Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 36(2): e13367, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38281730

RESUMO

The hypothalamic paraventricular nucleus (PVN) is a highly complex brain region that is crucial for homeostatic regulation through neuroendocrine signaling, outflow of the autonomic nervous system, and projections to other brain areas. In the past years, single-cell datasets of the hypothalamus have contributed immensely to the current understanding of the diverse hypothalamic cellular composition. While the PVN has been adequately classified functionally, its molecular classification is currently still insufficient. To address this, we created a detailed atlas of PVN transcriptomic cell types by integrating various PVN single-cell datasets into a recently published hypothalamus single-cell transcriptome atlas. Furthermore, we functionally profiled transcriptomic cell types, based on relevant literature, existing retrograde tracing data, and existing single-cell data of a PVN-projection target region. Finally, we validated our findings with immunofluorescent stainings. In our PVN atlas dataset, we identify the well-known different neuropeptide types, each composed of multiple novel subtypes. We identify Avp-Tac1, Avp-Th, Oxt-Foxp1, Crh-Nr3c1, and Trh-Nfib as the most important neuroendocrine subtypes based on markers described in literature. To characterize the preautonomic functional population, we integrated a single-cell retrograde tracing study of spinally projecting preautonomic neurons into our PVN atlas. We identify these (presympathetic) neurons to cocluster with the Adarb2+ clusters in our dataset. Further, we identify the expression of receptors for Crh, Oxt, Penk, Sst, and Trh in the dorsal motor nucleus of the vagus, a key region that the pre-parasympathetic PVN neurons project to. Finally, we identify Trh-Ucn3 and Brs3-Adarb2 as some centrally projecting populations. In conclusion, our study presents a detailed overview of the transcriptomic cell types of the murine PVN and provides a first attempt to resolve functionality for the identified populations.


Assuntos
Núcleo Hipotalâmico Paraventricular , Transcriptoma , Camundongos , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Análise da Expressão Gênica de Célula Única , Hipotálamo/metabolismo , Perfilação da Expressão Gênica
2.
Nature ; 624(7991): 333-342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092915

RESUMO

The function of the mammalian brain relies upon the specification and spatial positioning of diversely specialized cell types. Yet, the molecular identities of the cell types and their positions within individual anatomical structures remain incompletely known. To construct a comprehensive atlas of cell types in each brain structure, we paired high-throughput single-nucleus RNA sequencing with Slide-seq1,2-a recently developed spatial transcriptomics method with near-cellular resolution-across the entire mouse brain. Integration of these datasets revealed the cell type composition of each neuroanatomical structure. Cell type diversity was found to be remarkably high in the midbrain, hindbrain and hypothalamus, with most clusters requiring a combination of at least three discrete gene expression markers to uniquely define them. Using these data, we developed a framework for genetically accessing each cell type, comprehensively characterized neuropeptide and neurotransmitter signalling, elucidated region-specific specializations in activity-regulated gene expression and ascertained the heritability enrichment of neurological and psychiatric phenotypes. These data, available as an online resource ( www.BrainCellData.org ), should find diverse applications across neuroscience, including the construction of new genetic tools and the prioritization of specific cell types and circuits in the study of brain diseases.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Animais , Camundongos , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Hipotálamo/citologia , Hipotálamo/metabolismo , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Fenótipo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Análise da Expressão Gênica de Célula Única , Transcriptoma/genética
3.
Nat Protoc ; 18(11): 3512-3533, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783945

RESUMO

RNA-sequencing (RNA-seq) provides invaluable knowledge on developmental pathways and the effects of mutant phenotypes. Plant reproductive cells have traditionally been difficult to isolate for genomics because they are rare and often deeply embedded within somatic tissues. Here, we present a protocol to isolate single maize meiocytes and pollen grains for RNA-seq. We discuss how to identify and isolate each sample type under a microscope, prepare RNA-seq libraries and analyze the data. This technique has several advantages over alternative methods, combining the ability to target specific rare cell types while resolving cell-to-cell heterogeneity with single-cell RNA-seq. The technique is compatible with minute amounts of starting material (e.g., a single anther), making it possible to collect dense time courses. Furthermore, developmentally synchronized anthers are saved for microscopy, allowing staging to be performed in parallel with expression analysis. Up to 200 cells can be collected in 4-5 h by someone proficient in tissue dissection, and library preparation can be completed in 2 d by researchers experienced in molecular biology and genomics. This protocol will facilitate research on plant reproduction, providing insights critical to plant breeding, genetics and agriculture.


Assuntos
Análise da Expressão Gênica de Célula Única , Zea mays , Zea mays/genética , Zea mays/metabolismo , Genômica , Pólen/genética , Pólen/metabolismo , Fenótipo
4.
Science ; 382(6669): 388-394, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883552

RESUMO

The hypothalamus ("hypo" meaning below, and "thalamus" meaning bed) consists of regulatory circuits that support basic life functions that ensure survival. Sitting at the interface between peripheral, environmental, and neural inputs, the hypothalamus integrates these sensory inputs to influence a range of physiologies and behaviors. Unlike the neocortex, in which a stereotyped cytoarchitecture mediates complex functions across a comparatively small number of neuronal fates, the hypothalamus comprises upwards of thousands of distinct cell types that form redundant yet functionally discrete circuits. With single-cell RNA sequencing studies revealing further cellular heterogeneity and modern photonic tools enabling high-resolution dissection of complex circuitry, a new era of hypothalamic mapping has begun. Here, we provide a general overview of mammalian hypothalamic organization, development, and connectivity to help welcome newcomers into this exciting field.


Assuntos
Hipotálamo , Neurogênese , Animais , Hipotálamo/fisiologia , Hipotálamo/ultraestrutura , Mamíferos , Neocórtex/citologia , Neocórtex/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Análise da Expressão Gênica de Célula Única
5.
Cancer Biomark ; 36(4): 299-311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938729

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are central to determine immune response, thus targeting Tregs for immunotherapy is a promising strategy against tumor development and metastasis. OBJECTIVES: The objective of this study was to identify genes for targeting Tregs to improve the outcome of HCC. METHODS: We integrated expression data from different samples to remove batch effects and further applied embedding function in Scanpy to conduct sub-clustering of CD4+ T cells in HCC for each of two independent scRNA-seq data. The activity of transcription factors (TFs) was inferred by DoRothEA. Gene expression network analysis was performed in WGCNA R package. We finally used R packages (survminer and survival) to conduct survival analysis. Multiplex immunofluorescence analysis was performed to validate the result from bioinformatic analyses. RESULTS: We found that regulator of G protein signaling 1 (RGS1) expression was significantly elevated in Tregs compared to other CD4+ T cells in two independent public scRNA-seq datasets, and increased RGS1 predicted inferior clinical outcome of HCC patients. Multiplex immunofluorescence analysis supported that the higher expression of RGS1 in HCC Tregs in tumor tissue compared to it in adjacent tissue. Moreover, RGS1 expression in Tregs was positively correlated with the expression of marker genes of Tregs, C-X-C chemokine receptor 4 (CXCR4), and three CXCR4-dependent genes in both scRNA-seq and bulk RNA-seq data. We further identified that these three genes were selectively expressed in Tregs as compared to other CD4+ T cells. The activities of two transcription factors, recombination signal binding protein for immunoglobulin kappa J region (RBPJ) and yin yang 1 (YY1), were significantly different in HCC Tregs with RGS1 high and RGS1 low. CONCLUSIONS: Our findings suggested that RGS1 may regulate Treg function possibly through CXCR4 signaling and RGS1 could be a potential target to improve responses for immunotherapy in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas RGS , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação ao GTP , Neoplasias Hepáticas/metabolismo , Análise da Expressão Gênica de Célula Única , Linfócitos T Reguladores , Proteínas RGS/metabolismo
6.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448703

RESUMO

MOTIVATION: In single-cell RNA-sequencing (scRNA-seq) data, stratification of sequencing reads by cellular barcode is necessary to study cell-specific features. However, apart from gene expression, the analyses of cell-specific features are not sufficiently supported by available tools designed for high-throughput sequencing data. RESULTS: We introduce SCExecute, which executes a user-provided command on barcode-stratified, extracted on-the-fly, single-cell binary alignment map (scBAM) files. SCExecute extracts the alignments with each cell barcode from aligned, pooled single-cell sequencing data. Simple commands, monolithic programs, multi-command shell scripts or complex shell-based pipelines are then executed on each scBAM file. scBAM files can be restricted to specific barcodes and/or genomic regions of interest. We demonstrate SCExecute with two popular variant callers-GATK and Strelka2-executed in shell-scripts together with commands for BAM file manipulation and variant filtering, to detect single-cell-specific expressed single nucleotide variants from droplet scRNA-seq data (10X Genomics Chromium System).In conclusion, SCExecute facilitates custom cell-level analyses on barcoded scRNA-seq data using currently available tools and provides an effective solution for studying low (cellular) frequency transcriptome features. AVAILABILITY AND IMPLEMENTATION: SCExecute is implemented in Python3 using the Pysam package and distributed for Linux, MacOS and Python environments from https://horvathlab.github.io/NGS/SCExecute. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise da Expressão Gênica de Célula Única , Software , Análise de Sequência de RNA , Análise de Célula Única , Genômica , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA