Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 517
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Mar Drugs ; 22(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667785

RESUMO

Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.


Assuntos
Diabetes Mellitus , Suplementos Nutricionais , Hipoglicemiantes , Alga Marinha , Alga Marinha/química , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Organismos Aquáticos
2.
Methods ; 226: 28-34, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608850

RESUMO

It is generally accepted that mineral deficiencies, including magnesium and calcium, are widespread globally. Dietary supplementation may be an effective approach to combat such deficiencies. However, challenges associated with limited mineral solubility in the digestive system can impede effective dissolution and hinder absorption, leading to deficiency, and undesirable gastrointestinal disturbances including diarrhoea. Seawater is considered to be a rich source of bioactive magnesium, calcium, and 72 other trace minerals. In this study, we examine two different marine-derived multimineral products as potential dietary supplements. Aquamin-Mg, sourced from seawater is rich in magnesium (12%), and Aquamin F, a seaweed-derived multimineral is rich in calcium (32%). Both products also contain a diverse array of over 72 minerals, characteristic of their oceanic origin. Our study comprises two experiments. The first experiment evaluates and compares the solubility of Aquamin-Mg, commercially available magnesium bisglycinate, and Pure Magnesium Bisglycinate (PrizMAG) during in vitro digestion using the INFOGEST method. Results demonstrate that Aquamin-Mg exhibits superior solubility than the other magnesium sources during the gastric and intestinal phases, particularly when administered alongside food materials. The second experiment is a randomized, double-blind, placebo-controlled study in a small cohort of healthy older aged adults to assess the tolerability of a combined Aquamin-Mg/Aquamin-F supplement over a 12-week period. The findings indicate that this combination supplement is well-tolerated, with no significant adverse events reported, emphasizing its potential as a means of addressing mineral deficiencies.


Assuntos
Cálcio , Suplementos Nutricionais , Magnésio , Humanos , Magnésio/química , Suplementos Nutricionais/análise , Cálcio/química , Cálcio/metabolismo , Feminino , Masculino , Idoso , Método Duplo-Cego , Solubilidade , Água do Mar/química , Digestão , Pessoa de Meia-Idade , Disponibilidade Biológica , Alga Marinha/química , Adulto , Minerais
3.
Sci Rep ; 14(1): 6214, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486008

RESUMO

Fucoidan has attracted considerable attention from scientists and pharmaceutical companies due to its antioxidant, anticoagulant, anti-inflammatory, anti-tumor, and health-enhancing properties. However, the extraction of fucoidan from seaweeds often involves the use of harsh chemicals, which necessitates the search for alternative solvents. Additionally, the high viscosity and low cell permeability of high molecular weight (Mw) fucoidan can limit its effectiveness in drug action, while lower Mw fractions exhibit increased biological activity and are also utilized as dietary supplements. The study aimed to (1) extract fucoidan from the seaweed Fucus vesiculosus (FV) using an environmentally friendly solvent and compare it with the most commonly used extraction solvent, hydrochloric acid, and (2) assess the impact of ultrasound-assisted depolymerization on reducing the molecular weight of the fucoidan extracts and examine the cytotoxic effect of different molecular weight fractions. The findings indicated that the green depolymerization solvent, in conjunction with a brief ultrasound treatment, effectively reduced the molecular weight. Moreover, a significant decrease in cell viability was observed in selected samples, indicating potential anticancer properties. As a result, ultrasound was determined to be an effective method for depolymerizing crude fucoidan from Fucus Vesiculosus seaweed.


Assuntos
Fucus , Polissacarídeos , Alga Marinha , Alga Marinha/química , Fucus/química , Anticoagulantes , Solventes
4.
Int J Biol Macromol ; 263(Pt 2): 130364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401579

RESUMO

It is believed that polysaccharides will become a focal point for future production of food, pharmaceuticals, and materials due to their ubiquitous and renewable nature, as well as their exceptional properties that have been extensively validated in the fields of nutrition, healthcare, and materials. Sulfated polysaccharides derived from seaweed sources have attracted considerable attention owing to their distinctive structures and properties. The genus Codium, represented by the species C. fragile, holds significance as a vital economic green seaweed and serves as a traditional Chinese medicinal herb. To date, the cell walls of the genus Codium have been found to contain at least four types of sulfated polysaccharides, specifically pyruvylated ß-d-galactan sulfates, sulfated arabinogalactans, sulfated ß-l-arabinans, and sulfated ß-d-mannans. These sulfated polysaccharides exhibit diverse biofunctions, including anticoagulant, immune-enhancing, anticancer, antioxidant activities, and drug-carrying capacity. This review explores the structural and biofunctional diversity of sulfated polysaccharides derived from the genus Codium. Additionally, in addressing the impending challenges within the industrialization of these polysaccharides, encompassing concerns regarding scale-up production and quality control, we outline potential strategies to address these challenges from the perspectives of raw materials, extraction processes, purification technologies, and methods for quality control.


Assuntos
Clorófitas , Alga Marinha , Sulfatos/química , Clorófitas/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Alga Marinha/química , Mananas , Anticoagulantes/química
5.
Bioorg Chem ; 143: 107099, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190798

RESUMO

INTRODUCTION: Antihypertensive drugs that are chemically synthesized usually tend to initiate different health complications. The quest for bioactive molecules to create novel medicines has focused on Marine resources like seaweeds. These molecules can furnish a positive probability for patients to gain benefits from these natural substances. METHODS: This study aims to identify phytoconstituents present in brown seaweed-Padina boergesenii. Five different solvents were used to prepare extracts and their antioxidant activity as well as antihypertensive activity was evaluated. Phytoconstituents were identified using LC-MS/MS, and subjected to molecular interaction against ACE enzyme. RESULTS: The 70% ethanolic extract exhibited the highest total phenolic content (TPC), significant radical scavenging activity and concentration dependent Angiotensin Converting Enzyme (ACE) inhibition activity. LC-MS/MS analysis confirmed the presence of bioactive compounds from which 7,8 dihydroxycoumarin had the highest affinity against ACE enzyme in molecular docking study. CONCLUSION: These findings advocate that Padina boergesenii can be a potential source for developing novel antihypertensive therapeutic drug(s) and could pave the way for evolving effective and safe remedies from natural resources.


Assuntos
Anti-Hipertensivos , Alga Marinha , Humanos , Anti-Hipertensivos/farmacologia , Simulação de Acoplamento Molecular , Cromatografia Líquida , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Antioxidantes/farmacologia , Alga Marinha/química
6.
J Proteomics ; 293: 105063, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38151157

RESUMO

The brown seaweed Laminaria digitata, a novel feedstuff for weaned piglets, has potentially beneficial prebiotic properties. However, its recalcitrant cell wall challenges digestion in monogastrics. Alginate lyase is a promising supplement to mitigate this issue. This study's aim was to investigate the impact of incorporating 10% dietary Laminaria digitata, supplemented with alginate lyase, on the hepatic proteome and metabolome of weaned piglets. These diets introduced minor variations to the metabolome and caused significant shifts in the proteome. Dietary seaweed provided a rich source of n-3 PUFAs that could signal hepatic fatty acid oxidation (FABP, ACADSB and ALDH1B1). This may have affected the oxidative stability of the tissue, requiring an elevated abundance of GST for regulation. The presence of reactive oxygen species likely inflicted protein damage, triggering increased proteolytic activity (LAPTM4B and PSMD4). Alginate lyase supplementation augmented the number of differentially abundant proteins, which included GBE1 and LDHC, contributing to maintain circulating glucose levels by mobilizing glycogen stores and branched-chain amino acids. The enzymatic supplementation with alginate lyase amplified the effects of the seaweed-only diet. An additional filter was employed to test the effect of missing values on the proteomics analysis, which is discussed from a technical perspective. SIGNIFICANCE: Brown seaweeds such as Laminaria digitata have prebiotic and immune-modulatory components, such as laminarin, that can improve weaned piglet health. However, they have recalcitrant cell wall polysaccharides, such as alginate, that can elicit antinutritional effects on the monogastric digestive system. The aim of this study was to evaluate the effect of a high level of dietary L. digitata and alginate lyase supplementation on the hepatic metabolism of weaned piglets, using high throughput Omics approaches.


Assuntos
Algas Comestíveis , Laminaria , Polissacarídeo-Liases , Proteoma , Alga Marinha , Animais , Suínos , Proteômica , Dieta , Suplementos Nutricionais , Alga Marinha/química , Fígado
7.
Mar Pollut Bull ; 197: 115797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984092

RESUMO

In large-scale seaweed farming, an understanding of the decomposition process plays a pivotal role in optimizing cultivation practices by considering the influence of the bacterial community. Therefore, we assessed the bacterial community structure and its influence on environmental factors during Gracilaria lemaneiformis decomposition, utilizing both microcosms and in-situ simulations. The decomposition rates in the microcosms and in situ simulations reached 79 % within 180 days and 81 % within 50 days, respectively In the microcosms, the dissolved oxygen content decreased from 5.3 to 0.4 mg/L, while the concentrations of total organic carbon, nitrogen, and phosphorus in the water increased by 165 %, 1636 %, and 2360 %, respectively. The common dominant bacteria included Proteobacteria, Planctomycetes, Firmicutes, Bacteroidetes, and Spirochaetae. Planctomycetes and Firmicutes were positively correlated with the total organic carbon, nitrogen, and phosphorus concentrations. Planctomycetes species played significant roles during the decomposition process. The overall findings of this study could inform more sustainable seaweed cultivation practices.


Assuntos
Gracilaria , Rodófitas , Alga Marinha , Alga Marinha/química , Gracilaria/química , Bactérias , Firmicutes , Nitrogênio , Fósforo , Carbono
8.
J Proteomics ; 289: 105013, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37775079

RESUMO

Laminaria digitata, a brown seaweed with prebiotic properties, can potentially enhance the resilience of weaned piglets to nutritional distress. However, their cell wall polysaccharides elude digestion by monogastric animals' endogenous enzymes. In vitro studies suggest alginate lyase's ability to degrade such polysaccharides. This study aimed to assess the impact of a 10% dietary inclusion of L. digitata and alginate lyase supplementation on the ileum proteome and metabolome, adopting a hypothesis-generating approach. Findings indicated that control piglets escalated glucose usage as an enteric energy source, as evidenced by the increased abundance of PKLR and PCK2 proteins and decreased tissue glucose concentration. Additionally, the inclusion of seaweed fostered a rise in proteins linked to enhanced enterocyte structural integrity (ACTBL2, CRMP1, FLII, EML2 and MYLK), elevated peptidase activity (NAALADL1 and CAPNS1), and heightened anti-inflammatory activity (C3), underscoring improved intestinal function. In addition, seaweed-fed piglets showed a reduced abundance of proteins related to apoptosis (ERN2) and proteolysis (DPP4). Alginate lyase supplementation appeared to amplify the initial effects of seaweed-only feeding, by boosting the number of differential proteins within the same pathways. This amplification is potentially due to increased intracellular nutrient availability, making a compelling case for further exploration of this dietary approach. SIGNIFICANCE: Pig production used to rely heavily on antibiotics and zinc oxide to deal with post-weaning stress in a cost-effective way. Their negative repercussions on public health and the environment have motivated heavy restrictions, and a consequent search for alternative feed ingredients/supplements. One of such alternatives is Laminaria digitata, a brown seaweed whose prebiotic components that can help weaned piglets deal with nutritional stress, by improving their gut health and immune status. However, their recalcitrant cell walls have antinutritional properties, for which alginate lyase supplementation is a possible solution. By evaluating ileal metabolism as influenced by dietary seaweed and enzyme supplementation, we aim at discovering how the weaned piglet adapts to them and what are their effects on this important segment of the digestive system.


Assuntos
Laminaria , Alga Marinha , Animais , Suínos , Laminaria/química , Laminaria/metabolismo , Proteômica , Dieta , Suplementos Nutricionais/análise , Íleo/metabolismo , Polissacarídeos/metabolismo , Alga Marinha/química , Alga Marinha/metabolismo , Glucose , Ração Animal/análise
9.
Mar Drugs ; 21(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504916

RESUMO

Marine macroalgae, such as Padina boergesenii, are gaining recognition in the cosmetics industry as valuable sources of natural bioactive compounds. This study aimed to investigate the biochemical profile of P. boergesenii and evaluate its potential as a cosmetic ingredient. Fourier-transform infrared (FTIR), gas chromatography-mass spectrometry (GCMS), and high-resolution liquid chromatography-mass spectrometry quadrupole time-of-flight (HRLCMS QTOF) analyses were employed to assess the functional groups, phycocompounds, and beneficial compounds present in P. boergesenii. Pigment estimation, total phenol and protein content determination, DPPH antioxidant analysis, and tyrosinase inhibition assay were conducted to evaluate the extracts' ability to counteract oxidative stress and address hyperpigmentation concerns. Elemental composition and amino acid quantification were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and HRLCMS, respectively. FTIR spectroscopy confirmed diverse functional groups, including halo compounds, alcohols, esters, amines, and acids. GCMS analysis identified moisturizing, conditioning, and anti-aging compounds such as long-chain fatty alcohols, fatty esters, fatty acids, and hydrocarbon derivatives. HRLCMS QTOF analysis revealed phenolic compounds, fatty acid derivatives, peptides, terpenoids, and amino acids with antioxidant, anti-inflammatory, and skin-nourishing properties. Elemental analysis indicated varying concentrations of elements, with silicon (Si) being the most abundant and copper (Cu) being the least abundant. The total phenol content was 86.50 µg/mL, suggesting the presence of antioxidants. The total protein content was 113.72 µg/mL, indicating nourishing and rejuvenating effects. The ethanolic extract exhibited an IC50 value of 36.75 µg/mL in the DPPH assay, indicating significant antioxidant activity. The methanolic extract showed an IC50 value of 42.784 µg/mL. Furthermore, P. boergesenii extracts demonstrated 62.14% inhibition of tyrosinase activity. This comprehensive analysis underscores the potential of P. boergesenii as an effective cosmetic ingredient for enhancing skin health. Given the increasing use of seaweed-based bioactive components in cosmetics, further exploration of P. boergesenii's potential in the cosmetics industry is warranted to leverage its valuable properties.


Assuntos
Cosméticos , Phaeophyceae , Alga Marinha , Antioxidantes/farmacologia , Antioxidantes/análise , Extratos Vegetais/farmacologia , Monofenol Mono-Oxigenase , Cromatografia Gasosa-Espectrometria de Massas , Compostos Fitoquímicos/farmacologia , Phaeophyceae/química , Fenóis/farmacologia , Alga Marinha/química , Cosméticos/farmacologia
10.
Mar Drugs ; 21(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367653

RESUMO

In this study, we characterized the bioactive properties of three important brown seaweed species, Sargassum thunbergii, Undaria pinnatifida, and Saccharina japonica, by subcritical water extraction (SWE), as these species are well known for their beneficial health effects. Their physiochemical properties, including potential antioxidant, antihypertensive, and α-glucosidase inhibitory activity, and the antibacterial activity of the hydroysates were also analyzed. The highest total phlorotannin, total sugar content, and reducing sugar content in the S. thunbergii hydrolysates were 38.82 ± 0.17 mg PGE/g, 116.66 ± 0.19 mg glucose/g dry sample, and 53.27 ± 1.57 mg glucose/g dry sample, respectively. The highest ABTS+ and DPPH antioxidant activities were obtained in the S. japonica hydrolysates (124.77 ± 2.47 and 46.35 ± 0.01 mg Trolox equivalent/g, respectively) and the highest FRAP activity was obtained in the S. thunbergii hydrolysates (34.47 ± 0.49 mg Trolox equivalent/g seaweed). In addition, the seaweed extracts showed antihypertensive (≤59.77 ± 0.14%) and α-glucosidase inhibitory activity (≤68.05 ± 1.15%), as well as activity against foodborne pathogens. The present findings provide evidence of the biological activity of brown seaweed extracts for potential application in the food, pharmaceutical, and cosmetic sectors.


Assuntos
Alga Marinha , Água , Água/química , alfa-Glucosidases , Antioxidantes/química , Anti-Hipertensivos/análise , Alga Marinha/química , Glucose , Extratos Vegetais/farmacologia
11.
Mar Drugs ; 21(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37367682

RESUMO

Marine organisms have gained considerable biotechnological interest in recent years due to their wide variety of bioactive compounds with potential applications. Mycosporine-like amino acids (MAAs) are UV-absorbing secondary metabolites with antioxidant and photoprotective capacity, mainly found in organisms living under stress conditions (e.g., cyanobacteria, red algae, or lichens). In this work, five MAAs were isolated from two red macroalgae (Pyropia columbina and Gelidium corneum) and one marine lichen (Lichina pygmaea) by high-performance countercurrent chromatography (HPCCC). The selected biphasic solvent system consisted of ethanol, acetonitrile, saturated ammonium sulphate solution, and water (1:1:0.5:1; v:v:v:v). The HPCCC process for P. columbina and G. corneum consisted of eight separation cycles (1 g and 200 mg of extract per cycle, respectively), whereas three cycles were performed for of L. pygmaea (1.2 g extract per cycle). The separation process resulted in fractions enriched with palythine (2.3 mg), asterina-330 (3.3 mg), shinorine (14.8 mg), porphyra-334 (203.5 mg) and mycosporine-serinol (46.6 mg), which were subsequently desalted by using precipitation with methanol and permeation on a Sephadex G-10 column. Target molecules were identified by HPLC, MS, and NMR.


Assuntos
Líquens , Rodófitas , Alga Marinha , Alga Marinha/química , Líquens/química , Distribuição Contracorrente , Aminoácidos/química , Rodófitas/química , Extratos Vegetais/metabolismo , Raios Ultravioleta
12.
Mar Drugs ; 21(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37233494

RESUMO

Cancer is one of the most worldwide spread diseases and causes maximum death. Treatment of cancer depends on the host immune system and the type of drugs. The inefficiency of conventional cancer treatments as a result of drug resistance, nontargeted delivery, and chemotherapy-related negative side effects has caused bioactive phytochemicals to come into focus. As a result, recent years have seen an increase in research into screening and identifying natural compounds with anticancer properties. Recent studies on the isolation and use of polysaccharides derived from various marine algal species have revealed a variety of biological activities, including antioxidant and anticancer properties. Ulvan is a polysaccharide derived from various green seaweeds of the Ulva species in the family Ulvaceae. It has been demonstrated to have potent anticancer and anti-inflammatory properties through the modulation of antioxidants. It is vital to understand the mechanisms underlying the biotherapeutic activities of Ulvan in cancer and its role in immunomodulation. In this context, we reviewed the anticancer effects of ulvan based on its apoptotic effects and immunomodulatory activity. Additionally, we also focused on its pharmacokinetic studies in this review. Ulvan is the most conceivable candidate for use as a cancer therapeutic agent and could be used to boost immunity. Moreover, it may be established as an anticancer drug once its mechanisms of action are understood. Due to its high food and nutritive values, it can be used as a possible dietary supplement for cancer patients in the near future. This review may provide fresh perspectives on the potential novel role of ulvan, reveal a brand-new cancer-prevention strategy, and improve human health.


Assuntos
Neoplasias , Alga Marinha , Humanos , Antioxidantes/farmacologia , Alga Marinha/química , Sulfatos/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Verduras , Neoplasias/tratamento farmacológico
13.
Mar Drugs ; 21(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233499

RESUMO

Alaria esculenta is a brown seaweed farmed in many European countries for its biomass rich in useful bio compounds. This study aimed to identify the optimal growing season to maximise biomass production and quality. The seeded longlines of the brown seaweed were deployed in the southwest of Ireland in October and November 2019 and samples of the biomass were harvested in different dates, between March and June 2020. Biomass gain and composition, phenolic and flavonoid content (TPC and TFC) and biological activities (antioxidant and anti-hypertensive activities) of seaweed extracts prepared with Alcalase were evaluated. The biomass production was significantly higher for the line deployed in October (>20 kg·m-1). In May and June, an increasing amount of epiphytes was observed on the surface of A. esculenta. The protein content of A. esculenta varied between 11.2 and 11.76% and fat content was relatively low (1.8-2.3%). Regarding the fatty acids profile, A. esculenta was rich in polyunsaturated fatty acids (PUFA), especially in eicosapentaenoic acid (EPA). The samples analysed were very rich in Na, K, Mg, Fe, Mn, Cr and Ni. The content of Cd, Pb Hg was relatively low and below the maximum levels allowed. The highest TPC and TFC were obtained in extracts prepared with A. esculenta collected in March and levels of these compounds decreased with time. In general, the highest radical scavenging activities (ABTS and DPPH), as well as chelating activities (Fe2+ and Cu2+) were observed in early spring. Extracts from A. esculenta collected in March and April presented higher ACE inhibitory activity. The extracts from seaweeds harvested in March exhibited higher biological activity. It was concluded that an earlier deployment allows for maximising growth and harvest of biomass earlier when its quality is at the highest levels. The study also confirms the high content of useful bio compounds that can be extracted from A. esculenta and used in the nutraceutical and pharmaceutical industry.


Assuntos
Phaeophyceae , Alga Marinha , Antioxidantes/química , Phaeophyceae/química , Alga Marinha/química , Fenóis/farmacologia , Fenóis/análise , Extratos Vegetais/química
14.
Mar Drugs ; 21(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37233500

RESUMO

There is a growing interest in using brown algal extracts thanks to the bioactive substances they produce for adaptation to the marine benthic environment. We evaluated the anti-aging and photoprotective properties of two types of extracts (50%-ethanol and DMSO) obtained from different portions, i.e., apices and thalli, of the brown seaweed, Ericaria amentacea. The apices of this alga, which grow and develop reproductive structures during summer when solar radiation is at its peak, were postulated to be rich in antioxidant compounds. We determined the chemical composition and pharmacological effects of their extracts and compared them to the thallus-derived extracts. All the extracts contained polyphenols, flavonoids and antioxidants and showed significant biological activities. The hydroalcoholic apices extracts demonstrated the highest pharmacological potential, likely due to the higher content of meroditerpene molecular species. They blocked toxicity in UV-exposed HaCaT keratinocytes and L929 fibroblasts and abated the oxidative stress and the production of pro-inflammatory cytokines, typically released after sunburns. Furthermore, the extracts showed anti-tyrosinase and anti-hydrolytic skin enzyme activity, counteracting the collagenase and hyaluronidase degrading activities and possibly slowing down the formation of uneven pigmentation and wrinkles in aging skin. In conclusion, the E. amentacea apices derivatives constitute ideal components for counteracting sunburn symptoms and for cosmetic anti-aging lotions.


Assuntos
Phaeophyceae , Alga Marinha , Alga Marinha/química , Polifenóis , Phaeophyceae/química , Flavonoides/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
15.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241773

RESUMO

Seaweeds or algae are marine autotrophic organisms. They produce nutrients (e.g., proteins, carbohydrates, etc.) essential for the survival of living organisms as they participate in biochemical processes and non-nutritive molecules (such as dietary fibers and secondary metabolites), which can improve their physiological functions. Seaweed polysaccharides, fatty acids, peptides, terpenoids, pigments, and polyphenols have biological properties that can be used to develop food supplements and nutricosmetic products as they can act as antibacterial, antiviral, antioxidant, and anti-inflammatory compounds. This review examines the (primary and secondary) metabolites produced by algae, the most recent evidence of their effect on human health conditions, with particular attention to what concerns the skin and hair's well-being. It also evaluates the industrial potential of recovering these metabolites from biomass produced by algae used to clean wastewater. The results demonstrate that algae can be considered a natural source of bioactive molecules for well-being formulations. The primary and secondary metabolites' upcycling can be an exciting opportunity to safeguard the planet (promoting a circular economy) and, at the same time, obtain low-cost bioactive molecules for the food, cosmetic, and pharmaceutical industries from low-cost, raw, and renewable materials. Today's lack of methodologies for recovering bioactive molecules in large-scale processes limits practical realization.


Assuntos
Alga Marinha , Humanos , Alga Marinha/química , Organismos Aquáticos/química , Suplementos Nutricionais/análise , Carboidratos , Polissacarídeos/química
16.
Phytother Res ; 37(5): 2067-2091, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36971337

RESUMO

The ineffectiveness of traditional cancer therapies due to drug resistance, nontargeted delivery, and chemotherapy-associated adverse side effects has shifted attention to bioactive phytochemicals. Consequently, research efforts toward screening and identification of natural compounds with anticancer properties have increased in recent years. Marine seaweed-derived bioactive compounds, such as polyphenolic compounds, have exhibited anticancer properties. Phlorotannins (PTs), a major group of seaweed-derived polyphenolic compounds, have emerged as powerful chemopreventive and chemoprotective compounds, regulating apoptotic cell death pathways both in vitro and in vivo. In this context, this review focuses on the anticancer activity of polyphenols isolated from brown algae, with a special reference to PTs. Furthermore, we highlight the antioxidant effects of PTs and discuss how they can impact cell survival and tumor development and progression. Moreover, we discussed the potential therapeutic application of PTs as anticancer agents, having molecular mechanisms involving oxidative stress reduction. We have also discussed patents or patent applications that apply PTs as major components of antioxidant and antitumor products. With this review, researcher may gain new insights into the potential novel role of PTs, as well as uncover a novel cancer-prevention mechanism and improve human health.


Assuntos
Antineoplásicos , Neoplasias , Phaeophyceae , Alga Marinha , Humanos , Alga Marinha/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Taninos/farmacologia , Taninos/uso terapêutico , Taninos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Phaeophyceae/química , Neoplasias/tratamento farmacológico
17.
Mar Drugs ; 21(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36976221

RESUMO

Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of natural antioxidant compounds of great interest, including polyphenols, carotenoids, meroterpenoids, phytosterols, and several others. Such compounds provide a valuable contribution to innovation that can translate, for instance, into the development of new ingredients for preventing product deterioration, particularly in food products, cosmetics or biostimulants to boost crops production and tolerance to abiotic stress. This manuscript revises the chemical composition of Sargassum seaweeds, highlighting their antioxidant secondary metabolites, their mechanism of action, and multiple applications in fields, including agriculture, food, and health.


Assuntos
Sargassum , Alga Marinha , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Sargassum/química , Alga Marinha/química , Polifenóis/farmacologia , Carotenoides
18.
Food Chem ; 409: 135295, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36603477

RESUMO

The current consumers' demand for food naturalness is urging the search for new functional foods of natural origin with enhanced health-promoting properties. In this sense, algae constitute an underexplored biological source of nutraceuticals that can be used to fortify food products. Both marine macroalgae (or seaweeds) and microalgae exhibit a myriad of chemical constituents with associated features as a result of their primary and secondary metabolism. Thus, primary metabolites, especially polysaccharides and phycobiliproteins, present interesting properties to improve the rheological and nutritional properties of food matrices, whereas secondary metabolites, such as polyphenols and xanthophylls, may provide interesting bioactivities, including antioxidant or cytotoxic effects. Due to the interest in algae as a source of nutraceuticals by the food and related industries, novel strategies should be undertaken to add value to their derived functional components. As a result, metabolomics is considered a high throughput technology to get insight into the full metabolic profile of biological samples, and it opens a wide perspective in the study of algae metabolism, whose knowledge is still little explored. This review focuses on algae metabolism and its applications in the food industry, paying attention to the promising metabolomic approaches to be developed aiming at the functional characterization of these organisms.


Assuntos
Suplementos Nutricionais , Alga Marinha , Alga Marinha/química , Alimento Funcional , Antioxidantes , Metabolômica
19.
Sci Total Environ ; 857(Pt 3): 159517, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36302403

RESUMO

Although numerous drugs are practiced to control malaria and its vectors, more recently, eco-friendly control tools have been proposed to battle its etiologic agents. Thus, using green bionanotechnology approaches, we aimed to synthesize palladium nanoparticles (Pd NPs) from the macroalgae Sargassum fusiforme (Sf), its potential antiparasitic activity against P. falciparum, as well as its possible cytotoxicity, in HeLa cells. After the biosynthesis of the PdSf NPs, their characterization was carried out by UV-Vis, FESEM, and EDX analyses, and their hydrodynamic size, zeta potential, and surface area were determined. Furthermore, the functional groups of the PdSf NPs were analyzed by FT-IR and GC-MS. While PdSf NPs had an IC50 of 7.68 µg/mL (Chloroquine (CQ)-s) and 16.42 µg/mL, S. fusiforme extract had an IC50 of 14.38 µg/mL (CQ-s) and 35.27 µg/mL (CQ-r). With an IC50 value of 94.49 µg/mL, PdSf NPs exhibited the least toxic effect on the HeLa cells. The Lipinski rule of five and ADMET prediction were used to assess the in silico models of caffeine acid hexoside and quercetin 7-O-hexoside for the presence of drug-like properties. Pathogenic proteins, primarily responsible for motility, binding, and disease-causing, were the target of the structurally based docking studies between plant-derived compounds and pathogenic proteins. Thus, our study pioneered promising results that support the potential antiplasmodial activity of eco-friendly synthesized PdSf NPs using S. fusiforme extract against P. falciparum, opening perspectives for further exploration into the use of these NPs in malaria therapy.


Assuntos
Anopheles , Malária , Nanopartículas Metálicas , Sargassum , Alga Marinha , Animais , Humanos , Plasmodium falciparum , Paládio , Anopheles/parasitologia , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Alga Marinha/química , Células HeLa , Espectroscopia de Infravermelho com Transformada de Fourier , Larva , Mosquitos Vetores , Extratos Vegetais/química
20.
Biol Trace Elem Res ; 201(4): 2071-2087, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35665884

RESUMO

The anti-inflammatory, anti-arthritic, and antimicrobial activities of some common Egyptian seaweeds in addition to their phytochemical and heavy metal contents were investigated. Phytochemical screening of the seaweed extracts showed the presence of different primary and secondary metabolites with different concentrations according to their species and the used solvent. The ethanolic extract of Colpmenia sinuosa (CSBE2) exhibited the maximum anti-inflammatory and anti-arthritic activity at 1000 µg/ml concentration compared to other seaweed extracts. The dichloromethane extract of Corallina officinalis (CORM) exerted the highest antimicrobial activity with an average inhibition zone diameter (AV) = 15.29 mm and activity index (AI) = 1.53 and with the highest antagonistic activity against Escherichia coli (28 mm). It is followed by Ulva linza ethanolic extract (ULGE2) which recorded (AV) of 14.71 mm and (AI) of 1.30 with the highest antifungal activity against Candida albicans (30 mm). The collected seaweeds would therefore be a very promising source for treating inflammatory, arthritic, and microbial diseases. Moreover, the investigated seaweeds showed variable concentrations of heavy metals among various species. The mean concentrations of the heavy metals took the following order: Fe > Zn > Mn > Ba > Cu > As > Cr > Ni > Pb > V > Cd > Se > Co > Mo. Based on the permissible limits set by the WHO and CEVA, Pb and Ni in the studied seaweeds were found to be within the permissible limits, whereas Cd and Zn contents were at the borderline. Significant correlations were observed between studied parameters. The estimated daily intakes for most heavy metals were lower than the recommended daily intakes.


Assuntos
Anti-Infecciosos , Metais Pesados , Alga Marinha , Poluentes Químicos da Água , Cádmio/metabolismo , Egito , Chumbo/metabolismo , Poluentes Químicos da Água/análise , Metais Pesados/análise , Alga Marinha/química , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA