Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 11935, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099820

RESUMO

Maytenus roylanus (MEM) is a plant with anti-proliferative effects against prostate cancer. We aimed to explore the mechanism of action of MEM in prostate cancer (PCa) by employing an in vitro global proteome approach to get useful information of various signaling pathways and effected genes to define the mechanism of MEM action in prostate cancer. We conducted a global proteome analysis of CWR22Rv1after treatment with methanolic extract of MEM. The result of the proteomic profiling of in vitro PCa cells demonstrated the reduction in tumor protein D52 (TPD52) expression after treatment with methanolic extract of MEM. Down-regulation of TPD52 expression at mRNA level was observed by MEM treatment in CWR22Rν1 and C4-2 cells in a dose-dependent fashion probably by cleavage of Caspase 3 and PARP, or by modulation of cyclin-dependent kinases in CWR22Rν1 and C4-2 cells. The progressive character of the TRAMP model demonstrates a chance to evaluate the potential of chemo-preventive agents for both initial and late stages of prostate cancer development, and induction in TPD52 protein expression with development as well as the progression of prostate cancer was observed in the TRAMP model. Analyses of the tissue microarray collection of 25 specimens confirmed the clinical significance of our findings identifying TPD52 as a potential marker for PCa progression. We determined that knockdown of TPD52 (CWR22Rν1 cells), a considerable downregulation was seen at the protein level. Downregulation of TPD52 inhibited the migration and invasive behavior of prostate cancer cells as observed. Moreover, we observed that the siRNA-TPD52 transfection of CWR22Rν1 cells resulted in tumor growth inhibition with a marked reduction in the secretion of prostate-specific antigen (PSA) in the serum. Intraperitoneal injection of MEM considerably slowed tumor growth in athymic mice, inhibited TPD52 expression, and caused a marked reduction in PSA levels of serum as demonstrated by immunoblot screening and immune-histochemical staining. This report illustrates a molecular overview of pathological processes in PCa, indicating possible new disease biomarkers and therapeutic targets.


Assuntos
Maytenus/química , Proteínas de Neoplasias/metabolismo , Extratos Vegetais/farmacologia , Neoplasias da Próstata/metabolismo , Proteômica/métodos , Análise Serial de Tecidos/métodos , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Nus , Proteínas de Neoplasias/genética , Células PC-3 , Extratos Vegetais/administração & dosagem , Folhas de Planta/química , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Biomed Mater ; 16(4)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34030149

RESUMO

A microfluidic technique is presented for micropatterning protein domains and cell cultures within permanently bonded organs-on-chip devices. This method is based on the use of polydimethylsiloxane layers coupled with the plasma ablation technique for selective protein removal. We show how this technique can be employed to generate a multi-organin vitromodel directly within a microscale platform suitable for pharmacokinetic-based drug screening. We miniaturized a liver model based on micropatterned co-cultures in dual-compartment microfluidic devices. The cytotoxic effect of liver-metabolized Tegafur on colon cancer cell line was assessed using two microfluidic devices where microgrooves and valves systems are used to model drug diffusion between culture compartments. The platforms can reproduce the metabolism of Tegafur in the liver, thus killing colon cancer cells. The proposed plasma-enhanced microfluidic protein patterning method thus successfully combines the ability to generate precise cell micropatterning with the intrinsic advantages of microfluidics in cell biology.


Assuntos
Dispositivos Lab-On-A-Chip , Neoplasias Hepáticas/metabolismo , Modelos Biológicos , Análise Serial de Tecidos/métodos , Biotecnologia , Sobrevivência Celular , Dimetilpolisiloxanos , Avaliação Pré-Clínica de Medicamentos , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas
3.
Adv Biosyst ; 4(11): e2000079, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33073544

RESUMO

Drug-drug interactions (DDIs) occur when the pharmacological activity of one drug is altered by a second drug. As multimorbidity and polypharmacotherapy are becoming more common due to the increasing age of the population, the risk of DDIs is massively increasing. Therefore, in vitro testing methods are needed to capture such multiorgan events. Here, a scalable, gravity-driven microfluidic system featuring 3D microtissues (MTs) that represent different organs for the prediction of drug-drug interactions is used. Human liver microtissues (hLiMTs) are combined with tumor microtissues (TuMTs) and treated with drug combinations that are known to cause DDIs in vivo. The testing system is able to capture and quantify DDIs upon co-administration of the anticancer prodrugs cyclophosphamide or ifosfamide with the antiretroviral drug ritonavir. Dosage of ritonavir inhibits hepatic metabolization of the two prodrugs to different extents and decreases their efficacy in acting on TuMTs. The flexible MT compartment design of the system, the use of polystyrene as chip material, and the assembly of several chips in stackable plates offer the potential to significantly advance preclinical substance testing. The possibility of testing a broad variety of drug combinations to identify possible DDIs will improve the drug development process and increase patient safety.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Técnicas Analíticas Microfluídicas , Análise Serial de Tecidos/métodos , Técnicas de Cultura de Tecidos/métodos , Sobrevivência Celular/efeitos dos fármacos , Células HCT116 , Inibidores da Protease de HIV/farmacologia , Humanos , Fígado/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Ritonavir/farmacologia
4.
Undersea Hyperb Med ; 47(1): 31-37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32176944

RESUMO

Background: Hyperbaric oxygen (HBO2) therapy can have a positive effect on wound healing, angiogenesis and blood flow. No prior study has described the effects of HBO2 therapy and gene expression of this process. The goal of our research was to show the effects of HBO2 and its impact at the molecular level on angiogenesis, proliferation, differentiation, oxidative stress, inflammation, and extracellular matrix formation. Live animal subjects were used for simulating the process of wound healing under standard conditions and under the influence of HBO2. Methods: Two experimental groups were created using injured rabbits (N=24), one group (N=12) treated with hyperbaric therapy twice a day and one (N=12) with standard wound care management. Wounds were surgical, uninfected, and in healthy animal test subjects. We compared the whole genomic analysis of the transcriptome with the use of microarray technology at three intervals during treatment. Results: The induction of the wounds in rabbit skin increased expression of hundreds of genes in both treatment groups. The numbers of elevated and decreased genes gradually reduced as the wound healed. Gene expression analysis showed elevated expression of several genes associated with inflammation in both groups of injured animals. Genes connected to the process of angiogenesis, proliferation, differentiation, oxidative stress and extracellular matrix formation were without statistically significant changes. Conclusion: The evidence did not support that HBO2 had any significant effect on gene expression during wound healing. Additionally, there was no evidence to support that there were changes in gene expression in either treatment group.


Assuntos
Expressão Gênica , Oxigenoterapia Hiperbárica , Ferida Cirúrgica/genética , Cicatrização/genética , Animais , Feminino , RNA Mensageiro/análise , Coelhos , Pele/lesões , Ferida Cirúrgica/terapia , Análise Serial de Tecidos/métodos
5.
An Acad Bras Cienc ; 91(3): e20180646, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31411259

RESUMO

The hepatoprotective effects of the ethanolic extracts of propolis (EEP) on alcohol-induced liver steatosis were investigated in Wistar rats. Chronic alcoholic fatty liver was induced by administration of 52% alcohol to male Wistar rats at the dose of 1% body weight for 7 weeks. Then animals were simultaneously treated with 50% ethanol solutions of EEP or normal saline at the dose of 0.1% body weight for 4 further weeks. Serological analyses and liver histopathology studies were performed to investigate the development of steatosis. Microarray analysis was conducted to investigate the alterations of hepatic gene expression profiling. Our results showed that 4-week treatment of EEP helped to restore the levels of various blood indices, liver function enzymes and the histopathology of liver tissue to normal levels. Results from the microarray analysis revealed that the hepatic expressions of genes involved in lipogenesis were significantly down-regulated by EEP treatment, while the transcriptional expressions of functional genes participating in fatty acids oxidation were markedly increased. The ability of EEP to reduce the negative effects of alcohol on liver makes propolis a potential natural product for the alternative treatment of alcoholic fatty liver.


Assuntos
Fígado Gorduroso Alcoólico/metabolismo , Hepatopatias Alcoólicas/metabolismo , Extratos Vegetais/metabolismo , Própole/metabolismo , Substâncias Protetoras/metabolismo , Alanina Transaminase/metabolismo , Animais , Apiterapia/métodos , Aspartato Aminotransferases/metabolismo , Colesterol/metabolismo , Modelos Animais de Doenças , Etanol , Ácidos Graxos/biossíntese , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/patologia , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Masculino , Oxirredução , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Própole/química , Própole/uso terapêutico , Substâncias Protetoras/química , Substâncias Protetoras/uso terapêutico , Ratos Wistar , Análise Serial de Tecidos/métodos , Transcrição Gênica/genética , Triglicerídeos/metabolismo
6.
Biomaterials ; 216: 119244, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31207406

RESUMO

During early post-implantation human embryogenesis, the epiblast (EPI) within the blastocyst polarizes to generate a cyst with a central lumen. Cells at the uterine pole of the EPI cyst then undergo differentiation to form the amniotic ectoderm (AM), a tissue essential for further embryonic development. While the causes of early pregnancy failure are complex, improper lumenogenesis or amniogenesis of the EPI represent possible contributing factors. Here we report a novel AM microtissue array platform that allows quantitative phenotyping of lumenogenesis and amniogenesis of the EPI and demonstrate its potential application for embryonic toxicity profiling. Specifically, a human pluripotent stem cell (hPSC)-based amniogenic differentiation protocol was developed using a two-step micropatterning technique to generate a regular AM microtissue array with defined tissue sizes. A computer-assisted analysis pipeline was developed to automatically process imaging data and quantify morphological and biological features of AM microtissues. Analysis of the effects of cell density, cyst size and culture conditions revealed a clear connection between cyst size and amniogenesis of hPSC. Using this platform, we demonstrated that pharmacological inhibition of ROCK signaling, an essential mechanotransductive pathway, suppressed lumenogenesis but did not perturb amniogenic differentiation of hPSC, suggesting uncoupled regulatory mechanisms for AM morphogenesis vs. cytodifferentiation. The AM microtissue array was further applied to screen a panel of clinically relevant drugs, which successfully detected their differential teratogenecity. This work provides a technological platform for toxicological screening of clinically relevant drugs for their effects on lumenogenesis and amniogenesis during early human peri-implantation development, processes that have been previously inaccessible to study.


Assuntos
Âmnio/citologia , Avaliação Pré-Clínica de Medicamentos , Ectoderma/citologia , Células-Tronco Pluripotentes/citologia , Análise Serial de Tecidos , Âmnio/efeitos dos fármacos , Âmnio/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Ectoderma/efeitos dos fármacos , Ectoderma/metabolismo , Humanos , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Análise Serial de Tecidos/métodos , Engenharia Tecidual/métodos , Quinases Associadas a rho/antagonistas & inibidores
7.
Nutrients ; 10(12)2018 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513813

RESUMO

Gamma-oryzanol (GO) is a popular supplement for performance horses, dogs, and humans. Previous studies indicated that GO supplementation decreases creatine kinase activity and lactate level after exercise and may affect oxidative stress in Thoroughbred horses. GO may change genes expression in equine satellite cells (ESC). The purpose of this study was to evaluate the effect of GO on miRNA, gene expression, oxidative stress, and cell damage and viability in differentiating ESC pretreated with hydrogen peroxide (H2O2). ESCs were obtained from a young horse's skeletal muscle. ESCs were pre-incubated with GO (24 h) and then exposed to H2O2 for one hour. For the microRNA and gene expression assessment, the microarray technique was used. Identified miRNAs and genes were validated using real time-quantitative polymerase chain reaction. Several tests related to cell viability, cell damage, and oxidative stress were performed. The microarray analysis revealed differences in 17 miRNAs and 202 genes between GO-treated and control ESC. The tests related to apoptosis, cell viability, and oxidative stress showed that GO affects these processes to varying degrees. Our results suggest that GO can change miRNA and gene expression and may impact the processes involved in tissue repairing after an injury.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Perfilação da Expressão Gênica/veterinária , Cavalos , Peróxido de Hidrogênio/farmacologia , Fenilpropionatos/farmacologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Masculino , MicroRNAs/análise , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/análise , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Análise Serial de Tecidos/métodos , Análise Serial de Tecidos/veterinária
8.
Methods Mol Biol ; 1771: 203-211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29633215

RESUMO

In the last few decades, drug combination therapy has been widely applied in oncology and in other complex diseases. Due to its potential advantage of lower drug toxicity and higher therapeutic efficacy, drug combination treatment has been more and more studied in fundamental labs and pharmacy companies. In this chapter, we report cell-based drug combination screening using a microfluidic droplet system based on a sequential operation droplet array (SODA) technique. In this system, an oil-covered two-dimensional droplet array chip was used as the platform for cell culture and analysis. This chip was fixed in an x-y-z translation stage under control of a computer program. A tapered capillary connected with a syringe pump was coupled with the droplet array chip to achieve multiple droplet manipulations including liquid metering, aspirating, depositing, mixing, and transferring. Complex multistep operations for drug combination screening involving long-term cell culture, medium changing, schedule-dependent drug dosage and stimulation, and cell viability testing were achieved in parallel using the present system. The drug consumption for each screening test was substantially decreased to 5 ng-5 µg, corresponding to 10- to 1000-fold reductions compared with traditional drug screening systems with 96- or 384-well plates.


Assuntos
Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Microfluídica/métodos , Análise Serial de Tecidos/métodos , Animais , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios de Triagem em Larga Escala , Microfluídica/instrumentação , Análise Serial de Tecidos/instrumentação
9.
Clin Exp Immunol ; 190(1): 96-109, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28621822

RESUMO

To examine genes expressed specifically in labial salivary glands (LSGs) of patients with Sjögren's syndrome (SS) in comparison with those of patients with immunoglobulin (Ig)G4-related disease (IgG4-RD), and to identify the genes involved in the pathogenesis of SS. Gene expression in LSGs of SS patients, IgG4-RD patients and healthy controls (HC) was analysed by cDNA microarray. Quantitative polymerase chain reaction (qPCR) was used to validate the up-regulation of differentially expressed genes (DEGs) in SS. Protein production of the validated gene in LSGs was examined by immunofluorescence (IF) assay. The association of molecular functions of the gene with the pathological conditions in SS was examined using peripheral blood lymphocytes. Among 1320 DEGs up-regulated in SS, qPCR confirmed the up-regulation of NR4A2 in LSGs of SS compared with IgG4-RD. IF staining showed higher production of NR4A2 in nuclei of CD4+ T cells and interleukin (IL)-17-producing cells in LSGs of SS, compared with IgG4-RD. Over-expression of NR4A2 mRNA was observed in peripheral CD4+ T cells of SS patients, compared with HC. Nuclear NR4A2 expression in T helper type 17 (Th17)-polarized CD4+ T cells determined by cellular IF was significantly higher in SS than in HC. Importazole, an inhibitor of importin-ß, inhibited nuclear transport of NR4A2 and Th17 polarization along with IL-21 expression in naive CD4+ T cells under Th17-polarizing conditions, but did not alter retinoic acid receptor-related orphan receptor C (RORC) expression. NR4A2 seems to promote Th17 polarization via increased expression and intranuclear localization in CD4+ T cells of SS patients, which could play a critical role in the pathogenesis of SS.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Quinazolinas/uso terapêutico , Glândulas Salivares/fisiologia , Síndrome de Sjogren/metabolismo , Células Th17/imunologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Adulto , Idoso , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , DNA Complementar/análise , Feminino , Perfilação da Expressão Gênica , Humanos , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Interleucinas/metabolismo , Pessoa de Meia-Idade , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Quinazolinas/farmacologia , Glândulas Salivares/patologia , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/genética , Células Th17/efeitos dos fármacos , Análise Serial de Tecidos/métodos , beta Carioferinas/antagonistas & inibidores
10.
Lab Chip ; 17(3): 511-520, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28092382

RESUMO

There is a growing awareness that complex 3-dimensional (3D) organs are not well represented by monolayers of a single cell type - the standard format for many drug screens. To address this deficiency, and with the goal of improving screens so that drugs with good efficacy and low toxicity can be identified, microphysiological systems (MPS) are being developed that better capture the complexity of in vivo physiology. We have previously described an organ-on-a-chip platform that incorporates perfused microvessels, such that survival of the surrounding tissue is entirely dependent on delivery of nutrients through the vessels. Here we describe an arrayed version of the platform that incorporates multiple vascularized micro-organs (VMOs) on a 96-well plate. Each VMO is independently-addressable and flow through the micro-organ is driven by hydrostatic pressure. The platform is easy to use, requires no external pumps or valves, and is highly reproducible. As a proof-of-concept we have created arrayed vascularized micro tumors (VMTs) and used these in a blinded screen to assay a small library of compounds, including FDA-approved anti-cancer drugs, and successfully identified both anti-angiogenic and anti-tumor drugs. This 3D platform is suitable for efficacy/toxicity screening against multiple tissues in a more physiological environment than previously possible.


Assuntos
Técnicas de Cultura de Células/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Análise Serial de Tecidos/instrumentação , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Desenho de Equipamento , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Experimentais/metabolismo , Neovascularização Patológica/metabolismo , Análise Serial de Tecidos/métodos
11.
Nano Lett ; 17(3): 1373-1377, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28120616

RESUMO

Cell-based assays are finding wider use in evaluating compounds in primary screens for drug development, yet it is still challenging to measure enzymatic activities as an end point in a cell-based assay. This paper reports a strategy that combines state-of-the-art cantilever free polymer pen lithography (PPL) with self-assembled monolayer laser desorption-ionization (SAMDI) mass spectrometry to guide cell localization and measure cellular enzymatic activities. Experiments are conducted with a 384 spot array, in which each spot is composed of ∼400 nanoarrays and each array has a 10 × 10 arrangement of 750 nm features that present extracellular matrix (ECM) proteins surrounded by an immobilized phosphopeptide. Cells attach to the individual nanoarrays, where they can be cultured and treated with small molecules, after which the media is removed and the cells are lysed. Phosphatase enzymes in the proximal lysate can then act on the immobilized phosphopeptide substrate to convert it to the dephosphorylated form. After the lysate is removed, the array is analyzed by SAMDI mass spectrometry to identify the extent of dephosphorylation and, therefore, the amount of enzyme activity in the cell. This novel approach of using nanopatterning to mediate cell adhesion and SAMDI to record enzyme activities in the proximal lysate will enable a broad range of cellular assays for applications in drug discovery and research not possible with conventional strategies.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas da Matriz Extracelular/química , Espectrometria de Massas/métodos , Nanoestruturas/química , Análise Serial de Tecidos/métodos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios Enzimáticos/instrumentação , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/farmacologia , Desenho de Equipamento , Células HeLa , Humanos , Proteínas Imobilizadas/química , Espectrometria de Massas/instrumentação , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Análise Serial de Tecidos/instrumentação
12.
Biotechnol Bioeng ; 114(1): 184-194, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27399645

RESUMO

Efficient delivery of therapeutics across the neuroprotective blood-brain barrier (BBB) remains a formidable challenge for central nervous system drug development. High-fidelity in vitro models of the BBB could facilitate effective early screening of drug candidates targeting the brain. In this study, we developed a microfluidic BBB model that is capable of mimicking in vivo BBB characteristics for a prolonged period and allows for reliable in vitro drug permeability studies under recirculating perfusion. We derived brain microvascular endothelial cells (BMECs) from human induced pluripotent stem cells (hiPSCs) and cocultured them with rat primary astrocytes on the two sides of a porous membrane on a pumpless microfluidic platform for up to 10 days. The microfluidic system was designed based on the blood residence time in human brain tissues, allowing for medium recirculation at physiologically relevant perfusion rates with no pumps or external tubing, meanwhile minimizing wall shear stress to test whether shear stress is required for in vivo-like barrier properties in a microfluidic BBB model. This BBB-on-a-chip model achieved significant barrier integrity as evident by continuous tight junction formation and in vivo-like values of trans-endothelial electrical resistance (TEER). The TEER levels peaked above 4000 Ω · cm2 on day 3 on chip and were sustained above 2000 Ω · cm2 up to 10 days, which are the highest sustained TEER values reported in a microfluidic model. We evaluated the capacity of our microfluidic BBB model to be used for drug permeability studies using large molecules (FITC-dextrans) and model drugs (caffeine, cimetidine, and doxorubicin). Our analyses demonstrated that the permeability coefficients measured using our model were comparable to in vivo values. Our BBB-on-a-chip model closely mimics physiological BBB barrier functions and will be a valuable tool for screening of drug candidates. The residence time-based design of a microfluidic platform will enable integration with other organ modules to simulate multi-organ interactions on drug response. Biotechnol. Bioeng. 2017;114: 184-194. © 2016 Wiley Periodicals, Inc.


Assuntos
Barreira Hematoencefálica/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas Analíticas Microfluídicas/métodos , Modelos Biológicos , Análise Serial de Tecidos/métodos , Linhagem Celular , Impedância Elétrica , Desenho de Equipamento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Permeabilidade
13.
Trends Biotechnol ; 34(6): 440-449, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26948438

RESUMO

Understanding the biocompatibility of metallic nanoparticles (MNPs) is pivotal for biomedical applications. The biocompatibility of plant-derived MNPs has been mostly attributed to capped plant molecules. This claim seems to be straightforward but lacks conclusive evidence. The capped phytochemicals and the metallic core might have decisive and individual roles in imparting the overall biocompatibility. Whether capped phytochemicals really make sense in diminishing the toxicity effect of the otherwise naked or metallic core needs further analysis. Here, we readdress the biocompatibility of plant-derived MNPs with references to contemporary cellular assays, different reactants for green synthesis, possible epigenetic involvement, and nanobiocompatibility at the molecular level. Finally, we discuss relevant in vivo studies and large-scale production issues.


Assuntos
Teste de Materiais/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Plantas/química , Plantas/toxicidade , Análise Serial de Tecidos/métodos , Testes de Toxicidade/métodos , Bioensaio/métodos , Técnicas Citológicas/métodos , Extratos Vegetais/química , Extratos Vegetais/toxicidade
14.
Biotechnol Bioeng ; 113(9): 2020-32, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26888480

RESUMO

Current animal and 2-D cell culture models employed in metastasis research and drug discovery remain poor mimics of human cancer physiology. Here we describe a "metastasis-on-a-chip" system allowing real time tracking of fluorescent colon cancer cells migrating from hydrogel-fabricated gut constructs to downstream liver constructs within a circulatory fluidic device system that responds to environmental manipulation and drug treatment. Devices consist of two chambers in which gut and liver constructs are housed independently, but are connected in series via circulating fluid flow. Constructs were biofabricated with a hyaluronic acid-based hydrogel system, capable of a variety of customizations, inside of which representative host tissue cells were suspended and metastatic colon carcinoma tumor foci were created. The host tissue of the constructs expressed normal epithelial markers, which the tumor foci failed to express. Instead, tumor regions lost membrane-bound adhesion markers, and expressed mesenchymal and proliferative markers, suggesting a metastatic phenotype. Metastatic tumor foci grew in size, eventually disseminating from the intestine construct and entering circulation, subsequently reaching in the liver construct, thus mimicking some of the migratory events observed during metastasis. Lastly, we demonstrated the ability to manipulate the system, including chemically modulating the hydrogel system mechanical properties and administering chemotherapeutic agents, and evaluated the effects of these parameters on invasive tumor migration. These results describe the capability of this early stage metastasis-on-a-chip system to model several important characteristics of human metastasis, thereby demonstrating the potential of the platform for making meaningful advances in cancer investigation and drug discovery. Biotechnol. Bioeng. 2016;113: 2020-2032. © 2016 Wiley Periodicals, Inc.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Modelos Biológicos , Metástase Neoplásica/fisiopatologia , Neoplasias/metabolismo , Análise Serial de Tecidos/métodos , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Células HCT116 , Células Hep G2 , Humanos , Hidrogéis , Camundongos
15.
Biosensors (Basel) ; 5(4): 768-90, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26694477

RESUMO

High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology.


Assuntos
Técnicas de Cultura de Células/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Imageamento Tridimensional/instrumentação , Análise Serial de Tecidos/instrumentação , Animais , Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/métodos , Humanos , Imageamento Tridimensional/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Análise Serial de Tecidos/métodos
16.
Clinics (Sao Paulo) ; 70(2): 144-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25789524

RESUMO

OBJECTIVE: To analyze steroidogenesis-related gene expression in the rat ovary exposed to melatonin supplementation. METHODS: Thirty-two virgin adult female rats were randomized to two groups as follows: the control group GI received vehicle and the experimental group GII received melatonin supplementation (10 µg/night per animal) for 60 consecutive days. After the treatment, animals were anesthetized and the collected ovaries were immediately placed in liquid nitrogen for complementary deoxyribonucleic acid microarray analyses. A GeneChip(®) Kit Rat Genome 230 2.0 Affymetrix Array was used for gene analysis and the experiment was repeated three times for each group. The results were normalized with the GeneChip(®) Operating Software program and confirmed through analysis with the secondary deoxyribonucleic acid-Chip Analyzer (dChip) software. The data were confirmed by real-time reverse transcription polymerase chain reaction analysis. Genes related to ovarian function were further confirmed by immunohistochemistry. RESULTS: We found the upregulation of the type 9 adenylate cyclase and inhibin beta B genes and the downregulation of the cyclic adenosine monophosphate response element modulator and cytochrome P450 family 17a1 genes in the ovarian tissue of GII compared to those of the control group. CONCLUSION: Our data suggest that melatonin supplementation decreases gene expression of cyclic adenosine monophosphate, which changes ovarian steroidogenesis.


Assuntos
Adenilil Ciclases/genética , Expressão Gênica/efeitos dos fármacos , Subunidades beta de Inibinas/genética , Melatonina/farmacologia , Ovário/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Animais , AMP Cíclico/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/genética , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Suplementos Nutricionais , Feminino , Subunidades beta de Inibinas/metabolismo , Melatonina/metabolismo , Modelos Animais , Ovário/metabolismo , RNA Complementar/isolamento & purificação , Distribuição Aleatória , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real/métodos , Esteroide 17-alfa-Hidroxilase/efeitos dos fármacos , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Análise Serial de Tecidos/métodos , Regulação para Cima
18.
IEEE Trans Biomed Circuits Syst ; 9(6): 801-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26812735

RESUMO

In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 µm × 100 µm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas de Cultura de Células/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Análise Serial de Tecidos/instrumentação , Animais , Técnicas Biossensoriais/métodos , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Camundongos , Miócitos Cardíacos/citologia , Neurônios/citologia , Semicondutores , Análise Serial de Tecidos/métodos
19.
BMC Genomics ; 15: 365, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24916340

RESUMO

BACKGROUND: Spiders (Order Araneae) are essential predators in every terrestrial ecosystem largely because they have evolved potent arsenals of silk and venom. Spider silks are high performance materials made almost entirely of proteins, and thus represent an ideal system for investigating genome level evolution of novel protein functions. However, genomic level resources remain limited for spiders. RESULTS: We de novo assembled a transcriptome for the Western black widow (Latrodectus hesperus) from deeply sequenced cDNAs of three tissue types. Our multi-tissue assembly contained ~100,000 unique transcripts, of which > 27,000 were annotated by homology. Comparing transcript abundance among the different tissues, we identified 647 silk gland-specific transcripts, including the few known silk fiber components (e.g. six spider fibroins, spidroins). Silk gland specific transcripts are enriched compared to the entire transcriptome in several functions, including protein degradation, inhibition of protein degradation, and oxidation-reduction. Phylogenetic analyses of 37 gene families containing silk gland specific transcripts demonstrated novel gene expansions within silk glands, and multiple co-options of silk specific expression from paralogs expressed in other tissues. CONCLUSIONS: We propose a transcriptional program for the silk glands that involves regulating gland specific synthesis of silk fiber and glue components followed by protecting and processing these components into functional fibers and glues. Our black widow silk gland gene repertoire provides extensive expansion of resources for biomimetic applications of silk in industry and medicine. Furthermore, our multi-tissue transcriptome facilitates evolutionary analysis of arachnid genomes and adaptive protein systems.


Assuntos
Viúva Negra/genética , Seda/genética , Análise Serial de Tecidos/métodos , Animais , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Genes de Insetos , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Especificidade de Órgãos , Filogenia , Análise de Sequência de DNA , Seda/metabolismo
20.
Biotechnol J ; 9(7): 971-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24802801

RESUMO

Microfluidic devices permit perfusion culture of three-dimensional (3D) tissue, mimicking the flow of blood in vascularized 3D tissue in our body. Here, we report a microfluidic device composed of a two-part microfluidic chamber chip and multi-microwell array chip able to be disassembled at the culture endpoint. Within the microfluidic chamber, an array of 3D tissue aggregates (spheroids) can be formed and cultured under perfusion. Subsequently, detailed post-culture analysis of the spheroids collected from the disassembled device can be performed. This device facilitates uniform spheroid formation, growth analysis in a high-throughput format, controlled proliferation via perfusion flow rate, and post-culture analysis of spheroids. We used the device to culture spheroids of human hepatocellular carcinoma (HepG2) cells under two controlled perfusion flow rates. HepG2 spheroids exhibited greater cell growth at higher perfusion flow rates than at lower perfusion flow rates, and exhibited different metabolic activity and mRNA and protein expression under the different flow rate conditions. These results show the potential of perfusion culture to precisely control the culture environment in microfluidic devices. The construction of spheroid array chambers allows multiple culture conditions to be tested simultaneously, with potential applications in toxicity and drug screening.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Esferoides Celulares/metabolismo , Análise Serial de Tecidos/métodos , Proliferação de Células , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Desenho de Equipamento , Células Hep G2 , Humanos , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/instrumentação , Microfluídica/métodos , Microtecnologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA