Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Metallomics ; 15(12)2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-37994650

RESUMO

The molecular mechanism of aluminum toxicity in biological systems is not completely understood. Saccharomyces cerevisiae is one of the most used model organisms in the study of environmental metal toxicity. Using an unbiased metallomic approach in yeast, we found that aluminum treatment caused phosphorus deprivation, and the lack of phosphorus increased as the pH of the environment decreased compared to the control strain. By screening the phosphate signaling and response pathway (PHO pathway) in yeast with the synthetic lethality of a new phosphorus-restricted aluminum-sensitive gene, we observed that pho84Δ mutation conferred severe growth defect to aluminum under low-phosphorus conditions, and the addition of phosphate alleviated this sensitivity. Subsequently, the data showed that PHO84 determined the intracellular aluminum-induced phosphorus deficiency, and the expression of PHO84 was positively correlated with aluminum stress, which was mediated by phosphorus through the coordinated regulation of PHO4/PHO2. Moreover, aluminum reduced phosphorus absorption and inhibited tobacco plant growth in acidic media. In addition, the high-affinity phosphate transporter NtPT1 in tobacco exhibited similar effects to PHO84, and overexpression of NtPT1 conferred aluminum resistance in yeast cells. Taken together, positive feedback regulation of the PHO pathway centered on the high-affinity phosphate transporters is a highly conservative mechanism in response to aluminum toxicity. The results may provide a basis for aluminum-resistant microorganisms or plant engineering and acidic soil treatment.


Assuntos
Fósforo na Dieta , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Fósforo na Dieta/metabolismo , Fósforo , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Homeodomínio/metabolismo
2.
Res Vet Sci ; 161: 138-144, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37384972

RESUMO

Aluminum is widely used in daily life due to its excellent properties. However, aluminum exposure to the environment severely threatens animal and human health. Conversely, selenium (Se) contributes to maintaining the balance of the immune system. Neutrophils exert immune actions in several ways, including neutrophil extracellular traps (NETs) that localize and capture exogenous substances. Despite the recent investigations on the toxic effects of aluminum and its molecular mechanisms, the immunotoxicity of aluminum nanoparticles on pigs and the antagonistic effect of selenium on aluminum toxicity are poorly understood. Here, we treated porcine peripheral blood neutrophils with zymosan for 3 h to induce NETs formation. Then, we investigated the effect of nanoaluminum on NETs formation in pigs and its possible molecular mechanisms. Microscopy observations revealed that NETs formation was inhibited by nanoaluminum. Using a multifunctional microplate reader, the production of extracellular DNA and the burst of reactive oxygen species (ROS) in porcine neutrophils were inhibited by nanoaluminum. Western blot analyses showed that nanoaluminum caused changes in amounts of cellular selenoproteins. After Se supplementation, the production of porcine NETs, the burst of ROS, and selenoprotein levels were restored. This study indicated that nanoaluminum inhibited the zymosan-induced burst of ROS and release of NETs from porcine neutrophils, possibly through the selenoprotein signaling pathway. In contrast, Se supplementation reduced the toxic effects of nanoaluminum and restored NETs formation.


Assuntos
Armadilhas Extracelulares , Selênio , Humanos , Animais , Suínos , Armadilhas Extracelulares/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Saccharomyces cerevisiae , Espécies Reativas de Oxigênio/metabolismo , Zimosan/toxicidade , Zimosan/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Neutrófilos/metabolismo
3.
Environ Sci Pollut Res Int ; 30(24): 65822-65834, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37093386

RESUMO

Aluminium is a non-essential metal, and its accumulation in the brain is linked with potent neurotoxic action and the development of many neurological diseases. This investigation, therefore, intended to examine the antagonistic efficacy of Ficus lyrata (fiddle-leaf fig) extract (FLE) conjugated with selenium nanoparticles (FLE-SeNPs) against aluminium chloride (AlCl3)-induced hippocampal injury in rats. Rats were allocated to five groups: control, FLE, AlCl3 (100 mg/kg), AlCl3 + FLE (100 mg/kg), and AlCl3 + FLE-SeNPs (0.5 mg/kg). All agents were administered orally every day for 42 days. The result revealed that pre-treated rats with FLE-SeNPs showed markedly lower acetylcholinesterase and Na+/K+-ATPase activities in the hippocampus than those in AlCl3 group. Additionally, FLE-SeNPs counteracted the oxidant stress-mediated by AlCl3 by increasing superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents in rat hippocampus. Besides, the formulated nanoparticles decreased the hippocampal malondialdehyde, carbonyl protein, and nitric oxide levels of AlCl3-exposed animals. Furthermore, FLE-SeNPs attenuated neural tissue inflammation, as demonstrated by decreased interleukin-1 beta, interleukin-6, nuclear factor kappa B, and glial fibrillary acidic protein. Remarkable anti-apoptotic action was exerted by FLE-SeNPs by increasing B cell lymphoma 2 and decreasing caspase-3 and Bcl-2-associated-X protein in AlCl3-exposed rats. The abovementioned results correlated well with the hippocampal histopathological findings. Given these results, SeNPs synthesized with FLE imparted a remarkable neuroprotective action against AlCl3-induced neurotoxicity by reversing oxidative damage, neuronal inflammation, and apoptosis in exposed rats.


Assuntos
Ficus , Nanopartículas , Selênio , Ratos , Animais , Selênio/metabolismo , Alumínio/metabolismo , Ficus/metabolismo , Acetilcolinesterase/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Neurotransmissores/metabolismo , Glutationa/metabolismo , Encéfalo/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Folhas de Planta/metabolismo
4.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902071

RESUMO

Tea plants have adapted to grow in tropical acidic soils containing high concentrations of aluminum (Al) and fluoride (F) (as Al/F hyperaccumulators) and use secret organic acids (OAs) to acidify the rhizosphere for acquiring phosphorous and element nutrients. The self-enhanced rhizosphere acidification under Al/F stress and acid rain also render tea plants prone to accumulate more heavy metals and F, which raises significant food safety and health concerns. However, the mechanism behind this is not fully understood. Here, we report that tea plants responded to Al and F stresses by synthesizing and secreting OAs and altering profiles of amino acids, catechins, and caffeine in their roots. These organic compounds could form tea-plant mechanisms to tolerate lower pH and higher Al and F concentrations. Furthermore, high concentrations of Al and F stresses negatively affected the accumulation of tea secondary metabolites in young leaves, and thereby tea nutrient value. The young leaves of tea seedlings under Al and F stresses also tended to increase Al and F accumulation in young leaves but lower essential tea secondary metabolites, which challenged tea quality and safety. Comparisons of transcriptome data combined with metabolite profiling revealed that the corresponding metabolic gene expression supported and explained the metabolism changes in tea roots and young leaves via stresses from high concentrations of Al and F. The study provides new insight into Al- and F-stressed tea plants with regard to responsive metabolism changes and tolerance strategy establishment in tea plants and the impacts of Al/F stresses on metabolite compositions in young leaves used for making teas, which could influence tea nutritional value and food safety.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Fluoretos/metabolismo , Alumínio/metabolismo , Metabolismo Secundário , Plantas/metabolismo , Compostos Orgânicos/metabolismo , Folhas de Planta/metabolismo , Chá/metabolismo
5.
Plant Physiol Biochem ; 196: 634-646, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36791535

RESUMO

Barley (Hordeum vulgare L.) is one of the most important cereal crop in the world, and is also the one being seriously affected by heavy metals, particularly aluminium (Al). Keeping in view the utility of barley as food, fodder and raw material for traditional beer brewing, the top-notch quality and higher production of this crop must be sustained. Phosphorus (P) has a quintessential role in plant growth with a potential to relieve symptoms caused by Al poisoning. Displaying a phytopromotive and stress alleviatory potential, Piriformospora indica (P. indica) can improve the stress tolerance in crops. Several studies have been conducted to evaluate the mechanism of Al translocation in a variety of crops including barley, however, the bio-remediative studies related to detoxification and/or sequestration of metals are scarce. Therefore, the current study was carried out to elucidate the tolerance mechanism of an Al-sensitive barley cultivar ZU9 following the colonization with P. indica and exogenous P supply by physio-biochemical, elemental, leaf ultrastructural and root proteome analyses. When compared to the Al alone treated counterparts, the Al + P + P.i treated plants exhibited 4.1-, 1.38-, 2.7 and 1.35-fold improved root and shoot fresh and dry weights, respectively. With the provision of additional phosphorus, the content of P in the root and shoot for Al + P + P.i group was reportedly higher (71.6% and 49.5%, respectively) as compared to the control group. Moreover, inoculation of P. indica combined with P improved barley leaves' cell arrangement and also maintained normal cell wall shape. The root protemics experiment was divided into three groups: Al, Al + P.i and Al + P + P.i. In total, 28, 598, and 823 differentially expressed proteins were found in Al + P.i vs. Al and Al + P + P.i vs. Al, and phenylpropanoid biosynthesis was the most prominently enriched pathway, which contributed significantly to the recuperating effects of P-P. indica interaction. Conslusively, it was found that the percentage of protein related to peroxidase was 70/359 (Al + P + P.i vs. Al) and 92/447 (Al + P + P.i vs. Al + P.i), respectively, which indicated that P. indica in combination with P might be involved in the regulation of peroxidases, increasing the adaptability of barley plants by enhanced reactive oxygen species (ROS) scavenging mechansism.


Assuntos
Basidiomycota , Hordeum , Hordeum/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Raízes de Plantas/metabolismo , Fósforo/metabolismo , Proteômica , Basidiomycota/fisiologia , Estresse Fisiológico
6.
Genes (Basel) ; 14(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36672871

RESUMO

Boron (B) is an essential mineral nutrient for growth of plants, and B deficiency is now a worldwide problem that limits production of B deficiency-sensitive crops, such as rape and cotton. Agronomic practice has told that balanced B and other mineral nutrient fertilizer applications is helpful to promote crop yield. In recent years, much research has reported that applying B can also reduce the accumulation of toxic elements such as cadmium and aluminum in plants and alleviate their toxicity symptoms. Therefore, the relation between B and other elements has become an interesting issue for plant nutritionists. Here we summarize the research progress of the interaction between B and macronutrients such as nitrogen, phosphorus, calcium, potassium, magnesium, and sulfur, essential micronutrients such as iron, manganese, zinc, copper, and molybdenum, and beneficial elements such as sodium, selenium, and silicon. Moreover, the interaction between B and toxic elements such as cadmium and aluminum, which pose a serious threat to agriculture, is also discussed in this paper. Finally, the possible physiological mechanisms of the interaction between B and other elements in plants is reviewed. We propose that the cell wall is an important intermediary between interaction of B and other elements, and competitive inhibition of elements and related signal transduction pathways also play a role. Currently, research on the physiological role of B in plants mainly focuses on its involvement in the structure and function of cell walls, and our understanding of the details for interactions between B and other elements also tend to relate to the cell wall. However, we know little about the metabolic process of B inside cells, including its interactions with other elements. More research is needed to address the aforementioned research questions in future.


Assuntos
Boro , Selênio , Boro/toxicidade , Cádmio/metabolismo , Alumínio/metabolismo , Plantas/metabolismo , Selênio/metabolismo
7.
Ecotoxicol Environ Saf ; 249: 114421, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529044

RESUMO

Previous studies have determined that magnesium (Mg) in appropriate concentrations prevents plants from suffering from abiotic stress. To better understand the mechanism of Mg alleviation of aluminum (Al) stress in apple, we investigated the effect of Mg on plant growth, photosynthetic fluorescence, antioxidant system, and carbon (C) and nitrogen (N) metabolism of apple seedlings under Al toxicity (1.5 mmol/L) via a hydroponic experiment. Al stress induced the production of reactive oxygen in the leaves and roots and reduced the total dry weight (DW) by 52.37 % after 20 days of treatment relative to plants grown without Al, due to hindered photosynthesis and alterations in C and N metabolism. By contrast, total DW decreased by only 11.07 % in the Mg-treated plants under Al stress. Supplementation with 3.0 mmol/L Mg in the Al treatment decreased Al accumulation in the apple plants and reduced Al-induced oxidative damage by enhancing the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and reducing the production of H2O2 and malondialdehyde (MDA). Under Al stress, the Mg-treated plants showed a 46.17 % higher photosynthetic rate than the non-treated plants. Supplementation with Mg significantly increased the sucrose content by increasing sucrose synthase (SS) and sucrose-phosphate synthase (SPS) activities. Moreover, Mg facilitated the transport of 13C-carbohydrates from the leaves to roots. Regarding N metabolism, the nitrate reductase (NR), glutamine synthase (GS), and glutamate synthase (GOGAT) activities in the roots and leaves of the Mg-treated plants were significantly higher than those of the non-treated plants under Al stress. Compared with the non-treated plants under Al stress, the Mg-treated plants exhibited a significantly high level of NO3- and soluble protein content in the leaves, roots, and stems, but a low level of free amino acids. Furthermore, Mg significantly improved nitrogen accumulation and enhanced the transport of 15N from the roots to leaves. Overall, our results revealed that Mg alleviates Al-induced growth inhibition by enhancing antioxidant capacity and C-N metabolism in apple seedlings.


Assuntos
Antioxidantes , Malus , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Plântula , Alumínio/toxicidade , Alumínio/metabolismo , Magnésio/farmacologia , Magnésio/metabolismo , Malus/metabolismo , Carbono/metabolismo , Peróxido de Hidrogênio/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
8.
Ecotoxicol Environ Saf ; 246: 114178, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36244168

RESUMO

Plant root growth is inhibited markedly by aluminium (Al) even at micromolar concentration and Al is mainly accumulated in plant roots outer layer cell walls. But the underlying reason for this asymmetric transverse distribution is unknown. In this study, two wheat (Triticum aestivum L.) genotypes ET8 and ES8 differing in Al resistance were investigated by hydroculture. The Al-tolerant ET8 expressed a higher root elongation rate (RER) than Al-sensitive ES8 under Al stress. Morphological examination showed symptoms such as root surface ruptures were observed in ET8 and ES8, with ES8 being more obvious. The cation exchange capacity (CEC) values of root tips of ES8 under different Al concentrations are higher than those of ET8. The sensitive genotype ES8 accumulated more Al than ET8 in plant apical root tips as well as cell walls. Under 48 h Al exposure, the root cell wall pectin concentration was increased with a higher magnitude in ES8 than in ET8. The functional groups on ET8 and ES8 roots outer layer and inner cells were investigated by Fourier transform infrared spectrometry (FTIR) under Al stress. The FTIR spectra of selected examined areas showed that the characteristic absorption peaks were located at 1692, 2920, and 3380 cm-1. The outer layer cells had stronger peaks than inner cells at wavenumber 1680-1740 cm-1, indicating root outer layer cells contain more carboxyls in both ET8 and ES8. The results demonstrate that Al transverse distribution on plants apical root cross section is likely influenced by functional groups such as negatively charged carboxylic acid.


Assuntos
Alumínio , Triticum , Triticum/genética , Triticum/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Raízes de Plantas/metabolismo , Parede Celular/metabolismo , Pectinas/metabolismo
9.
J Agric Food Chem ; 70(43): 14096-14108, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36256444

RESUMO

Polyphenol-rich tea plants are aluminum (Al) accumulators. Whether an association exists between polyphenols and Al accumulation in tea plants remains unclear. This study revealed that the accumulation of the total Al and bound Al contents were both higher in tea samples with high flavonol content than in low, and Al accumulation in tea plants was significantly and positively correlated with their flavonol content. Furthermore, the capability of flavonols combined with Al was higher than that of epigallocatechin gallate (EGCG) and root proanthocyanidins (PAs) under identical conditions. Flavonol-Al complexes signals (94 ppm) were detected in the tender roots and old leaves of tea plants through solid-state 27Al nuclear magnetic resonance (NMR) imaging, and the strength of the signals in the high flavonol content tea samples was considerably stronger than that in the low flavonol content tea samples. This study provides a new perspective for studying Al accumulation in different tea varieties.


Assuntos
Alumínio , Camellia sinensis , Alumínio/metabolismo , Camellia sinensis/química , Folhas de Planta/química , Chá/metabolismo , Flavonóis/metabolismo
10.
J Exp Bot ; 73(14): 4923-4940, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35661874

RESUMO

The genes in the subfamily PG1ß (beta subunit of poly-galacturonase isoenzyme 1) have a clear effect on the biosynthesis pathway of pectin, a main component of the cell wall. However, the detailed functions of the PG1ß-like gene members in Arabidopsis (AtPG1-3) have not yet been determined. In this study, we investigated their functional roles in response to aluminum (Al) stress. Our results indicate that the PG1ß-like gene members are indeed involved in the Al-stress response and they can modulate its accumulation in roots to achieve optimum root elongation and hence better seedling growth. We found that transcription factor EIN3 (ETHYLENE INSENSITIVE 3) alters pectin metabolism and the EIN3 gene responds to Al stress to affect the pectin content in the root cell walls, leading to exacerbation of the inhibition of root growth, as reflected by the phenotypes of overexpressing lines. We determined that EIN3 can directly bind to the promoter regions of PG1-3, which act downstream of EIN3. Thus, our results show that EIN3 responds to Al stress in Arabidopsis directly through regulating the expression of PG1-3. Hence, EIN3 mediates their functions by acting as a biomarker in their molecular biosynthesis pathways, and consequently orchestrates their biological network in response to Al stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Alumínio/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Pectinas/metabolismo
11.
BMC Plant Biol ; 22(1): 306, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751024

RESUMO

BACKGROUND: The major aluminum (Al) detoxication mechanism of tea plant (Camellia sinensis), as an Al hyperaccumulator plant, is the fixation of almost 70% of Al in the cell walls. Pectin is the primary constituent of cell walls, a degree of methylation of pectin polysaccharides regulated by the pectin methylesterase (PME) genes can greatly affect the Al binding capacity. The knowledge on PME gene family in tea plant is still poor. RESULTS: We identified 66 (CsPME1-CsPME66) PME genes from C. sinensis genome. We studied their protein characterization, conserved motifs, gene structure, systematic evolution and gene expression under Al treatments, to establish a basis for in-depth research on the function of PMEs in tea plant. Gene structures analysis revealed that the majority of PME genes had 2-4 exons. Phylogenetic results pointed out that the PME genes from the same species displayed comparatively high sequence consistency and genetic similarity. Selective pressure investigation suggested that the Ka/Ks value for homologous genes of PME family was less than one. The expression of CsPMEs under three Al concentration treatments was tissue specific, eight PME genes in leaves and 15 in roots displayed a trend similar to of the Al contents and PME activities under Al concentration treatments, indicating that the degree of pectin de-esterification regulated by PME was crucial for Al tolerance of tea plant. CONCLUSIONS: Sixty-six CsPME genes were identified for the first time in tea plant. The genome-wide identification, classification, evolutionary and transcription analyses of the PME gene family provided a new direction for further research on the function of PME gene in Al tolerance of tea plant.


Assuntos
Camellia sinensis , Alumínio/metabolismo , Alumínio/toxicidade , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chá
12.
Plant Physiol Biochem ; 182: 133-144, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35490639

RESUMO

Hydrogen sulfide (H2S) improves aluminum (Al) resistance in rice, however, the underlying mechanism remains unclear. In the present study, treatment with 30-µM Al significantly inhibited rice root growth and increased the total Al content, apoplastic and cytoplasm Al concentration in the rice roots. However, pretreatment with NaHS (H2S donor) reversed these negative effects. Pretreatment with NaHS significantly increased energy production under Al toxicity conditions, such as by increasing the content of ATP and nonstructural carbohydrates. In addition, NaHS stimulated the AsA-GSH cycle to decrease the peroxidation damage induced by Al toxicity. Pretreatment with NaHS significantly inhibited ethylene emissions in the rice and then inhibited pectin synthesis and increased the pectin methylation degree to reduce cell wall Al deposition. The phytohormones indole-3-acetic and brassinolide were also involved in the alleviation of Al toxicity by H2S. The transcriptome results further confirmed that H2S alleviates Al toxicity by increasing the pathways relating to material and energy metabolism, redox reactions, cell wall components, and signal transduction. These findings improve our understanding of how H2S affects rice responses to Al toxicity, which will facilitate further studies on crop safety.


Assuntos
Sulfeto de Hidrogênio , Oryza , Alumínio/metabolismo , Alumínio/toxicidade , Parede Celular/metabolismo , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Oryza/metabolismo , Pectinas/metabolismo
13.
BMC Plant Biol ; 22(1): 203, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35439932

RESUMO

BACKGROUND: Tea is one of the most popular non-alcoholic beverages in the world for its flavors and numerous health benefits. The tea tree (Camellia sinensis L.) is a well-known aluminum (Al) hyperaccumulator. However, it is not fully understood how tea plants have adapted to tolerate high concentrations of Al, which causes an imbalance of mineral nutrition in the roots. RESULTS: Here, we combined ionomic and transcriptomic profiling alongside biochemical characterization, to probe the changes of metal nutrients and Al responsive genes in tea roots grown under increasing concentrations of Al. It was found that a low level of Al (~ 0.4 mM) maintains proper nutrient balance, whereas a higher Al concentration (2.5 mM) compromised tea plants by altering micro- and macro-nutrient accumulation into roots, including a decrease in calcium (Ca), manganese (Mn), and magnesium (Mg) and an increase in iron (Fe), which corresponded with oxidative stress, cellular damage, and retarded root growth. Transcriptome analysis revealed more than 1000 transporter genes that were significantly changed in expression upon Al exposure compared to control (no Al) treatments. These included transporters related to Ca and Fe uptake and translocation, while genes required for N, P, and S nutrition in roots did not significantly alter. Transporters related to organic acid secretion, together with other putative Al-tolerance genes also significantly changed in response to Al. Two of these transporters, CsALMT1 and CsALS8, were functionally tested by yeast heterologous expression and confirmed to provide Al tolerance. CONCLUSION: This study shows that tea plant roots respond to high Al-induced mineral nutrient imbalances by transcriptional regulation of both cation and anion transporters, and therefore provides new insights into Al tolerance mechanism of tea plants. The altered transporter gene expression profiles partly explain the imbalanced metal ion accumulation that occurred in the Al-stressed roots, while increases to organic acid and Al tolerance gene expression partly explains the ability of tea plants to be able to grow in high Al containing soils. The improved transcriptomic understanding of Al exposure gained here has highlighted potential gene targets for breeding or genetic engineering approaches to develop safer tea products.


Assuntos
Alumínio , Camellia sinensis , Alumínio/metabolismo , Ânions/metabolismo , Camellia sinensis/metabolismo , Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Minerais/metabolismo , Nutrientes , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Chá
14.
Nutr Neurosci ; 25(10): 2077-2091, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34057051

RESUMO

BACKGROUND: This study investigated the modulatory capacity of two Solanum green leafy vegetables; S. macrocarpon L. (African eggplant AE) and S. nigrum L. (Black nightshade BN) on dysregulation of some antioxidant, pro-apoptotic, pro-inflammatory-like, acetylcholinesterase gene expression and redox status in the Drosophila melanogaster model of aluminum-induced neurotoxicity. METHODS: Flies were exposed to AlCl3 (6.7 mM) alone or in combination with the leaves (0.1 and 1.0%) from both samples in their diet for seven days. Thereafter, the fly heads were rapidly separated, homogenized, and used to assay for reactive oxygen species (ROS), total thiol content, catalase, glutathione-S-transferase (GST), acetylcholinesterase (AChE) activities, and the expression of antioxidant-mediators (Hsp70, catalase, cnc/Nrf2, Jafrac1 and FOXO), acetylcholinesterase (Ace1), pro-apoptotic caspase-like (Dronc) and its regulator (reaper), as well as inflammation-related (NF-kB/Relish) genes. RESULTS: Results showed that AlCl3-exposed flies had significantly reduced survival rate which were ameliorated by AlCl3 also elevated ROS, GST and reduced AChE activities in fly heads while dietary inclusions of AE and BN ameliorated survial rate and oxidative stress in AlCl3-exposed flies. In addition, Hsp70, Jafrac1, reaper and NF-kҝB/Relish were significantly upregulated in AlCl3-exposed fly heads, while cnc/Nrf2 and FOXO were significantly downregulated, but catalase, Dronc and Ace were, not significantly modulated. Nevertheless, these impairments in gene expression levels were ameliorated by dietary inclusions of AE and BN during AlCl3 exposure. CONCLUSION: These findings showed that dietary inclusions of AE and BN leaves offer protection against Al-induced neurotoxicity in D. melanogaster and thus, could serve as functional foods with neuroprotective properties.


Assuntos
Síndromes Neurotóxicas , Solanum nigrum , Solanum , Acetilcolinesterase/metabolismo , Alumínio/metabolismo , Animais , Antioxidantes/metabolismo , Caspases/genética , Caspases/metabolismo , Catalase/genética , Catalase/metabolismo , Dieta , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/prevenção & controle , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Solanum/metabolismo , Solanum nigrum/metabolismo , Compostos de Sulfidrila/metabolismo , Verduras
15.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681960

RESUMO

Effects of Al content on the formation and the photoluminescence properties of CaAlSiN3:Eu2+ phosphor (CASIN) were investigated by a combustion synthesis method. XRD (X-ray diffraction), combined with PL (photoluminescence), TEM-EDS (transmission electron microscope equipped with an energy-dispersive X-ray spectroscope), and SAED (selected area electron diffraction) measurements, show that the bar-like CASIN gives a stronger emission than the plate-like and agglomerated fine particles. The emission intensity increases as the Al content increased from Al = 0.2 to Al = 0.8, which resulted from the extent of formation of CASIN increases. Then, the emission intensity decreases as the Al content is increased from Al = 0.8 to Al = 1.5, which resulted from the transformation of morphology of CASIN and a large amount formation of AlN. In addition, the extent of formation of CASIN increases with increasing Al from Al = 0.2 to Al = 1.2 and begins to decrease as Al is further increased to 1.5, and thus the peak emission wavelength increases from 647 nm to 658 nm as the Al molar ratio is increased from 0.2 to 1.2 and begins to decrease when further increasing the Al molar ratio to 1.5, which resulted from the large amount of AlN formed.


Assuntos
Alumínio/metabolismo , Cálcio/química , Carbazóis/química , Európio/química , Luminescência , Substâncias Luminescentes/química , Fósforo/química , Alumínio/análise
16.
Plant Commun ; 2(3): 100182, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34027395

RESUMO

Unlike most crops, in which soil acidity severely limits productivity, tea (Camellia sinensis) actually prefers acid soils (pH 4.0-5.5). Specifically, tea is very tolerant of acidity-promoted aluminum (Al) toxicity, a major factor that limits the yield of most other crops, and it even requires Al for optimum growth. Understanding tea Al tolerance and Al-stimulatory mechanisms could therefore be fundamental for the future development of crops adapted to acid soils. Here, we summarize the Al-tolerance mechanisms of tea plants, propose possible mechanistic explanations for the stimulation of tea growth by Al based on recent research, and put forward ideas for future crop breeding for acid soils.


Assuntos
Alumínio/metabolismo , Camellia sinensis/fisiologia , Melhoramento Vegetal , Solo/química , Camellia sinensis/genética
17.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925312

RESUMO

Red cabbage (RC) and purple sweet potato (PSP) are naturally rich in acylated cyanidin glycosides that can bind metal ions and develop intramolecular π-stacking interactions between the cyanidin chromophore and the phenolic acyl residues. In this work, a large set of RC and PSP anthocyanins was investigated for its coloring properties in the presence of iron and aluminum ions. Although relatively modest, the structural differences between RC and PSP anthocyanins, i.e., the acylation site at the external glucose of the sophorosyl moiety (C2-OH for RC vs. C6-OH for PSP) and the presence of coordinating acyl groups (caffeoyl) in PSP anthocyanins only, made a large difference in the color expressed by their metal complexes. For instance, the Al3+-induced bathochromic shifts for RC anthocyanins reached ca. 50 nm at pH 6 and pH 7, vs. at best ca. 20 nm for PSP anthocyanins. With Fe2+ (quickly oxidized to Fe3+ in the complexes), the bathochromic shifts for RC anthocyanins were higher, i.e., up to ca. 90 nm at pH 7 and 110 nm at pH 5.7. A kinetic analysis at different metal/ligand molar ratios combined with an investigation by high-resolution mass spectrometry suggested the formation of metal-anthocyanin complexes of 1:1, 1:2, and 1:3 stoichiometries. Contrary to predictions based on steric hindrance, acylation by noncoordinating acyl residues favored metal binding and resulted in complexes having much higher molar absorption coefficients. Moreover, the competition between metal binding and water addition to the free ligands (leading to colorless forms) was less severe, although very dependent on the acylation site(s). Overall, anthocyanins from purple sweet potato, and even more from red cabbage, have a strong potential for development as food colorants expressing red to blue hues depending on pH and metal ion.


Assuntos
Antocianinas/química , Brassica/química , Ipomoea batatas/química , Pigmentos Biológicos/química , Acilação , Alumínio/química , Alumínio/metabolismo , Antocianinas/metabolismo , Brassica/metabolismo , Quelantes/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cor , Corantes de Alimentos , Concentração de Íons de Hidrogênio , Íons/metabolismo , Ipomoea batatas/metabolismo , Ferro/química , Ferro/metabolismo , Cinética , Metais/metabolismo , Fenóis/metabolismo , Extratos Vegetais/química
18.
J Orthop Res ; 39(9): 1908-1920, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33002223

RESUMO

Statement of Clinical Significance: There remains the need to develop materials and surfaces that can increase the rate of implant osseointegration. Though osteoanabolic agents, like bone morphogenetic protein (BMP), can provide signaling for osteogenesis, the appropriate design of implants can also produce an innate cellular response that may reduce or eliminate the need to use additional agents to stimulate bone formation. Studies show that titanium implant surfaces that mimic the physical properties of osteoclast resorption pits regulate cellular responses of bone marrow stromal cells (MSCs) by altering cell morphology, transcriptomes, and local factor production to increase their differentiation into osteoblasts without osteogenic media supplements required for differentiation of MSCs on tissue culture polystyrene (TCPS). The goal of this study was to determine how cells in contact with biomimetic implant surfaces regulate the microenvironment around these surfaces in vitro. Two different approaches were used. First, unidirectional signaling was assessed by treating human MSCs grown on TCPS with conditioned media from MSC cultures grown on Ti6Al4V biomimetic surfaces. In the second set of studies, bidirectional signaling was assessed by coculturing MSCs grown on mesh inserts that were placed into culture wells in which MSCs were grown on the biomimetic Ti6Al4V substrates. The results show that biomimetic Ti6Al4V surface properties induce MSCs to produce factors within 7 days of culture that stimulate MSCs not in contact with the surface to exhibit an osteoblast phenotype via endogenous BMP2 acting in a paracrine signaling manner.


Assuntos
Células-Tronco Mesenquimais , Titânio , Alumínio/metabolismo , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Osteoblastos/metabolismo , Osteogênese , Propriedades de Superfície , Titânio/química , Vanádio
19.
J Sci Food Agric ; 101(2): 379-387, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32623727

RESUMO

Tea is the one of the most popular non-alcoholic caffeinated beverages in the world. Tea is produced from the tea plant (Camellia sinensis (L.) O. Kuntze), which is known to accumulate fluoride. This article systematically analyzes the literature concerning fluoride absorption, transportation and fluoride tolerance mechanisms in tea plants. Fluoride bioavailability and exposure levels in tea infusions are also reviewed. The circulation of fluoride within the tea plantation ecosystems is in a positive equilibrium, with greater amounts of fluoride introduced to tea orchards than removed. Water extractable fluoride and magnesium chloride (MgCl2 ) extractable fluoride in plantation soil are the main sources of absorption by tea plant root via active trans-membrane transport and anion channels. Most fluoride is readily transported through the xylem as F- /F-Al complexes to leaf cell walls and vacuole. The findings indicate that tea plants employ cell wall accumulation, vacuole compartmentalization, and F-Al complexes to co-detoxify fluoride and aluminum, a possible tolerance mechanism through which tea tolerates higher levels of fluoride than most plants. Furthermore, dietary and endogenous factors influence fluoride bioavailability and should be considered when exposure levels of fluoride in commercially available dried tea leaves are interpreted. The relevant current challenges and future perspectives are also discussed. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/química , Fluoretos/análise , Fluoretos/metabolismo , Alumínio/análise , Alumínio/metabolismo , Disponibilidade Biológica , Transporte Biológico , Camellia sinensis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Humanos , Folhas de Planta/química , Folhas de Planta/metabolismo , Medição de Risco , Solo/química , Chá/química
20.
Braz J Microbiol ; 51(4): 1909-1918, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32748245

RESUMO

Filamentous fungi have been proved to have a pronounced capability to recover metals from mineral ores. However, the metal recovery yield is reduced due to toxic effects triggered by various heavy metals present in the ore. The current study highlights the fungal adaptations to the toxic effects of metals at higher pulp densities for the enhanced bio-recovery of aluminum from low-grade bauxite. In the previous studies, a drastic decrease in the aluminum dissolution was observed when the bauxite pulp density was increased from 1 to 10% (w/v) due to the high metal toxicity and low tolerance of Aspergillus niger and Penicillium simplicissium to heavy metals. These fungi were adapted in order to increase heavy metal tolerance of these fungal strains and also to get maximum Al dissolution. A novel approach was employed for the adaptation of fungal strains using a liquid growth medium containing 5% bauxite pulp density supplemented with molasses as an energy source. The mycelia of adapted strains were harvested and subsequently cultured in a low-cost oat-agar medium. Batch experiments were performed to compare the aluminum leaching efficiencies in the direct one-step and the direct two-step bioleaching processes. FE-SEM analysis revealed the direct destructive and corrosive action by the bauxite-tolerant strains due to the extension and penetration of the vegetative mycelium filaments into the bauxite matrix. XRD analysis of the bioleached bauxite samples showed a considerable decline in oxide minerals such as corundum and gibbsite. Results showed a high amount of total Al (≥ 98%) was successfully bioleached and solubilized from low-grade bauxite by the adapted fungal strains grown in the presence of 5% pulp density and molasses as a low-cost substrate. Graphical abstract.


Assuntos
Óxido de Alumínio/metabolismo , Alumínio/isolamento & purificação , Alumínio/metabolismo , Aspergillus niger/metabolismo , Penicillium/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Meios de Cultura/química , Melaço , Micélio/metabolismo , Penicillium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA