converts to nontoxic acetic acid by aldehyde dehydrogenase (ALDH). Accumulation of acetaldehyde causes significant damage to human body. Aged garlic extract (AGE) is a functional food material and possesses various health beneficial effects. This study investigates whether AGE contributes to acetaldehyde detoxification through ALDH induction and its underlying mechanism. METHODS AND RESULTS: C57BL/6J mice are orally administrated 10-1000 mg kg-1 body weight (BW) of AGE for 1 week before ethanol administration. AGE suppresses ethanol-caused accumulation of acetaldehyde level in the plasma through inducing mitochondrial ALDH2 but not cytosolic ALDH1A1. AGE also induces antioxidant enzymes, heme oxygenase-1, and NAD(P)H:quinone oxidoreductase 1, resulting in prevention of lipid peroxidation in the liver. In HepG2 cells, AGE prevents ethanol- and acetaldehyde-caused cytotoxicity. AGE induces mitochondrial ALDH2 through activating nuclear factor-erythroid 2-related factor 2 (Nrf2). AGE inhibits protein degradation of Nrf2 and enhances protein degradation of kelch-like ECH-associated protein 1. Furthermore, S-allyl cysteine and S-allyl mercaptocysteine as the bioactive compounds in AGE also induce ALDH2 and Nrf2. CONCLUSION: AGE prevents acetaldehyde-induced hepatotoxicity through enhancing acetaldehyde detoxification through Nrf2-dependent induction of mitochondrial ALDH2.


Assuntos
Alho , Camundongos , Humanos , Animais , Recém-Nascido , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Etanol/toxicidade , Fígado/metabolismo , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/farmacologia , Acetaldeído/toxicidade , Acetaldeído/metabolismo , Aldeído-Desidrogenase Mitocondrial/metabolismo
6.
Gene ; 860: 147215, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36709878

RESUMO

In response to biotic and abiotic stressors, aldehydes are detoxified and converted to carboxylic acids by aldehyde dehydrogenases (ALDHs), which are enzymes that use NAD+/NADP+ as cofactors. Garlic (Allium sativum L.) has not yet undergone a systematic examination of the ALDH superfamily, despite the genome sequence having been made public. In this investigation, we identified, characterized, and profiled the expression of the garlic ALDH gene family over the entire genome. The ALDH Gene Nomenclature Committee (AGNC) classification was used to classify and name the 34 ALDH genes that were discovered. Except for chromosome 8, all AsALDH genes were dispersed across the chromosomes. AsALDH genes have various localizations, according to predictions about subcellular localization. The AsALDH proteins are more varied and closely related to rice than to Arabidopsis, according to a study of conserved motifs and phylogenetic relationships. The presence of stress modulation pathways is indicated by the abundance of stress-related cis-elements in the AsALDH genes' promoter regions. Analysis of the RNA-seq data showed that AsALDHs expressed differently in various tissues and at various developmental stages. Nine AsALDHs were chosen for study using RT-qPCR, and the results revealed that the majority of the genes were upregulated in response to ABA and downregulated in response to salinity and drought. The results of this study improved our knowledge of the traits, evolutionary background, and biological functions of AsALDHs genes in growth and development.


Assuntos
Arabidopsis , Alho , Alho/genética , Filogenia , Família Multigênica , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Secas , Salinidade , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
7.
J Inherit Metab Dis ; 46(1): 129-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36225138

RESUMO

Deficiency of antiquitin (α-aminoadipic semialdehyde dehydrogenase), an enzyme involved in lysine degradation and encoded by ALDH7A1, is the major cause of vitamin B6 -dependent epilepsy (PDE-ALDH7A1). Despite seizure control with high dose pyridoxine (PN), developmental delay still occurs in approximately 70% of patients. We aimed to investigate metabolic perturbations due to possible previously unidentified roles of antiquitin, which may contribute to developmental delay, as well as metabolic effects of high dose pyridoxine supplementation reflecting the high doses used for seizure control in patients with PDE-ALDH7A1. Untargeted metabolomics by high resolution mass spectrometry (HRMS) was used to analyze plasma of patients with PDE-ALDH7A1 and two independently generated lines of cultured ReNcell CX human neuronal progenitor cells (NPCs) with CRISPR/Cas mediated antiquitin deficiency. Accumulation of lysine pathway metabolites in antiquitin-deficient NPCs and western-blot analysis confirmed knockdown of ALDH7A1. Metabolomics analysis of antiquitin-deficient NPCs in conditions of lysine restriction and PN supplementation identified changes in metabolites related to the transmethylation and transsulfuration pathways and osmolytes, indicating a possible unrecognized role of antiquitin outside the lysine degradation pathway. Analysis of plasma samples of PN treated patients with PDE-ALDH7A1 and antiquitin-deficient NPCs cultured in conditions comparable to the patient plasma samples demonstrated perturbation of metabolites of the gamma-glutamyl cycle, suggesting potential oxidative stress-related effects in PN-treated patients with PDE-ALDH7A1. We postulate that a model of human NPCs with CRISPR/Cas mediated antiquitin deficiency is well suited to characterize previously unreported roles of antiquitin, relevant to this most prevalent form of pyridoxine-dependent epilepsy.


Assuntos
Epilepsia , Piridoxina , Humanos , Piridoxina/uso terapêutico , Lisina/metabolismo , Aldeído Desidrogenase , Epilepsia/metabolismo , Convulsões , Metabolômica
8.
Phytother Res ; 37(1): 35-49, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36059198

RESUMO

Myocardial infarction (MI) is the leading cause of death worldwide, and oxidative stress is part of the process that causes MI. Calycosin, a naturally occurring substance with cardioprotective properties, is one of the major active constituents in Radix Astragali. In this study, effect of Calycosin was investigated in vivo and in vitro to determine whether it could alleviate oxidative stress and oxidative stress-induced cardiac apoptosis in neonatal cardiomyocytes (NCMs) via activation of aldehyde dehydrogenase 2 (ALDH2). Calycosin protected against oxidative stress and oxidative stress-induced apoptosis in NCMs. Molecular docking revealed that the ALDH2-Calycosin complex had a binding energy of -9.885 kcal/mol. In addition, molecular docking simulations demonstrated that the ALDH2-Calycosin complex was stable. Using BLI assays, we confirmed that Calycosin could interact with ALDH2 (KD  = 1.9 × 10-4 M). Furthermore, an ALDH2 kinase activity test revealed that Calycosin increased ALDH2 activity, exhibiting an EC50 of 91.79 µM. Pre-incubation with ALDH2 inhibitor (CVT-10216 or disulfiram) reduced the cardio-protective properties Calycosin. In mice with MI, Calycosin therapy substantially reduced myocardial apoptosis, oxidative stress, and activated ALDH2. Collectively, our findings clearly suggest that Calycosin reduces oxidative stress and oxidative stress-induced apoptosis via the regulation of ALDH2 signaling, which supports potential therapeutic use in MI.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Camundongos , Animais , Aldeído-Desidrogenase Mitocondrial/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo , Apoptose , Aldeído Desidrogenase/metabolismo
9.
Metab Brain Dis ; 37(8): 3027-3032, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36308585

RESUMO

Seizures in newborn infants may be the first finding of hereditary metabolic diseases. Pyridoxine-dependent epilepsy (PDE) is a treatable disorder associated with defects in the one of ALDH7A1, PNPO, or PLPBP genes and it is uncommon but progresses with persistent seizures in the neonatal and infancy period. The seizures are generally resistant to traditional antiepileptic drugs and show a dramatic response to high-dose pyridoxine. In 2016, mutations were reported in PLPBP (previously known as PROSC) gene, which encodes pyridoxal phosphate homeostatic protein (PLPHP).When early-onset antiepileptic resistant seizures are not treated, clinical findings emerge including the development of encephalopathy, congenital microcephaly, and subsequent retardation of psychomotor development. The present case is a 33-month-old female infant with seizures starting from postnatal day 1, who did not respond to traditional anti-epileptic drugs but responded to pyridoxine treatment. In the genetic tests, homozygote c.695 C > T (p.Ala232Val) mutation was determined in the PLPBP gene, which has not been previously identified. Since a specific treatment was found, this case is reported with the aim of emphasizing the need to consider pyridoxine dependence, which is one of the vitamin-dependent metabolic encephalopathies, in the differential diagnosis of epilepsy patients.


Assuntos
Epilepsia , Piridoxina , Lactente , Recém-Nascido , Humanos , Feminino , Pré-Escolar , Piridoxina/uso terapêutico , Homozigoto , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/diagnóstico , Convulsões/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Mutação/genética , Aldeído Desidrogenase/genética
10.
J Med Food ; 25(10): 982-992, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36201260

RESUMO

Excessive alcohol use often results in alcoholic liver disease (ALD). An early change in the liver due to excessive drinking is hepatic steatosis, which may ultimately progress to hepatitis, liver fibrosis, cirrhosis, and liver cancer. Among these debilitating processes, hepatic steatosis is reversible with the appropriate treatment. Therefore, it is important to find treatments and foods that reverse hepatic steatosis. Black carrot has antioxidant and anti-inflammatory effects. In this study, we examined the effectiveness of black carrot extract (BCE) on hepatic steatosis in in vivo and in vitro ethanol-induced liver injury models. For the in vivo experiments, serum aminotransferase activities enhanced by ethanol- and carbon tetrachloride were significantly suppressed by the BCE diet. Furthermore, morphological changes in the liver hepatic steatosis and fibrosis were observed in the in vivo ethanol-induced liver injury model, however, BCE feeding resulted in the recovery to an almost normal liver morphology. In the in vitro experiments, ethanol treatment induced reactive oxygen species (ROS) levels in hepatocytes at 9 h. Conversely, ROS production was suppressed to control levels and hepatic steatosis was suppressed when hepatocyte culture with ethanol were treated with BCE. Furthermore, we investigated enzyme activities, enzyme protein levels, and messenger RNA levels of alcohol dehydrogenase (ADH), cytochrome p450 2E1 (CYP2E1), and aldehyde dehydrogenase (ALDH) using enzyme assays, western blot, and quantitative reverse transcription-polymerase chain reaction analyses. We found that the activities of ADH, CYP2E1, and ALDH were regulated through the cAMP-PKA pathway at different levels, namely, translational, posttranslational, and transcriptional levels, respectively. The most interesting finding of this study is that BCE increases cAMP levels by suppressing the Pde4b mRNA and PDE4b protein levels in ethanol-treated hepatocytes, suggesting that BCE may prevent ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Daucus carota , Fígado Gorduroso , Hepatopatias Alcoólicas , Etanol/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Daucus carota/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/farmacologia , Antioxidantes/farmacologia , RNA Mensageiro/metabolismo , Tetracloreto de Carbono , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/farmacologia , Cirrose Hepática , Transaminases/metabolismo , Anti-Inflamatórios/farmacologia
11.
Clin Exp Pharmacol Physiol ; 49(2): 291-301, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34597426

RESUMO

This study evaluated the mechanistic sequel of aldehyde dehyrogenase (ALDH2) and Klotho protein in cyclophosphamide (CP)-induced cardiotoxicity in rats and the protective effect of astaxanthin (AST) against that sequel. A total of 40 male Wistar albino rats were divided into four groups of 10 animals each: Group 1 was injected intraperitoneally (i.p.) with normal saline for 10 successive days. Group 2 was injected with normal saline for 5 days before and after a single dose of CP (200 mg/kg, i.p.). Group 3 received AST (50 mg/kg/day, i.p.) for 10 days. Group 4 received CP as group 2 and AST as group 3. After the last dose of the treatment protocol, serum was separated to measure cardiotoxicity indices and the left ventricle was then dissected for mRNA and protein expression studies and histopathological examinations. Treatment with CP significantly increased serum lactate dehydrogenase (LDH), creatine kinase isoenzyme MB (CK-MB), and troponin, while significantly decreased soluble α Klotho protein and caused histopathological lesions in cardiac tissues. In cardiac tissues, CP significantly decreased gene expression of ALDH2, Klotho protein, mTOR, IGF, AKT, AMPK, BCL2, but significantly increased expression of BAX and caspase-8. Interestingly, administration of AST in combination with CP completely reversed all the biochemical, histopathological and gene expression changes induced by CP to the control values. The current study suggests that inhibition of ALDH2, Klotho protein, mTOR, and AMPK signals in cardiac tissues may contribute to CP-induced acute cardiomyopathy. AST supplementation attenuates CP-induced cardiotoxicity by modulating ALDH2 and Klotho protein expression in heart tissues, along with its downstream apoptosis effector markers.


Assuntos
Aldeído Desidrogenase , Cardiomiopatias , Aldeído Desidrogenase/farmacologia , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Ciclofosfamida/toxicidade , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Xantofilas
12.
Sci Rep ; 11(1): 18284, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521910

RESUMO

The Aldehyde dehydrogenase (ALDH) superfamily comprises a group of enzymes involved in the scavenging of toxic aldehyde molecules by converting them into their corresponding non-toxic carboxylic acids. A genome-wide study in potato identified a total of 22 ALDH genes grouped into ten families that are presented unevenly throughout all the 12 chromosomes. Based on the evolutionary analysis of ALDH proteins from different plant species, ALDH2 and ALDH3 were found to be the most abundant families in the plant, while ALDH18 was found to be the most distantly related one. Gene expression analysis revealed that the expression of StALDH genes is highly tissue-specific and divergent in various abiotic, biotic, and hormonal treatments. Structural modelling and functional analysis of selected StALDH members revealed conservancy in their secondary structures and cofactor binding sites. Taken together, our findings provide comprehensive information on the ALDH gene family in potato that will help in developing a framework for further functional studies.


Assuntos
Aldeído Desidrogenase/genética , Solanum tuberosum/genética , Aldeído Desidrogenase/metabolismo , Cromossomos de Plantas/genética , Evolução Molecular , Genes de Plantas/genética , Genoma de Planta/genética , Filogenia , Alinhamento de Sequência , Solanum tuberosum/enzimologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/fisiologia , Estresse Fisiológico
13.
Toxicol Appl Pharmacol ; 426: 115642, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34242567

RESUMO

Disulfiram (DSF), a sulfur-containing compound, has been used to treat chronic alcoholism and cancer for decades by inactivating aldehyde dehydrogenase (ALDH). Hydrogen sulfide (H2S) is a new gasotransmitter and regulates various cellular functions by S-sulfhydrating cysteine in the target proteins. H2S exhibits similar properties to DSF in the sensitization of cancer cells. The interaction of DSF and H2S on ALDH activity and liver cancer cell survival are not clear. Here it was demonstrated that DSF facilitated H2S release from thiol-containing compounds, and DSF and H2S were both capable of regulating ALDH through inhibition of gene expression and enzymatic activity. The supplement of H2S sensitized human liver cancer cells (HepG2) to DSF-inhibited cell viability. The expression of cystathionine gamma-lyase (a major H2S-generating enzyme) was lower but ALDH was higher in mouse liver cancer stem cells (Dt81Hepa1-6) in comparison with their parental cells (Hepa1-6), and H2S was able to inhibit liver cancer stem cell adhesion. In conclusion, these data point to the potential of combining DSF and H2S for inhibition of cancer cell growth and tumor development by targeting ALDH.


Assuntos
Inibidores de Acetaldeído Desidrogenases/farmacologia , Dissuasores de Álcool/farmacologia , Aldeído Desidrogenase/antagonistas & inibidores , Antineoplásicos/farmacologia , Dissulfiram/farmacologia , Sulfeto de Hidrogênio/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Aldeído Desidrogenase/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Temperatura
14.
J Clin Invest ; 131(15)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34138754

RESUMO

BackgroundPyridoxine-dependent epilepsy (PDE-ALDH7A1) is an inborn error of lysine catabolism that presents with refractory epilepsy in newborns. Biallelic ALDH7A1 variants lead to deficiency of α-aminoadipic semialdehyde dehydrogenase/antiquitin, resulting in accumulation of piperideine-6-carboxylate (P6C), and secondary deficiency of the important cofactor pyridoxal-5'-phosphate (PLP, active vitamin B6) through its complexation with P6C. Vitamin B6 supplementation resolves epilepsy in patients, but intellectual disability may still develop. Early diagnosis and treatment, preferably based on newborn screening, could optimize long-term clinical outcome. However, no suitable PDE-ALDH7A1 newborn screening biomarkers are currently available.MethodsWe combined the innovative analytical methods untargeted metabolomics and infrared ion spectroscopy to discover and identify biomarkers in plasma that would allow for PDE-ALDH7A1 diagnosis in newborn screening.ResultsWe identified 2S,6S-/2S,6R-oxopropylpiperidine-2-carboxylic acid (2-OPP) as a PDE-ALDH7A1 biomarker, and confirmed 6-oxopiperidine-2-carboxylic acid (6-oxoPIP) as a biomarker. The suitability of 2-OPP as a potential PDE-ALDH7A1 newborn screening biomarker in dried bloodspots was shown. Additionally, we found that 2-OPP accumulates in brain tissue of patients and Aldh7a1-knockout mice, and induced epilepsy-like behavior in a zebrafish model system.ConclusionThis study has opened the way to newborn screening for PDE-ALDH7A1. We speculate that 2-OPP may contribute to ongoing neurotoxicity, also in treated PDE-ALDH7A1 patients. As 2-OPP formation appears to increase upon ketosis, we emphasize the importance of avoiding catabolism in PDE-ALDH7A1 patients.FundingSociety for Inborn Errors of Metabolism for Netherlands and Belgium (ESN), United for Metabolic Diseases (UMD), Stofwisselkracht, Radboud University, Canadian Institutes of Health Research, Dutch Research Council (NWO), and the European Research Council (ERC).


Assuntos
Epilepsia/metabolismo , Metabolômica , Ácidos Pipecólicos/metabolismo , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/metabolismo , Animais , Biomarcadores/metabolismo , Criança , Epilepsia/genética , Feminino , Humanos , Camundongos , Camundongos Knockout , Espectrofotometria Infravermelho , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
15.
Int J Med Sci ; 18(1): 53-64, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390773

RESUMO

Mulberry leaves (Morus alba L.), which are traditional Chinese herbs, exert several biological functions, such as antioxidant, anti-inflammation, antidiabetic, and antitumor. Alcohol intake increases inflammation and oxidative stress, and this increase causes liver injury and leads to liver steatosis, cirrhosis, and hepatocellular carcinoma, which are major health problems worldwide. Previous report indicated that mulberry leaf extract (MLE) exited hepatoprotection effects against chronic alcohol-induced liver damages. In this present study, we investigated the effects of MLE on acute alcohol and liver injury induced by its metabolized compound called acetaldehyde (ACE) by using in vivo and in vitro models. Administration of MLE reversed acute alcohol-induced liver damages, increased acetaldehyde (ACE) level, and decreased aldehyde dehydrogenase activity in a dose-dependent manner. Acute alcohol exposure-induced leukocyte infiltration and pro-inflammation factors, including cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), were blocked by MLE in proportion to MLE concentration. MLE prevented alcohol-induced liver apoptosis via enhanced caveolin-1 expression and attenuated EGFR/STAT3/iNOS pathway using immunohistochemical analysis. ACE induced proteins, such as iNOS, COX-2, TNF-α, and IL-6, and inhibited superoxide dismutase expression, whereas co-treated with MLE reversed these proteins expression. MLE also recovered alcohol-induced apoptosis in cultured Hep G2 cells. Overall, our findings indicated that MLE ameliorated acute alcohol-induced liver damages by reducing ACE toxicity and inhibiting apoptosis caused by oxidative stress signals. Our results implied that MLE might be a potential agent for treating alcohol liver disease.


Assuntos
Acetaldeído/toxicidade , Antioxidantes/administração & dosagem , Hepatopatias Alcoólicas/tratamento farmacológico , Morus/química , Extratos Vegetais/administração & dosagem , Acetaldeído/metabolismo , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios Enzimáticos , Etanol/administração & dosagem , Etanol/efeitos adversos , Etanol/metabolismo , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/patologia , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo
16.
J Inherit Metab Dis ; 44(1): 178-192, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200442

RESUMO

Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine-restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine-reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re-evaluate and update the two previously published recommendations for diagnosis, treatment, and follow-up of patients with PDE-ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus-based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE-ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are provided.


Assuntos
Arginina/administração & dosagem , Suplementos Nutricionais , Epilepsia/dietoterapia , Epilepsia/diagnóstico , Aldeído Desidrogenase/deficiência , Consenso , Epilepsia/tratamento farmacológico , Humanos , Cooperação Internacional , Lisina/deficiência , Piridoxina/uso terapêutico
17.
J Nutr Sci Vitaminol (Tokyo) ; 66(5): 462-467, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132350

RESUMO

Aldehyde dehydrogenase 1A1 (ALDH1A1) in intestinal epithelial cells (IECs) plays a critical role in regulating immune responses through the production of retinoic acid (RA). However, little is known about its regulation by dietary components. We previously demonstrated that kakkonto, a Japanese traditional herbal medicine, and its constituent puerarin induce the expression of ALDH1A1 mRNA in colonic IECs and thereby attenuate food allergy symptoms in mice. This study aims to investigate the cellular responses of IECs to ALDH1A1 expression as a result of natural food components. The seven medicinal herbs that compose kakkonto were used to treat cultured an IEC line: Caco-2 cells. Expressions levels of ALDH1A1 were analyzed in Caco-2 cells by quantitative RT-PCR, immunocytochemistry and western blotting. Ginger increased the expression levels of ALDH1A1 mRNA and protein in Caco-2 cells. In addition, ginger significantly upregulated the gene expression of retinoic acid receptor (RAR) alpha (RARA), thereby enhancing RA signaling. Furthermore, ginger downregulated the expression of histone deacetylase (HDAC)2 (HDAC2) and HDAC3 in Caco-2 cells. The present study suggests the possibility that food ingredients such as a ginger modulate vitamin A metabolism in the gut through the regulation of RA synthesis, which may contribute to RA-mediated regulation of immune responses and the regulation of allergic inflammation.


Assuntos
Família Aldeído Desidrogenase 1 , Retinal Desidrogenase , Tretinoína , Zingiber officinale , Aldeído Desidrogenase , Família Aldeído Desidrogenase 1/metabolismo , Animais , Células CACO-2 , Células Epiteliais , Humanos , Camundongos , Retinal Desidrogenase/metabolismo
18.
J Nutr ; 150(Suppl 1): 2556S-2560S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000154

RESUMO

Lysine is an essential amino acid, and inherited diseases of its metabolism therefore represent defects of lysine catabolism. Although some of these enzyme defects are not well described yet, glutaric aciduria type I (GA1) and antiquitin (2-aminoadipic-6-semialdehyde dehydrogenase) deficiency represent the most well-characterized diseases. GA1 is an autosomal recessive disorder due to a deficiency of glutaryl-CoA dehydrogenase. Untreated patients exhibit early onset macrocephaly and may present a neurological deterioration with regression and movement disorder at the time of a presumably "benign" infection most often during the first year of life. This is associated with a characteristic neuroimaging pattern with frontotemporal atrophy and striatal injuries. Diagnosis relies on the identification of glutaric and 3-hydroxyglutaric acid in urine along with plasma glutarylcarnitine. Treatment consists of a low-lysine diet aiming at reducing the putatively neurotoxic glutaric and 3-hydroxyglutaric acids. Additional therapeutic measures include administration of l-carnitine associated with emergency measures at the time of intercurrent illnesses aiming at preventing brain injury. Early treated (ideally through newborn screening) patients exhibit a favorable long-term neurocognitive outcome, whereas late-treated or untreated patients may present severe neurocognitive irreversible disabilities. Antiquitin deficiency is the most common form of pyridoxine-dependent epilepsy. α-Aminoadipic acid semialdehyde (AASA) and Δ-1-piperideine-6-carboxylate (P6C) accumulate proximal to the enzymatic block. P6C forms a complex with pyridoxal phosphate (PLP), a key vitamer of pyridoxine, thereby reducing PLP bioavailability and subsequently causing epilepsy. Urinary AASA is a biomarker of antiquitin deficiency. Despite seizure control, only 25% of the pyridoxine-treated patients show normal neurodevelopment. Low-lysine diet and arginine supplementation are proposed in some patients with decrease of AASA, but the impact on neurodevelopment is unclear. In summary, GA1 and antiquitin deficiency are the 2 main human defects of lysine catabolism. Both include neurological impairment. Lysine dietary restriction is a key therapy for GA1, whereas its benefits in antiquitin deficiency appear less clear.


Assuntos
Aldeído Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas Congênitas/metabolismo , Encefalopatias Metabólicas/metabolismo , Encéfalo/metabolismo , Epilepsia/metabolismo , Glutaril-CoA Desidrogenase/deficiência , Lisina/metabolismo , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/metabolismo , Aldeído Desidrogenase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Arginina/uso terapêutico , Encéfalo/patologia , Encefalopatias Metabólicas/terapia , Encefalopatias Metabólicas Congênitas/terapia , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina/uso terapêutico , Epilepsia/terapia , Glutaratos/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , Fosfato de Piridoxal/metabolismo , Piridoxina/metabolismo , Piridoxina/uso terapêutico
19.
Plant Sci ; 297: 110525, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563465

RESUMO

The aim of this study is to elucidate the role of ALDH2B7a during the response to lower temperature in Solanum tuberosum. This gene was found to have altered intragenic DNA methylation status in our previous reports. A total of 18 orthologs of StALDH2B7a were identified in the S. tuberosum genome, which were then divided into 8 aldehyde dehydrogenase (ALDH) subfamilies. The methylation statuses of four intragenic cytosine sites in intron 5 and exon 6 of genomic StALDH2B7a were altered by lower temperature stress, resulting in changes in the expression of StALDH2B7a. Silencing of NbALDH2C4, a homolog of StALDH2B7a in Nicotiana benthamiana, resulted in plants which were sensitive to lower temperature and accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA). These data suggested that the expression of StALDH2B7a was upregulated by alteration of its intragenic cytosine methylation status during lower temperature stress, and additional StALDH2B7a enzymes scavenged excess aldehydes resulting from ROS in a response to cold stress in potato. Our study expands the understanding of the mechanisms involved in plant responses to lower temperature, and provides a new gene source to improve potato tolerance to cold stress in northern China, where lower temperature is one of the key limiting factors for crop production.


Assuntos
Aldeído Desidrogenase/fisiologia , Nicotiana/enzimologia , Proteínas de Plantas/fisiologia , Solanum tuberosum/enzimologia , Resposta ao Choque Frio , Metilação de DNA , Genes de Plantas/genética , Genes de Plantas/fisiologia , Malondialdeído/metabolismo , Filogenia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Solanum tuberosum/fisiologia , Nicotiana/fisiologia
20.
J Asthma ; 57(5): 532-542, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30915875

RESUMO

Objective: Patients with difficult-to-control asthma have difficulty breathing almost all of the time, even leading to life-threatening asthma attacks. However, only few diagnostic markers for this disease have been identified. We aimed to take advantage of unique Chinese medicine theories for phenotypic classification and to explore molecular signatures in difficult-to-control asthma. Methods: The Chinese medicine syndrome differentiation algorithm (CMSDA) is a syndrome-scoring classification method based on the Chinese medicine overall observation theory. Patients with difficult-to-control asthma were classified into Cold- and Hot-pattern groups according to the CMSDA. DNA methylation and metabolomic profiles were obtained using Infinium Human Methylation 450 BeadChip and gas chromatography-mass spectrometer. Subsequently, an integrated bioinformatics analysis was performed to compare those two patterns and identify Cold/Hot-associated candidates, followed by functional validation studies. Results: A total of 20 patients with difficult-to-control asthma were enrolled in the study. Ten were grouped as Cold and 10 as Hot according to the CMSDA. We identified distinct whole-genome DNA methylation and metabolomic profiles between Cold- and Hot-pattern groups. ALDH3A1 gene exhibited variations in the DNA methylation probe cg10791966, while two metabolic pathways were associated with those two patterns. Conclusions: Our study introduced a novel diagnostic classification approach, the CMSDA, for difficult-to-control asthma. This is an alternative way to categorize diverse syndromes and link endotypes with omics profiles of this disease. ALDH3A1 might be a potential biomarker for precision diagnosis of difficult-to-control asthma.


Assuntos
Aldeído Desidrogenase/genética , Asma , Adulto , Algoritmos , Asma/classificação , Asma/diagnóstico , Asma/genética , Asma/metabolismo , Metilação de DNA , Feminino , Humanos , Masculino , Medicina Tradicional Chinesa , Metabolômica , Pessoa de Meia-Idade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA