Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci ; 316: 121402, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669678

RESUMO

AIMS: Despite its high concentration in pancreatic islets of Langerhans and broad range of antihyperglycemic effects, the route facilitating the import of dietary taurine into pancreatic ß-cell and mechanisms underlying its insulinotropic activity are unclear. We therefore studied the impact of taurine on beta-cell function, alongside that of other small neutral amino acids, L-alanine and L-proline. MAIN METHODS: Pharmacological profiling of insulin secretion was conducted using clonal BRIN BD11 ß-cells, the impact of taurine on the metabolic fate of glucose carbons was assessed using NMR and the findings were verified by real-time imaging of Ca2+ dynamics in the cytosol of primary mouse and human islet beta-cells. KEY FINDINGS: In our hands, taurine, alanine and proline induced secretory responses that were dependent on the plasma membrane depolarisation, import of Ca2+, homeostasis of K+ and Na+ as well as on cell glycolytic and oxidative metabolism. Taurine shifted the balance between the oxidation and anaplerosis towards the latter, in BRIN BD11 beta-cells. Furthermore, the amino acid signalling was significantly attenuated by inhibition of Na+-K+-Cl- symporter (NKCC). SIGNIFICANCE: These data suggest that taurine, like L-alanine and L-proline, acutely induces glucose-dependent insulin-secretory responses by modulating electrogenic Na+ transport, with potential role of intracellular K+ and Cl- in the signal transduction. The acute action delineated would be consistent with antidiabetic potential of dietary taurine supplementation.


Assuntos
Aminoácidos Neutros , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Insulina/metabolismo , Taurina/farmacologia , Taurina/metabolismo , Aminoácidos Neutros/metabolismo , Aminoácidos Neutros/farmacologia , Linhagem Celular , Ilhotas Pancreáticas/metabolismo , Alanina/farmacologia , Alanina/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Prolina/metabolismo
2.
Nat Commun ; 13(1): 1757, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365608

RESUMO

Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO.


Assuntos
Microbioma Gastrointestinal , Aminoácidos Neutros , Animais , Cardiomegalia/metabolismo , Ácidos Graxos/metabolismo , Humanos , Camundongos , Estudos Prospectivos , Valeratos
3.
Mol Genet Metab ; 135(1): 27-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974973

RESUMO

BACKGROUND: Large neutral amino acid (LNAA) treatment has been suggested as alternative to the burdensome severe phenylalanine-restricted diet. While its working mechanisms and optimal composition have recently been further elucidated, the question whether LNAA treatment requires the natural protein-restricted diet, has still remained. OBJECTIVE: Firstly, to determine whether an additional liberalized natural protein-restricted diet could further improve brain amino acid and monoamine concentrations in phenylketonuria mice on LNAA treatment. Secondly, to compare the effect between LNAA treatment (without natural protein) restriction and different levels of a phenylalanine-restricted diet (without LNAA treatment) on brain amino acid and monoamine concentrations in phenylketonuria mice. DESIGN: BTBR Pah-enu2 mice were divided into two experimental groups that received LNAA treatment with either an unrestricted or semi phenylalanine-restricted diet. Control groups included Pah-enu2 mice on the AIN-93 M diet, a severe or semi phenylalanine-restricted diet without LNAA treatment, and wild-type mice receiving the AIN-93 M diet. After ten weeks, brain and plasma samples were collected to measure amino acid profiles and brain monoaminergic neurotransmitter concentrations. RESULTS: Adding a semi phenylalanine-restricted diet to LNAA treatment resulted in lower plasma phenylalanine but comparable brain amino acid and monoamine concentrations as compared to LNAA treatment (without phenylalanine restriction). LNAA treatment (without phenylalanine restriction) resulted in comparable brain monoamine but higher brain phenylalanine concentrations compared to the severe phenylalanine-restricted diet, and significantly higher brain monoamine but comparable phenylalanine concentrations as compared to the semi phenylalanine-restricted diet. CONCLUSIONS: Present results in PKU mice suggest that LNAA treatment in PKU patients does not need the phenylalanine-restricted diet. In PKU mice, LNAA treatment (without phenylalanine restriction) was comparable to a severe phenylalanine-restricted diet with respect to brain monoamine concentrations, notwithstanding the higher plasma and brain phenylalanine concentrations, and resulted in comparable brain phenylalanine concentrations as on a semi phenylalanine-restricted diet.


Assuntos
Aminoácidos Neutros , Fenilcetonúrias , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Humanos , Camundongos , Fenilalanina , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/metabolismo
4.
Nutrients ; 13(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34836270

RESUMO

The mainstay of phenylketonuria treatment is a low protein diet, supplemented with phenylalanine (Phe)-free protein substitutes and micronutrients. Adhering to this diet is challenging, and even patients with good metabolic control who follow the dietary prescriptions in everyday life ignore the recommendations occasionally. The present study explores the ability of slow-release large neutral amino acids (srLNAAs) to prevent Phe increase following a Phe dietary load. Fourteen phenylketonuric patients aged ≥13 years were enrolled in a 6-week protocol. Oral acute Phe loads of 250 and 500 mg were added to the evening meal together with srLNAAs (0.5 gr/kg). Phe and tyrosine were dosed before dinner, 2h-after dinner, and after the overnight fast. After oral Phe loads, mean plasma Phe remained stable and below 600 µmol/L. No Phe peaks were registered. Tyrosine levels significantly increased, and Phe/Tyrosine ratio decreased. No adverse events were registered. In conclusion, a single oral administration of srLNAAs at the dose of 0.5 gr/kg is effective in maintaining stable plasma Phe during acute oral loads with Phe-containing food and may be added to the dietetic scheme in situations in which patients with generally good adherence to diet foresee a higher than prescribed Phe intake due to their commitments.


Assuntos
Aminoácidos Neutros/administração & dosagem , Suplementos Nutricionais , Fenilalanina/administração & dosagem , Fenilcetonúrias/tratamento farmacológico , Adolescente , Adulto , Aminoácidos/administração & dosagem , Aminoácidos Neutros/sangue , Aminoácidos Neutros/uso terapêutico , Dieta , Feminino , Humanos , Itália , Masculino , Micronutrientes/uso terapêutico , Fenilalanina/sangue , Fenilalanina/uso terapêutico , Fenilcetonúrias/sangue , Tirosina/sangue , Tirosina/uso terapêutico , Adulto Jovem
5.
Nutrients ; 12(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674279

RESUMO

The gold standard treatment for phenylketonuria (PKU) is a lifelong low-phenylalanine (Phe) diet supplemented with Phe-free protein substitutes. Adherence to therapy becomes difficult after childhood. Supplementing with large neutral amino acids (LNAAs) has been proposed as an alternative medication to Phe-free protein substitutes (i.e., amino acid mixtures). The aim of this study was to evaluate adherence to therapy and quality of life (QoL) in a cohort of sub-optimally controlled adult PKU patients treated with a new LNAA formulation. Twelve patients were enrolled in a 12-month-trial of slow-release LNAAs (1g/kg/day) plus a Phe-restricted diet. Medication adherence was measured with the Morisky Green Levine Medication Adherence Scale; the QoL was measured using the phenylketonuria-quality of life (PKU-QoL) questionnaire. Phe, tyrosine (Tyr) levels, and Phe/Tyr ratios were measured fortnightly. Before treatment, 3/12 patients self-reported a 'medium' adherence to medication and 9/12 reported a low adherence; 60% of patients reported a full adherence over the past four weeks. After 12 months of LNAA treatment, all patients self-reported a high adherence to medication, with 96% reporting a full adherence. Phe levels remained unchanged, while Tyr levels increased in most patients. The Phy/Tyr ratio decreased. All patients had a significant improvement in the QoL. LNAAs may give patients a further opportunity to improve medication adherence and, consequently, their QoL.


Assuntos
Aminoácidos Neutros/administração & dosagem , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Fenilalanina/efeitos adversos , Fenilcetonúrias/dietoterapia , Cooperação e Adesão ao Tratamento , Adulto , Resina de Colestiramina , Estudos de Coortes , Feminino , Humanos , Masculino , Qualidade de Vida , Inquéritos e Questionários , Resultado do Tratamento , Adulto Jovem
6.
J Anim Sci ; 98(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32583856

RESUMO

Dietary tryptophan (Trp) is a precursor for serotonin, a neuromediator involved in stress responses. Tryptophan competes with other large neutral amino acids (LNAA: tyrosine, isoleucine, leucine, valine, and phenylalanine) to cross the blood-brain barrier; therefore, the regulation of circulating LNAA can influence Trp availability in the cortex and serotonin biosynthesis. The hypothesis examined in this study was that increased supplementation of dietary Trp and a reduction in LNAA for weaned pigs experimentally infected with enterotoxigenic Escherichia coli (ETEC; F4) will increase Trp availability in plasma and reduce indices of the stress response, which will translate to reduced production losses. At 21 ± 3 d of age (mean ± SEM), 96 male pigs (Large White × Landrace) weighing 6.3 ± 0.98 kg (mean ± SEM) were individually penned and allocated to a 4 × 2 factorial arrangement of treatments, with respective factors being 1) four dietary standardized ileal digestible (SID) Trp and LNAA contents, being HTrpHLNAA (Low Trp-High LNAA; 0.24% SID Trp: 5.4% SID LNAA), HTrpHLNAA (Low Trp-Low LNAA; 0.24% SID Trp: 4.6% SID LNAA), HTrpHLNAA (High Trp-High LNAA; 0.34% SID Trp: 5.4% SID LNAA), and HTrpHLNAA (High Trp-Low LNAA; 0.34% SID Trp: 4.6% SID LNAA), and 2) without/with ETEC infection. Pigs were orally infected with 0.8 mL (3.6 × 109 CFU/mL) ETEC at days 7 and 8 after weaning. Pigs fed diets high in Trp irrespective of the level of LNAA (HTrpHLNAA and HTrpLLNAA) had higher plasma Trp concentrations (P < 0.001) and a Trp:LNAA ratio (P < 0.001) before infection and 6 d after infection. Following infection, noninfected pigs had higher plasma Trp (P = 0.03) and a Trp:LNAA ratio (P = 0.004) compared with pigs infected with ETEC. Plasma cortisol levels after infection were higher in ETEC-infected pigs (P = 0.05) and altering dietary Trp and LNAA concentrations did not influence (P > 0.05) plasma cortisol. Pigs fed diet HTrpLLNAA had higher serum serotonin levels 24 h after infection (P = 0.02) compared with pigs fed diets LTrpLLNAA and HTrpHLNAA. Similarly, pigs fed diet HTrpLLNAA had a higher (P = 0.02) average daily gain during the 3-wk study. Overall, average daily feed intake tended to be higher in pigs fed an HTrpLLNAA diet compared with the other diets (P = 0.08). These results suggest that the increased supplementation of dietary Trp with reduced LNAA increased circulating Trp levels that, in turn, likely caused higher serum serotonin levels, irrespective of infection with ETEC, and improved aspects of post-weaning performance.


Assuntos
Aminoácidos Neutros/administração & dosagem , Dieta/veterinária , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/microbiologia , Triptofano/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Infecções/veterinária , Masculino , Serotonina , Suínos , Doenças dos Suínos/terapia , Triptofano/administração & dosagem , Triptofano/sangue , Aumento de Peso/efeitos dos fármacos
7.
Nutrients ; 12(4)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325917

RESUMO

In a longitudinal retrospective study, we aimed to assess natural protein (NP) tolerance and metabolic control in a cohort of 20 Hereditary Tyrosinaemia type I (HTI) patients. Their median age was 12 years ([3.2-17.7 years], n = 11 female, n = 8 Caucasian, n = 8 Asian origin, n = 2 Arabic and n = 2 Indian). All were on nitisinone (NTBC) with a median dose of 0.7 g/kg/day (range 0.4-1.5 g/kg/day) and were prescribed a tyrosine (Tyr)/phenylalanine (Phe)-restricted diet supplemented with Tyr/Phe-free L-amino acids. Data were collected on clinical signs at presentation, medical history, annual dietary prescriptions, and blood Phe and Tyr levels from diagnosis until transition to the adult service (aged 16-18 years) or liver transplantation (if it preceded transition). The median age of diagnosis was 2 months (range: 0 to 24 months), with n = 1 diagnosed by newborn screening, n = 3 following phenylketonuria (PKU) screening and n = 7 by sibling screening. Five patients were transplanted (median age 6.3 years), and one died due to liver cancer. The median follow-up was 10 years (3-16 years), and daily prescribed NP intake increased from a median of 5 to 24 g/day. Lifetime median blood Tyr (370 µmol/L, range 280-420 µmol/L) and Phe (50 µmol/L, 45-70 µmol/L) were maintained within the target recommended ranges. This cohort of HTI patients were able to increase the daily NP intake with age while maintaining good metabolic control. Extra NP may improve lifelong adherence to the diet.


Assuntos
Aminoácidos Neutros/administração & dosagem , Fenômenos Fisiológicos da Nutrição Infantil/fisiologia , Cicloexanonas/administração & dosagem , Suplementos Nutricionais , Nitrobenzoatos/administração & dosagem , Tirosinemias/dietoterapia , Tirosinemias/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Cooperação do Paciente , Fenilalanina/sangue , Estudos Retrospectivos , Tirosina/sangue , Tirosinemias/sangue , Tirosinemias/genética
8.
Nutrients ; 12(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326614

RESUMO

Phenylketonuria is an inborn error of phenylalanine (Phe) metabolism diagnosed by newborn screening and treated early with diet. Although diet prevents intellectual disability, patients often show impairment of executive functions, working memory, sustained attention, and cognitive flexibility. Large neutral amino acids (LNAAs) have been proposed as a dietary supplement for PKU adults. Few studies show that LNAAs may help in improving metabolic control as well as cognitive functions. In this study, 10 adult PKU patients with poor metabolic control were treated for 12 months with LNAAs (MovisCom, 0.8-1 g/kg/day) and underwent Phe and Tyrosine (Tyr) monitoring monthly. Neuropsychological assessment was performed at T0, T+3, and T+12 months by using the American Psychological General Well-Being Index, the Wisconsin Card Sorting Test, the Test of Attentional Performance, and the 9-Hole Peg Test. No change in plasma Phe levels was observed during LNAAs supplementation, while Tyr levels significantly improved during LNAAs supplementation (p = 0.03). Psychometric tests showed an improvement of distress and well-being rates, of executive functions, attention, and vigilance, whereas no difference was noted regarding hand dexterity. This study adds evidence of the advantage of LNAAs supplementation in improving cognitive functions and well-being in patients with PKU with poor metabolic control.


Assuntos
Aminoácidos Neutros/administração & dosagem , Aminoácidos Neutros/farmacologia , Atenção , Encéfalo/fisiopatologia , Cognição , Suplementos Nutricionais , Função Executiva , Memória de Curto Prazo , Testes Neuropsicológicos , Fenilcetonúrias/dietoterapia , Fenilcetonúrias/psicologia , Adolescente , Adulto , Nível de Alerta , Feminino , Humanos , Masculino , Fenilalanina/sangue , Fenilcetonúrias/metabolismo , Resultado do Tratamento , Adulto Jovem
9.
J Food Biochem ; 44(3): e13151, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31960483

RESUMO

Phenylketonuria (PKU) is an inborn disease caused by defective phenylalanine hydroxylase, which consequently results in the accumulation of phenylalanine in the brain leading to further complications. One of the promising approaches in dietary treatment is the supplementation of large neutral amino acid (LNAA). The LNAA compete with phenylalanine for the common L-type LNAA transporter across the blood-brain barrier, and decrease phenylalanine levels in the brain. In this study, the earlier LNAA-enriched protein model was improved (Protein Model-66) and validated in silico. The reverse translated and codon-optimized synthetic LNAA66 gene was cloned into pPICZαC and expressed in Pichia pastoris. The expressed protein was purified by His Select affinity chromatography. SDS-PAGE and Western blotting analysis showed a band at an expected molecular weight of 12 kDa, confirming the expression of the modeled protein. To our knowledge, this is the first report showing the cloning and expression of an in silico designed LNAA-enriched protein. PRACTICAL APPLICATIONS: One of the promising dietary treatment of phenylketonuria (PKU) is the supplementation of large neutral amino acid (LNAA), wherein high levels of LNAA compete with phenylalanine for the same L-type LNAA transporter, and consequently decrease phenylalanine accumulation in the brain, thereby decreasing neurological complications. For the first time, here, we are showing that an in silico designed and validated Protein Model-66, rich in LNAA, can be successfully cloned and expressed in Pichia pastoris. The complete biochemical and structural characterization of this protein will give a clear insight into its potential application for PKU treatment. The protein can be potentially used as a supplement to treat PKU to those who are non-adherent to the restricted, non-palatable, and expensive diet. Furthermore, this novel and effective strategy of in silico designing, cloning and expression can be exploited to develop proteins for various applications of industrial, food, medical, and academic relevance.


Assuntos
Aminoácidos Neutros , Fenilcetonúrias , Clonagem Molecular , Simulação por Computador , Humanos , Fenilcetonúrias/genética , Saccharomycetales
10.
Nutrients ; 11(10)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640267

RESUMO

The standard treatment for phenylketonuria (PKU) is a lifelong low-phenylalanine (Phe) diet, supplemented with Phe-free protein substitutes; however, adult patients often show poor adherence to therapy. Alternative treatment options include the use of large neutral amino acids (LNAA). The aim of this study was to determine the Phe, tyrosine (Tyr), and Phe/Tyr ratio in a cohort of sub-optimally controlled adult patients with classical PKU treated with a new LNAA formulation. Twelve patients received a Phe-restricted diet plus a slow-release LNAA product taken three times per day, at a dose of 1 g/kg body weight (mean 0.8 ± 0.24 g/kg/day), over a 12-month period. The product is in a microgranulated formulation, which incorporates all amino acids and uses sodium alginate as a hydrophilic carrier to prolong its release. This LNAA formulation provides up to 80% of the total protein requirement, with the rest of the protein supplied by natural food. Patients had fortnightly measurements of Phe and Tyr levels over a 12-month period after the introduction of LNAA. All patients completed the 12-month treatment period. Overall, adherence to the new LNAA tablets was very good compared with a previous amino acid mixture, for which taste was a major complaint by patients. Phe levels remained unchanged (p = 0.0522), and Tyr levels increased (p = 0.0195). Consequently, the Phe/Tyr ratio decreased significantly (p < 0.05) in the majority of patients treated. In conclusion, LNAA treatment increases Tyr levels in sub-optimally controlled adult PKU patients, while offering the potential to improve their adherence to treatment.


Assuntos
Aminoácidos Neutros/uso terapêutico , Fenilalanina/sangue , Fenilcetonúrias/sangue , Fenilcetonúrias/tratamento farmacológico , Tirosina/sangue , Adulto , Barreira Hematoencefálica , Dieta , Suplementos Nutricionais , Feminino , Humanos , Itália , Masculino , Cooperação do Paciente , Satisfação do Paciente , Fenilalanina/administração & dosagem , Fenilcetonúrias/dietoterapia , Paladar , Adulto Jovem
11.
Nutrients ; 11(9)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546852

RESUMO

Many phenylketonuria (PKU) patients cannot adhere to the severe dietary restrictions as advised by the European PKU guidelines, which can be accompanied by aggravated neuropsychological impairments that, at least in part, have been attributed to brain monoaminergic neurotransmitter deficiencies. Supplementation of large neutral amino acids (LNAA) to an unrestricted diet has previously been shown to effectively improve brain monoamines in PKU mice of various ages. To determine the additive value of LNAA supplementation to a liberalized phenylalanine-restricted diet, brain and plasma monoamine and amino acid concentrations in 10 to 16-month-old adult C57Bl/6 PKU mice on a less severe phenylalanine-restricted diet with LNAA supplementation were compared to those on a non-supplemented severe or less severe phenylalanine-restricted diet. LNAA supplementation to a less severe phenylalanine-restricted diet was found to improve both brain monoamine and phenylalanine concentrations. Compared to a severe phenylalanine-restricted diet, it was equally effective to restore brain norepinephrine and serotonin even though being less effective to reduce brain phenylalanine concentrations. These results in adult PKU mice support the idea that LNAA supplementation may enhance the effect of a less severe phenylalanine-restricted diet and suggest that cerebral outcome of PKU patients treated with a less severe phenylalanine-restricted diet may be helped by additional LNAA treatment.


Assuntos
Aminoácidos Neutros/administração & dosagem , Dieta , Fenilalanina/administração & dosagem , Fenilcetonúrias/dietoterapia , Ração Animal/análise , Animais , Encéfalo/metabolismo , Suplementos Nutricionais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
J Pediatr Endocrinol Metab ; 32(3): 269-274, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30835252

RESUMO

Background Oxidative stress may be one of the causes responsible for mental retardation in phenylketonuria (PKU) patients. Phenylalanine (Phe) reduces antioxidant defense and promotes oxidative stress by causing increase in reactive oxygen-nitrogen species. Our study aimed to investigate the effect of different treatments (amino acid mixture/large neutral amino acid [LNAA] supplements) on oxidative stress which are applied to late-diagnosed patients. To the best of our knowledge, this is the first study to investigate the effect of LNAA supplements on oxidative stress. Methods Twenty late-diagnosed classic PKU patients were included in this study. Patients were classified into two groups: patients under Phe-restricted diet and using Phe-free amino acid mixtures (Group I) (mean age: 13.8 ± 2.8), and patients taking LNAA supplements (Group II) (mean age: 14.8 ± 3.8). Healthy controls (mean age: 13.6 ± 4.8) with ages consistent with the ages of the patients in the experimental groups were included. Results Glutathione peroxidase is lower in patients of taking LNAA supplements than the control group (p = 0.022). Coenzyme Q10 is lower in patients of using Phe-free amino acid mixtures than the control group and it is significantly higher in Group II than Group I (p = 0.0001, p = 0.028, respectively). No significant differences were detected in total antioxidant status, total oxidant status, oxidative stress index, paraoxonase 1 and L-carnitine levels. Conclusions Different treatments affect oxidative stress parameters in PKU patients. In this study, although patients were followed up with classic PKU, patient-specific adjuvant antioxidant therapies should be implemented in response to oxidative stress.


Assuntos
Aminoácidos Neutros/administração & dosagem , Antioxidantes/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenilcetonúrias/metabolismo , Adolescente , Criança , Suplementos Nutricionais , Feminino , Humanos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento , Adulto Jovem
13.
J Ind Microbiol Biotechnol ; 45(8): 719-734, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29654382

RESUMO

L-Lysine is widely used as a nutrition supplement in feed, food, and beverage industries as well as a chemical intermediate. At present, great efforts are made to further decrease the cost of lysine to make it more competitive in the markets. Furthermore, lysine also shows potential as a feedstock to produce other high-value chemicals for active pharmaceutical ingredients, drugs, or materials. In this review, the current biomanufacturing of lysine is first presented. Second, the production of novel derivatives from lysine is discussed. Some chemicals like L-pipecolic acid, cadaverine, and 5-aminovalerate already have been obtained at a lab scale. Others like 6-aminocaproic acid, valerolactam, and caprolactam could be produced through a biological and chemical coupling pathway or be synthesized by a hypothetical pathway. This review demonstrates an active and expansive lysine industry, and these green biomanufacturing strategies could also be applied to enhance the competitiveness of other amino acid industry.


Assuntos
Aminoácidos Neutros/biossíntese , Lisina/biossíntese , Aminoácidos/química , Ácido Aminocaproico/química , Materiais Biocompatíveis/química , Cadaverina/metabolismo , Caprolactama/química , Química Farmacêutica , Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Fermentação , Química Verde , Microbiologia Industrial , Lactamas/química , Ácidos Pipecólicos/metabolismo , Piperidonas/química , Polímeros/química
14.
J Nutr Biochem ; 53: 20-27, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29175141

RESUMO

Phenylketonuria treatment mainly consists of a phenylalanine-restricted diet but still results in suboptimal neuropsychological outcome, which is at least partly based on cerebral monoamine deficiencies, while, after childhood, treatment compliance decreases. Supplementation of large neutral amino acids (LNAAs) was previously demonstrated in young phenylketonuria mice to target all three biochemical disturbances underlying brain dysfunction in phenylketonuria. However, both its potential in adult phenylketonuria and the comparison with the phenylalanine-restricted diet remain to be established. To this purpose, several LNAA supplements were compared with a severe phenylalanine-restricted diet with respect to brain monoamine and amino acid concentrations in adult C57Bl/6 Pah-enu2 mice. Adult phenylketonuria mice received a phenylalanine-restricted diet, unrestricted diet supplemented with several combinations of LNAAs or AIN-93M control diet for 6 weeks. In addition, adult wild-type mice on AIN-93M diet served as controls. The severe phenylalanine-restricted diet in adult phenylketonuria mice significantly reduced plasma and brain phenylalanine and restored brain monoamine concentrations, while brain concentrations of most nonphenylalanine LNAAs remained subnormal. Supplementation of eight LNAAs was similarly effective as the severe phenylalanine-restricted diet to restore brain monoamines, while brain and plasma phenylalanine concentrations remained markedly elevated. These results provide biochemical support for the effectiveness of the severe phenylalanine-restricted diet and showed the possibilities of LNAA supplementation being equally effective to restore brain monoamines in adult phenylketonuria mice. Therefore, LNAA supplementation is a promising alternative treatment to phenylalanine restriction in adult phenylketonuria patients to further optimize neuropsychological functioning.


Assuntos
Aminoácidos Neutros/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fenilcetonúrias/dietoterapia , Aminoácidos Neutros/sangue , Aminoácidos Neutros/metabolismo , Animais , Monoaminas Biogênicas/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fenilalanina , Fenilcetonúrias/metabolismo
15.
PLoS One ; 12(9): e0185342, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28949985

RESUMO

INTRODUCTION: Hereditary Tyrosinemia type 1 (HT1) is a rare metabolic disease caused by a defect in the tyrosine degradation pathway. Current treatment consists of 2-(2-nitro-4-trifluoromethylbenoyl)-1,3-cyclohexanedione (NTBC) and a tyrosine and phenylalanine restricted diet. Recently, neuropsychological deficits have been seen in HT1 patients. These deficits are possibly associated with low blood phenylalanine concentrations and/or high blood tyrosine concentrations. Therefore, the aim of the present study was threefold. Firstly, we aimed to calculate how the plasma amino acid profile in HT1 patients may influence the presumptive brain influx of all large neutral amino acids (LNAA). Secondly, we aimed to investigate the effect of phenylalanine supplementation on presumptive brain phenylalanine and tyrosine influx. Thirdly, we aimed to theoretically determine minimal target plasma phenylalanine concentrations in HT1 patient to ensure adequate presumptive brain phenylalanine influx. METHODS: Data of plasma LNAA concentrations were obtained. In total, 239 samples of 9 HT1 children, treated with NTBC, diet, and partly with phenylalanine supplementation were collected together with 596 samples of independent control children. Presumptive brain influx of all LNAA was calculated, using Michaelis-Menten parameters (Km) and Vmax-values obtained from earlier articles. RESULTS: In HT1 patients, plasma concentrations and presumptive brain influx of tyrosine were higher. However, plasma and especially brain influx of phenylalanine were lower in HT1 patients. Phenylalanine supplementation did not only tend to increase plasma phenylalanine concentrations, but also presumptive brain phenylalanine influx, despite increased plasma tyrosine concentrations. However, to ensure sufficient brain phenylalanine influx in HT1 patients, minimal plasma phenylalanine concentrations may need to be higher than considered thus far. CONCLUSION: This study clearly suggests a role for disturbed brain LNAA biochemistry, which is not well reflected by plasma LNAA concentrations. This could play a role in the pathophysiology of the neuropsychological impairments in HT1 patients and may have therapeutic implications.


Assuntos
Aminoácidos Neutros/metabolismo , Encéfalo/metabolismo , Fenilalanina/administração & dosagem , Tirosinemias/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
16.
Eur J Clin Nutr ; 71(1): 51-55, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27623981

RESUMO

BACKGROUND/OBJECTIVES: Phenylketonuria (PKU) is an autosomal recessive disease caused by deficient activity of phenylalanine hydroxylase. A low phenylalanine (Phe) diet is used to treat PKU. The diet is very restrictive, and dietary adherence tends to decrease as patients get older. Methods to improve dietary adherence and blood Phe control are continuously under investigation. SUBJECTS/METHODS: A new formula Phe-neutral amino acid (PheLNAA) has been tested in this study with the purpose of improving the compliance and lowering blood phenylalanine. The formula has been tested for nitrogen balance, and it is nutritionally complete. It is fortified with more nutritional additives that can be deficient in the PKU diet, such as B12, Biotin, DHA, Lutein and increased levels of large neutral amino acids to help lower blood Phe. The new formula has been tested on 12 patients with a loading test of 4 weeks. RESULTS: Fifty-eight percent of patients had a significant decline in blood Phe concentration from baseline throughout the study. The PheLNAA was well tolerated with excellent compliance and without illnesses during the study. CONCLUSIONS: In conclusion, the new formula is suitable for life-long treatment of PKU, and it offers the PKU clinic a new choice for treatment.


Assuntos
Aminoácidos Neutros/administração & dosagem , Alimentos Formulados , Alimentos Fortificados , Fenilalanina/sangue , Fenilcetonúrias/dietoterapia , Adolescente , Feminino , Humanos , Masculino , Cooperação do Paciente/psicologia , Fenilcetonúrias/sangue , Fenilcetonúrias/psicologia , Resultado do Tratamento
17.
Am J Clin Nutr ; 104(5): 1292-1300, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27655443

RESUMO

BACKGROUND: Phenylketonuria treatment consists mainly of a Phe-restricted diet, which leads to suboptimal neurocognitive and psychosocial outcomes. Supplementation of large neutral amino acids (LNAAs) has been suggested as an alternative dietary treatment strategy to optimize neurocognitive outcome in phenylketonuria and has been shown to influence 3 brain pathobiochemical mechanisms in phenylketonuria, but its optimal composition has not been established. OBJECTIVE: In order to provide additional pathobiochemical insight and develop optimal LNAA treatment, several targeted LNAA supplements were investigated with respect to all 3 biochemical disturbances underlying brain dysfunction in phenylketonuria. DESIGN: Pah-enu2 (PKU) mice received 1 of 5 different LNAA-supplemented diets beginning at postnatal day 45. Control groups included phenylketonuria mice receiving an isonitrogenic and isocaloric high-protein diet or the AIN-93M diet, and wild-type mice receiving the AIN-93M diet. After 6 wk, brain and plasma amino acid profiles and brain monoaminergic neurotransmitter concentrations were measured. RESULTS: Brain Phe concentrations were most effectively reduced by supplementation of LNAAs, such as Leu and Ile, with a strong affinity for the LNAA transporter type 1. Brain non-Phe LNAAs could be restored on supplementation, but unbalanced LNAA supplementation further reduced brain concentrations of those LNAAs that were not (sufficiently) included in the LNAA supplement. To optimally ameliorate brain monoaminergic neurotransmitter concentrations, LNAA supplementation should include Tyr and Trp together with LNAAs that effectively reduce brain Phe concentrations. The requirement for Tyr supplementation is higher than it is for Trp, and the relative effect of brain Phe reduction is higher for serotonin than it is for dopamine and norepinephrine. CONCLUSION: The study shows that all 3 biochemical disturbances underlying brain dysfunction in phenylketonuria can be targeted by specific LNAA supplements. The study thus provides essential information for the development of optimal LNAA supplementation as an alternative dietary treatment strategy to optimize neurocognitive outcome in patients with phenylketonuria.


Assuntos
Aminoácidos Neutros/farmacologia , Encéfalo/efeitos dos fármacos , Suplementos Nutricionais , Fenilcetonúrias/tratamento farmacológico , Animais , Encéfalo/metabolismo , Dieta , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Neurotransmissores/farmacologia , Fenilalanina/administração & dosagem , Serotonina/metabolismo
18.
PLoS One ; 11(8): e0160892, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27513937

RESUMO

BACKGROUND: Phenylketonuria (PKU) is due to a defective hepatic enzyme, phenylalanine (Phe) hydroxylase. Transport of the precursor amino acids from blood into the brain for serotonin and dopamine synthesis is reported to be inhibited by high blood Phe concentrations. Deficiencies of serotonin and dopamine are involved in neurocognitive dysfunction in PKU. OBJECTIVE: (1) To evaluate the effects of sapropterin (BH4) and concurrent use of large neutral amino acids (LNAA) on the peripheral biomarkers, melatonin and dopamine with the hypothesis they reflect brain serotonin and dopamine metabolism. (2) To evaluate synergistic effects with BH4 and LNAA. (3) To determine the effects of blood Phe concentrations on the peripheral biomarkers concentrations. METHODS: Nine adults with PKU completed our study consisting of four 4-week phases: (1) LNAA supplementation, (2) Washout, (3) BH4 therapy, and (4) LNAA with BH4 therapy. An overnight protocol measured plasma amino acids, serum melatonin, and 6-sulfatoxymelatonin and dopamine in first void urine after each phase. RESULTS: (1) Three out of nine subjects responded to BH4. A significant increase of serum melatonin levels was observed in BH4 responders with decreased blood Phe concentration. No significant change in melatonin, dopamine or Phe levels was observed with BH4 in the subjects as a whole. (2) Synergistic effects with BH4 and LNAA were observed in serum melatonin in BH4 responders. (3) The relationship between serum melatonin and Phe showed a significant negative slope (p = 0.0005) with a trend toward differing slopes among individual subjects (p = 0.066). There was also a negative association overall between blood Phe and urine 6-sulfatoxymelatonin and dopamine (P = 0.040 and 0.047). CONCLUSION: Blood Phe concentrations affected peripheral monoamine neurotransmitter biomarker concentrations differently in each individual with PKU. Melatonin levels increased with BH4 therapy only when blood Phe decreased. Monitoring peripheral neurotransmitter metabolites may assist in optimizing individualized treatment in PKU.


Assuntos
Aminoácidos Neutros/uso terapêutico , Biopterinas/análogos & derivados , Suplementos Nutricionais , Fenilcetonúrias/tratamento farmacológico , Serotonina/metabolismo , Adulto , Biomarcadores/metabolismo , Biopterinas/efeitos adversos , Biopterinas/uso terapêutico , Dopamina/metabolismo , Dopamina/urina , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Melatonina/sangue , Melatonina/metabolismo , Melatonina/urina , Pessoa de Meia-Idade , Fenilalanina/sangue
19.
Biomed Res Int ; 2016: 2912418, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27366740

RESUMO

Tryptophan (Trp) plays an essential role in pig behavior and growth performances. However, little is known about Trp's effects on tight junction barrier and intestinal health in weaned pigs. In the present study, twenty-four (24) weaned pigs were randomly assigned to one of the three treatments with 8 piglets/treatments. The piglets were fed different amounts of L-tryptophan (L-Trp) as follows: 0.0%, 0.15, and 0.75%, respectively, named zero Trp (ZTS), low Trp (LTS), and high Trp (HTS), respectively. No significant differences were observed in average daily gain (ADG), average daily feed intake (ADFI), and gain: feed (G/F) ratio between the groups. After 21 days of the feeding trial, results showed that dietary Trp significantly increased (P < 0.05) crypt depth and significantly decreased (P < 0.05) villus height to crypt depth ratio (VH/CD) in the jejunum of pig fed HTS. In addition, pig fed HTS had higher (P < 0.05) serum diamine oxidase (DAO) and D-lactate. Furthermore, pig fed HTS significantly decreased mRNA expression of tight junction proteins occludin and ZO-1 but not claudin-1 in the jejunum. The number of intraepithelial lymphocytes and goblet cells were not significantly different (P > 0.05) between the groups. Collectively, these data suggest that dietary Trp supplementation at a certain level (0.75%) may negatively affect the small intestinal structure in weaned pig.


Assuntos
Suplementos Nutricionais , Intestinos/anatomia & histologia , Proteínas de Junções Íntimas/metabolismo , Triptofano/farmacologia , Desmame , Amina Oxidase (contendo Cobre)/sangue , Aminoácidos Neutros/sangue , Animais , Crescimento e Desenvolvimento/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sus scrofa
20.
Eur J Clin Nutr ; 70(7): 785-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27117930

RESUMO

BACKGROUND/OBJECTIVES: Protein substitutes (PS) are an essential component in the dietary management of phenylketonuria (PKU). PS are available as phenylalanine-free amino-acid mixtures (AAM), glycomacropeptide-based PS (GMP) and large neutral amino acids (LNAA). There is a lack of information regarding their availability in different countries and comparison of their nutritional composition is limited. The objectives of this study were to identify the number of PS available in different European countries and Turkey and to compare their nutritional composition. SUBJECTS/METHODS: Members of the European Nutritionist Expert Panel on PKU (ENEP) (Portugal, Spain, Belgium, Italy, Germany, Netherlands, United Kingdom, Denmark and Turkey) provided data on PS available in each country. The nutritional composition of PS available in Portugal was analyzed. RESULTS: The number of PS available in each country varied from 30 (Turkey) to 105 (Germany), with a median of 64. GMP was available only in Portugal, whereas LNAA was an option in Portugal, Italy, Turkey and Denmark. Some PS were designed for weaning. Many PS did not contain added fat and fiber. GMP contained the highest carbohydrate (CHO) and energy content as well as higher LNAA content compared with AAM. Only one AAM contained added fructo-oligosaccharides and galacto-oligosaccharides. AAM designed for the first year of life had the highest CHO, fat and LNAA contribution. Liquid AAM had lower CHO and fat contents compared with powdered AAM, but contained higher LNAA. CONCLUSIONS: There was widely dissimilar numbers of PS available in different countries. Nutritional composition of different PS was variable and should be considered before prescription.


Assuntos
Aminoácidos/uso terapêutico , Proteínas Alimentares/uso terapêutico , Alimentos Formulados/provisão & distribuição , Fenilcetonúrias/dietoterapia , Aminoácidos/análise , Aminoácidos Neutros/análise , Aminoácidos Neutros/uso terapêutico , Caseínas/química , Caseínas/uso terapêutico , Proteínas Alimentares/química , Europa (Continente) , Alimentos Formulados/análise , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Fenilalanina , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA