Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 131031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518930

RESUMO

In this study, the effects of citric acid-autoclaving (CA-A) treatment on physicochemical and digestive properties of the native ginseng starches were investigated. The results showed that ginseng starch exhibited a B-type crystal structure with a low onset pasting temperature of 44.23 ± 0.80 °C, but high peak viscosity and setback viscosity of 5897.34 ± 53.72 cP and 692.00 ± 32.36 cP, respectively. The granular morphology, crystal and short-range ordered structure of ginseng starches were destroyed after CA-A treatment. The more short-chain starches were produced, resulting in the ginseng starches solubility increased. In addition, autoclaving, citric acid (CA) and CA-A treatment promoted polymerization and recrystallization of starch molecules, increased the proportion of amylopectin B1, and B3 chains, and improved molecular weight and resistant starch (RS) content of ginseng starches. The most significant multi-scale structural change was induced by CA-A treatment, which reduced the relative crystallinity of ginseng starch from 28.26 ± 0.24 % to 2.75 ± 0.08 %, and increased the content of RS to 54.30 ± 0.14 %. These findings provided a better understanding of the structure and properties of Chinese ginseng starches and offered new ideas for the deep processing of ginseng foods.


Assuntos
Ácido Cítrico , Panax , Ácido Cítrico/química , Amido/química , Amilopectina/química , Viscosidade , Amido Resistente , Amilose/química
2.
Int J Biol Macromol ; 265(Pt 2): 131052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522698

RESUMO

This study explored the potential of purple potato anthocyanins (PPAs) in regulating the digestive properties of starches of various crystalline types. In vitro digestion experiments indicated that PPAs inhibit the hydrolysis of rice starch (A-type) better than that of garden pea starch (C-type) and potato starch (B-type). Further structural assessment of different PPA-starch systems showed that PPAs and starch likely interact through non-covalent bonds, resulting in structural changes. Microstructural changes observed in the starches were consistent with the in vitro digestion results, and the chain length and proportions of short/long chains in amylopectin molecules affected the binding strengths and interaction modes between PPAs and starch. Hence, the three starches differed in their PPA loading efficiency and digestibility. These discoveries contribute to a deeper understanding of the mechanisms underlying the inhibition of starch digestibility by PPAs. They can aid the formulation of value-added products and low-glycemic-index foods.


Assuntos
Antocianinas , Solanum tuberosum , Solanum tuberosum/química , Digestão , Amido/química , Amilopectina/química
3.
Carbohydr Polym ; 331: 121860, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388056

RESUMO

Potato starch with mutations in starch branching enzyme genes (SBEI, SBEII) and granule-bound starch synthase gene (GBSS) was characterized for molecular and thermal properties. Mutations in GBSS were here stacked to a previously developed SBEI and SBEII mutation line. Additionally, mutations in the GBSS gene alone were induced in the wild-type variety for comparison. The parental line with mutations in the SBE genes showed a âˆ¼ 40 % increase in amylose content compared with the wild-type. Mutations in GBSS-SBEI-SBEII produced non-waxy, low-amylose lines compared with the wild-type. An exception was a line with one remaining GBSS wild-type allele, which displayed ∼80 % higher amylose content than wild-type. Stacked mutations in GBSS in the SBEI-SBEII parental line caused alterations in amylopectin chain length distribution and building block size categories of whole starch. Correlations between size categories of building blocks and unit chains of amylopectin were observed. Starch in GBSS-SBEI-SBEII mutational lines had elevated peak temperature of gelatinization, which was positively correlated with large building blocks.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Solanum tuberosum , Sintase do Amido , Amilopectina/química , Sintase do Amido/genética , Sintase do Amido/metabolismo , Amilose , Solanum tuberosum/metabolismo , Estrutura Molecular , Amido/química , Mutação , Enzima Ramificadora de 1,4-alfa-Glucana/química
4.
Carbohydr Polym ; 330: 121791, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368094

RESUMO

This work aimed to evaluate the structure and functional characteristics of starch from ten hulled oat cultivars grown in different locations in China. The protein, phosphorus, amylose, and starch contents were 0.2-0.4 %, 475.7-691.8 ppm, 16.2-23.0 %, and 93.6-96.7 %, respectively. All the starches showed irregular polygonal shapes and A-type crystallization with molecular weights ranging from 7.2 × 107 to 4.5 × 108 g/mol. The amounts of amylopectin A (DP 6-12), B1 (DP 13-24), B2 (DP 25-36), and B3 (DP > 36) chains were in the ranges of 10.3-16.0 %, 54.5-64.8 %, 16.5-21.1 %, and 4.9-13.1 %, respectively. The starches differed significantly in gelatinization temperatures, pasting viscosity, solubility, swelling power, rheological properties, and digestion parameters. The results revealed that the larger particle size could increase the peak viscosity of the starch paste. The presence of phosphorus increased the gelatinization temperature and enhanced the resistant starch content. The starch granules with higher crystallinity contained a higher proportion of phosphate, which increased final viscosity and setback viscosity but decreased rapidly digestible starch. Overall, oat starch with a high phosphorus content could be used to prepare low-glycemic-index food for diabetes patients.


Assuntos
Avena , Amido , Humanos , Amido/química , Avena/metabolismo , Amilopectina/química , Amilose/química , Viscosidade , Grão Comestível/metabolismo , Fósforo
5.
Int J Biol Macromol ; 257(Pt 2): 128535, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048925

RESUMO

Potato noodles are a popular food due to their unique texture and taste, but native potato starch often fails to meet consumer demands for precise textural outcomes. The effect of blending small granule (waxy amaranth, non-waxy oat and quinoa) starch with potato starch on the properties of noodles was investigated to enhance quality of noodles. Morphological results demonstrated that small granule starch filled gaps between potato starch granules, some of which gelatinized incompletely. Meanwhile, XRD and FTIR analysis indicated that more ordered structures and hydrogen bonding among starch granules increased with addition of small granule starch. The addition of oat or quinoa starch increased gel elasticity, decreased viscosity of the pastes, and increased the tensile strength of noodles, while addition of 30 % and 45 % waxy amaranth starch did not increase G' value of gel or tensile strength of noodles. These results indicated that amylose molecules played an important role during retrogradation, and may intertwine and interact with each other to enhance the network structure of starch gel in potato starch blended with oat or quinoa starch. This study provides a natural way to modify potato starch for desirable textural properties of noodle product.


Assuntos
Solanum tuberosum , Solanum tuberosum/química , Amido/química , Amilose/química , Amilopectina/química , Farinha/análise
6.
Food Chem ; 439: 138192, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091788

RESUMO

The change of digestibility of starch irradiated with different types from the perspective of fine structure is not well understood. In this work, the change of internal structure, molecular weight and chain-length distribution, helical structure, lamellar structure, fractal structure and digestibility of native and treated potato starch with electron beam and X-ray was analyzed. Two irradiations caused the destruction of internal structure, the disappearance of growth rings and increase of pores. Irradiation degraded starch to produce short chains and to decrease molecular weight. Irradiation increased double helical content and the thickness and peak area of lamellar structure, resulting in the reorganization of amylopectin and increase of structure order degree. The protected glycosidic linkages increased starch resistance to hydrolase attack, thereby enhancing the anti-digestibility of irradiated starch. Pearson correlation matrix also verified the above-mentioned results. Moreover, X-ray more increased the anti-digestibility of starch by enhancing ability to change fine structure.


Assuntos
Solanum tuberosum , Estrutura Molecular , Solanum tuberosum/química , Raios X , Elétrons , Amido/química , Amilopectina/química , Amilose/química
7.
Food Res Int ; 174(Pt 1): 113564, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986517

RESUMO

Lotus seed starch has high apparent amylose content (AAM). A representative definition of its granular architecture (e.g., lamellar structure) remained absent. This study defined the granular shape, crystalline and lamellar structures, and digestibility of twenty-two samples of lotus seed starch (LS) by comparing with those of potato and maize starches. LS granules had more elongated shape and longer repeat distance of lamellae than potato and maize starch granules. The enzymatic susceptibility of LS granules was more affected by AAM than granular architecture. Using these LSs as a model system, the relationships between lamellar structure of starch granules and properties of their gelatinized counterparts were investigated. In LSs, thinner amorphous lamella and thicker crystalline lamella were associated with higher swelling power and yield stress. The relationships were found to be connected via certain structural characteristics of amylopectin.


Assuntos
Solanum tuberosum , Amido , Amido/química , Amilose/química , Amilopectina/química , Sementes , Zea mays/química
8.
PLoS One ; 18(5): e0255764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37216356

RESUMO

Potatoes are a dietary staple consumed by a significant portion of the world, providing valuable carbohydrates and vitamins. However, most commercially produced potatoes have a high content of highly branched amylopectin starch, which generally results in a high glycemic index (GI). Consumption of foods with high levels of amylopectin elicit a rapid spike in blood glucose levels, which is undesirable for individuals who are pre-diabetic, diabetic, or obese. Some cultivars of potatoes with lower amylopectin levels have previously been identified and are commercially available in niche markets in some countries, but they are relatively unavailable in the United States and Latin America. The high glycemic index of widely available potatoes presents a problematic "consumer's dilemma" for individuals and families that may not be able to afford a better-balanced, more favorable diet. Some native communities in the Andes (Bolivia, Chile, and Peru) reportedly embrace a tradition of providing low glycemic tubers to people with obesity or diabetes to help people mitigate what is now understood as the negative effects of high blood sugar and obesity. These cultivars are not widely available on a global market. This study examines 60 potato cultivars to identify potatoes with low amylopectin. Three independent analyses of potato starch were used: microscopic examination of granule structure, water absorption, and spectrophotometric analysis of iodine complexes to identify potato cultivars with low amylopectin Differences among cultivars tested were detected by all three types of analyses. The most promising cultivars are Huckleberry Gold, Muru, Multa, Green Mountain, and an October Blue x Colorado Rose cross. Further work is necessary to document the ability of these low amylopectin cultivars to reduce blood glucose spike levels in human subjects.


Assuntos
Solanum tuberosum , Amido , Humanos , Amido/química , Amilopectina/química , Solanum tuberosum/química , Glicemia , Obesidade
10.
Int J Biol Macromol ; 224: 105-114, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257364

RESUMO

4-α-glucanotransferase (EC 2.4.1.25) mediated glucan transfer in starch provides opportunities for production of clean label starch ingredients with unique gelling properties. 4-α-glucanotransferases can be found in glycoside hydrolase (GH) family GH13, GH57, and in the monospecific glycoside hydrolase family 77 (GH77). Here, pH-temperature optima, steady-state kinetics, potato starch modifying properties and structural folds are reported for six phylogenetically distinct GH77 members, representing four different domain architectures including a novel multi-domain 4-α-glucanotransferase from Lactococcus lactis. Four of the enzymes exhibited starch modifying activity leading to a gradual decrease of the amylose content, elongation of amylopectin chains, and enabled formation of firm starch gels. Unexpectedly, these diverse enzymes catalyzed similar changes in chain length distributions. However, the amylose depletion and amylopectin elongation rates spanned more than two orders of magnitude between the enzyme showing very different specific activities. Tt4αGT from Thermus thermophilus had highest temperature optimum (73 °C) and superior potato starch modifying efficacy compared to the other five enzymes.


Assuntos
Amilopectina , Solanum tuberosum , Amilopectina/química , Glicosídeo Hidrolases , Amilose/química , Amido
11.
J Sci Food Agric ; 103(4): 1651-1659, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326592

RESUMO

BACKGROUND: Plant-based foods are frequently heterogenous systems, containing multiple starch fractions with distinct digestion rate constants. An unbiased determination of the number and digestion pattern of these fractions is a prerequisite for understanding the digestive characteristics of food. RESULTS: A non-linear least-squares procedure based on a conditional selection of simple first-order kinetics or a combination of parallel and sequential kinetics models was developed. The procedure gave robust results fitting manually generated data, and was applied to in vitro experimental digestion data of retrograded rice starches. By correlating fitting parameters with starch structural parameters, it showed that rice starches with a lower amylose content, longer amylose chains, and amylopectin intermediate chains had more digestible starch fractions after long-term retrogradation. CONCLUSION: This procedure enables the structural basis of starch digestibility and the development of food products with slow starch digestibility to be better understood. © 2022 Society of Chemical Industry.


Assuntos
Amilose , Oryza , Amilose/química , Digestão , Amido/química , Amilopectina/química , Suplementos Nutricionais , Oryza/química
12.
Food Chem ; 405(Pt A): 134851, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36368105

RESUMO

The mechanical grinding scale of insoluble dietary fiber has an important influence on bread staling quality. We investigated the effects of buckwheat hull (BWH) powder at tissue-scale (500-100 µm) and cell-scale (50-10 µm) on the physical and structural changes of bread during storage. The addition of tissue-scale BWH had little effect on loaf volume and crumb firmness of bread, while that of cell-scale BWH significantly decreased specific volume and baking loss, and resulted in higher bread firmness, compared with the control (100 % wheat bread). The effect of cell-scale BWH on delaying amylopectin retrogradation and starch recrystallization during bread storage was superior to that of tissue-scale BWH. Tissue-scale BWH made the gas cell structure of the crumb coarse and open, promoting the evaporation of water during storage. BWH at the cell-scale had a stronger water-binding ability than tissue-scale BWH, which restricted the loss of water, inhibiting bread staling.


Assuntos
Pão , Fagopyrum , Amilopectina/química , Amido/química , Água/química
13.
Int J Biol Macromol ; 223(Pt B): 1674-1683, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36302485

RESUMO

The effect of amylopullulanase treatment on recrystallization behaviour and the formation of resistant starch crystals have been investigated. Extracted potato starch (Solanum tuberosum) has been subjected to the enzymatic assisted bioprocessing without any physical or chemical treatment, where 120 min of incubation, 7 % (v/v) of enzyme and 8 mL/g of water content were found to be optimum to increase the resistant starch content by 41.88 %. The resistant starch crystals showed the characteristic behaviour of B-type allomorph with an increase in 21.32 % crystallinity. The modified crystals portrayed less reduction in actual weight when assessed by thermo-gravimetric analysis. The compact linear arrangement of the linear amylose chains within the crystallized granule of starch has been evidenced by Bright Field Microscopy. The microstructure of the resistant starch crystals showed 33.18 % reduction in porosity when the 3-dimensional structural form was analysed by X-ray micro-Computed Tomography.


Assuntos
Amilopectina , Solanum tuberosum , Amilopectina/química , Solanum tuberosum/química , Amido Resistente , Microtomografia por Raio-X , Imageamento Tridimensional , Difração de Raios X , Amilose/química , Amido/química
14.
Int J Biol Macromol ; 221: 703-713, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36096250

RESUMO

Herein, a multistage induced electric field (IEF) combined with a continuous-flow reactor was utilized to assist the acid hydrolysis of corn, potato, and waxy corn starch for avoiding plate corrosion and heavy metal leakage. It was found that adding IEF stages was beneficial to improve the hydrolysis efficiency. Treating potato, corn, and waxy corn starch via continuous-flow IEF increased the reducing sugar contents up to 78.76 %, 57.86 %, and 66.18 %, respectively. The electrical conductivity of starch grew with the reaction stages, while starch yield demonstrated the opposite trend. Treated starch had higher solubility and gelatinization peak temperature than native starch, with the gelatinization enthalpy showing fluctuations. Meanwhile, the swelling power decreased as the number of IEF stages was increased. Observations of Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy indicated that the treated starch became more ordered, and crystalline regions were destroyed to various degrees with pores forming on particle surfaces. These variations could be attributed to acid hydrolysis and IEF.


Assuntos
Solanum tuberosum , Amido , Amido/química , Hidrólise , Amilopectina/química , Solanum tuberosum/química , Zea mays/química , Difração de Raios X
15.
Int J Biol Macromol ; 220: 692-702, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998850

RESUMO

The multi-scale structures and physicochemical relationships of three different types of waxy starches (maize, tapioca, and potato) were investigated. The maize and tapioca starches exhibited A-type crystalline polymorph compared to potato starch (B-type). The WMS showed higher amorphous content (5.56 %) than other waxy starches. The WTS exhibited a low tendency of retrogradation with its high fa (DP 6-12) and low fb3 (DP ≥ 37) proportion of chains. Double helix content of WPS was observed highest with a high pasting viscosity (952.3 BU). Low fa (DP 6-12) and high fb3 (DP ≥ 37) chain proportions of the WPS retrograded easily. The compactness of the semi-crystalline aggregation structure influenced the retrogradation properties of waxy starches with a positive correlation. Furthermore, the peak viscosity of pastes was correlated with the proportion of fb3 (DP ≥ 37) chains, mass fractal dimension, and double helix content. The results provide guidance to design the application of waxy starches in the production of clean-labels.


Assuntos
Amilopectina , Solanum tuberosum , Amilopectina/química , Solanum tuberosum/química , Amido/química , Viscosidade , Zea mays/química
16.
Food Res Int ; 159: 111593, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940760

RESUMO

The use of a sourdough (SD) preparation based on a fermented chickpea extract (FCE) starter as a leavening and anti-staling agent in gluten-free breads was explored in this study. The FCE starter was prepared by a submerged fermentation (at 37 °C for 15 h) of coarsely ground chickpeas and the gluten-free bread formulations, based on rice and corn flours, were made using a rice sourdough produced with the FCE starter as additional leavening agent; the FCE-SD breads and samples containing merely baker's yeast as microbial leavener (control) were both prepared at three different levels of added water, i.e., 85, 92 and 100% (flour weight basis). The loaf specific volume significantly (p < 0.05) increased with sourdough inclusion into batters and by increasing the amount of added water. Moreover, inclusion of sourdough into the gluten-free formulations resulted in a finer porous crumb macrostructure and a lower crust moisture content than control breads. Upon bread storage (25 °C for 5 days), water migration from crumb to crust was noted. Staling events were also monitored by compression testing and differential scanning calorimetry, showing an increase in crumb firmness and the apparent melting enthalpy (ΔH) of retrograded amylopectin during bread storage; the values for both parameters decreased with inclusion of FCE-SD and with higher amounts of added water into the gluten-free formulations. Kinetic data in modelling crumb firmness and ΔH values by linear regression analysis and the Avrami equation, respectively, revealed a slower staling rate for breads with sourdough, compared to control formulations; moreover, with increasing level of added water to the batter, the firming rate was reduced, while the amylopectin retrogradation was enhanced. Finally, in vitro enzymatic starch digestibility of the crumb was lower for staled breads stored for 5 days, compared to fresh products, while there was no pronounced effect by sourdough inclusion. Overall, the incorporation of FCE-SD into gluten-free bread formulations seems to be a promising alternative for improving quality and extending the shelf life of gluten-free baked products.


Assuntos
Pão , Cicer , Amilopectina/química , Pão/análise , Extratos Vegetais , Água/química
17.
Int J Biol Macromol ; 219: 473-481, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35917853

RESUMO

Starch granule-associated surface and channel lipids (SGALs) were effectively removed from waxy maize starch (WMS) and normal maize starch (NMS), then the starches were crosslinked by different levels of sodium trimetaphosphate (STMP) (0.25 %, 0.5 %, 1 % and 2 %). The effective removal of SGALs and successful crosslinking, were evidenced by the disappearance of surface-fluorescence and channel-fluorescence of Pro-Q Diamond-stained granules, and the increased phosphorus content respectively. STMP crosslinking increased peak and final viscosity for WMS and NMS. Crosslinking at high STMP levels (0.5 %, 1 % and 2 %) transformed the starch pastes from thixotropic to anti-thixotropic. STMP crosslinking significantly decreased the tan δ values of maize starches, enhancing the elastic structure of the gel. Crosslinked maize starches without SGALs had lower breakdown than crosslinked starches at same STMP level, indicating higher tightened crosslinked starch granules after SGALs removal. Removal of SGALs increased the anti-thixotropy of crosslinked starches, facilitating the reorientation of crosslinked amylopectin/amylose molecules during shearing. Removal of SGALs increased the tan δ values from frequency sweep of WMS and NMS during STMP crosslinking, indicating the presence of surface-lipids and channel-lipids could enhance the elastic gel network structure of crosslinked maize starch.


Assuntos
Amilopectina , Amilose , Amilopectina/química , Amilose/química , Diamante , Lipídeos , Fósforo , Polifosfatos , Amido/química , Zea mays/química
18.
Biochemistry ; 60(31): 2425-2435, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34319705

RESUMO

Glucan phosphatases are members of a functionally diverse family of dual-specificity phosphatase (DSP) enzymes. The plant glucan phosphatase Starch Excess4 (SEX4) binds and dephosphorylates glucans, contributing to processive starch degradation in the chloroplast at night. Little is known about the complex kinetics of SEX4 when acting on its complex physiologically relevant glucan substrate. Therefore, we explored the kinetics of SEX4 against both insoluble starch and soluble amylopectin glucan substrates. SEX4 displays robust activity and a unique sigmoidal kinetic response to amylopectin, characterized by a Hill coefficient of 2.77 ± 0.63, a signature feature of cooperativity. We investigated the basis for this positive kinetic cooperativity and determined that the SEX4 carbohydrate-binding module (CBM) dramatically influences the binding cooperativity and substrate transformation rates. These findings provide insights into a previously unknown but important regulatory role for SEX4 in reversible starch phosphorylation and further advances our understanding of atypical kinetic mechanisms.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfatases de Especificidade Dupla/química , Fosfatases de Especificidade Dupla/metabolismo , Glucanos/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Sítio Alostérico/fisiologia , Amilopectina/química , Amilopectina/metabolismo , Brassica/química , Metabolismo dos Carboidratos , Glucanos/química , Cinética , Modelos Moleculares , Fosforilação , Ligação Proteica , Domínios Proteicos/fisiologia , Estabilidade Proteica , Solanum tuberosum/química
19.
Int J Biol Macromol ; 182: 1047-1055, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887292

RESUMO

The aim of this study was to explore the relationship between the structural and functional properties of starch isolated from Atlantic potatoes at different stages of growth without the effect of varieties and growth environment. The molecular size and chain-length distribution of amylopectin significantly varied with growth. The Mw and Mn of amylopectin ranged from 2.976 × 107 to 4.512 × 107 g/mol and 1.275 × 107 to 2.295 × 107 g/mol, respectively, suggested that the polydispersity varied with growth. The average chain length of amylopectin during potato growth showed small but significant changes and ranged from DP 23.59 to 24.73. Overall, Afp chains, Acrystal chains, and B1 chains increased with growth, and B2 and B3 chains decreased with growth. There was wide variation in starch pasting, gelatinization, retrogradation, in vitro starch digestibility, swelling power, solubility, and gel stability properties. Specifically, potato starch harvested at the earliest time had the highest resistant starch content. The variation trend of swelling power and solubility was similar, reached highest value at 42 days, were 20.38 g/g and 8.83%, respectively. Correlation analysis revealed that the physicochemical properties were significantly affected by amylopectin fine structure. The results of this study enhance our understanding of the structure-function relationship of potato starch.


Assuntos
Amilopectina/química , Solanum tuberosum/química , Amido/química
20.
Int J Biol Macromol ; 180: 625-632, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766589

RESUMO

The formation and structural evolution of starch nanocrystals from waxy maize starch (WMS) and waxy potato starch (WPS) by acid hydrolysis were studied. The relative crystallinity, the short-range molecular order, and the double-helix content of WMS and WPS increased significantly during the initial stage of acid hydrolysis, indicating that acid preferentially eroded the amorphous regions of starch granules. With time, there was increased destruction of lamellar structures, causing the granules to completely disintegrate to form nanocrystals. WMS and WPS displayed different hydrolysis mechanisms. WPS was more susceptible to acid hydrolysis than WMS, and WMS exhibited an endo-corrosion pattern and WPS showed an exo-corrosion pattern. WMS nanocrystals had a parallelepiped shape, and WPS nanocrystals were round. This difference in shape is likely due to the different packing configuration of double helices in native starches.


Assuntos
Nanopartículas/química , Solanum tuberosum/química , Amido/química , Ceras/química , Zea mays/química , Ácidos/química , Amilopectina/química , Amilopectina/metabolismo , Amilose/química , Amilose/metabolismo , Hidrólise , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Espalhamento a Baixo Ângulo , Solanum tuberosum/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/metabolismo , Amido/ultraestrutura , Ceras/metabolismo , Difração de Raios X , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA