Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pain ; 20: 17448069241240692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38443317

RESUMO

Pain is a major symptom in cancer patients, and cancer-induced bone pain (CIBP) is the most common type of moderate and severe cancer-related pain. The current available analgesic treatments for CIBP have adverse effects as well as limited therapeutic effects. Acupuncture is proved effective in pain management as a safe alternative therapy. We evaluated the analgesic effect of acupuncture in treatment of cancer pain and try to explore the underlying analgesic mechanisms. Nude mice were inoculated with cancer cells into the left distal femur to establish cancer pain model. Electroacupuncture (EA) treatment was applied for the xenograft animals. Pain behaviors of mice were evaluated, followed by the detections of neuropeptide-related and inflammation-related indicators in peripheral and central levels. EA treatment alleviated cancer-induced pain behaviors covering mechanical allodynia, thermal hyperalgesia and spontaneous pain, and also down-regulated immunofluorescence expressions of neuropeptide CGRP and p75 in the skin of affected plantar area in xenograft mice, and inhibited expressions of overexpressed neuropeptide-related and inflammation-related protein in the lumbar spinal cord of xenograft mice. Overall, our findings suggest that EA treatment ameliorated cancer-induced pain behaviors in the mouse xenograft model of cancer pain, possibly through inhibiting the expressions of neuropeptide-related and inflammation-related protein in central level following tumor cell xenografts.


Assuntos
Dor do Câncer , Eletroacupuntura , Neoplasias , Neuropeptídeos , Ratos , Humanos , Camundongos , Animais , Dor do Câncer/etiologia , Dor do Câncer/terapia , Dor do Câncer/metabolismo , Nociceptividade , Camundongos Nus , Ratos Sprague-Dawley , Dor/metabolismo , Hiperalgesia/complicações , Hiperalgesia/terapia , Hiperalgesia/induzido quimicamente , Analgésicos/metabolismo , Inflamação/metabolismo , Medula Espinal/metabolismo
2.
Front Immunol ; 14: 1213710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954604

RESUMO

Pain within the trigeminal system, particularly dental pain, is poorly understood. This study aimed to determine whether single or multiple dental pulp injuries induce persistent pain, its association with trigeminal central nociceptive pathways and whether electroacupuncture (EA) provides prolonged analgesic and neuroprotective effects in a persistent dental pain model. Models of single dental pulp injury (SDPI) and multiple dental pulp injuries (MDPI) were used to induce trigeminal neuropathic pain. The signs of dental pain-related behavior were assessed using the mechanical head withdrawal threshold (HWT). Immunofluorescence and western blot protocols were used to monitor astrocyte activation, changes in apoptosis-related proteins, and GABAergic interneuron plasticity. SDPI mice exhibited an initial marked decrease in HWT from days one to 14, followed by progressive recovery from days 21 to 42. From days 49 to 70, the HWT increased and returned to the control values. In contrast, MDPI mice showed a persistent decrease in HWT from days one to 70. MDPI increased glial fibrillary acidic protein (GFAP) and decreased glutamine synthetase (GS) and glutamate transporter-1 (GLT1) expression in the Vi/Vc transition zone of the brainstem on day 70, whereas no changes in astrocytic markers were observed on day 70 after SDPI. Increased expression of cleaved cysteine-aspartic protease-3 (cleaved caspase-3) and Bcl-2-associated X protein (Bax), along with decreased B-cell lymphoma/leukemia 2 (Bcl-2), were observed at day 70 after MDPI but not after SDPI. The downregulation of glutamic acid decarboxylase (GAD65) expression was observed on day 70 only after MDPI. The effects of MDPI-induced lower HWT from days one to 70 were attenuated by 12 sessions of EA treatment (days one to 21 after MDPI). Changes in astrocytic GFAP, GS, and GLT-1, along with cleaved caspase-3, Bax, Bcl-2, and GAD65 expression observed 70 days after MDPI, were reversed by EA treatment. The results suggest that persistent dental pain in mice was induced by MDPI but not by SDPI. This effect was associated with trigeminal GABAergic interneuron plasticity along with morphological and functional changes in astrocytes. EA exerts prolonged analgesic and neuroprotective effects that might be associated with the modulation of neuron-glia crosstalk mechanisms.


Assuntos
Eletroacupuntura , Neuralgia , Fármacos Neuroprotetores , Camundongos , Animais , Astrócitos/metabolismo , Fármacos Neuroprotetores/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2 , Eletroacupuntura/métodos , Polpa Dentária/metabolismo , Neuralgia/metabolismo , Analgésicos/metabolismo , Interneurônios/metabolismo
3.
Mol Pain ; 18: 17448069221121562, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35976914

RESUMO

Neuropathic pain takes a heavy toll on individual well-being, while current therapy is far from desirable. Herein, we assessed the analgesic effect of ß-elemene, a chief component in the traditional Chinese medicine Curcuma wenyujin, and explored the underlying mechanisms at the level of spinal dorsal horn (SDH) under neuropathic pain. A spared nerve injury (SNI)-induced neuropathic pain model was established in rats. Intraperitoneal injection (i.p.) of ß-elemene was administered for 21 consecutive days. Mechanical allodynia was explored by von Frey filaments. The activation of the mitogen-activated protein kinase (MAPK) family (including ERK, p38, and JNK) in spinal neurons, astrocytes, and microglia was evaluated using immunostaining 29 days after SNI surgery. The expression of GFAP, Iba-1, p-ERK, p-JNK, and p-p38 within the SDH was measured using immunoblotting. The levels of proinflammatory cytokines (including TNF-α, IL-1ß, and IL-6) were measured with ELISA. The levels of oxidative stress indicators (including MDA, SOD, and GSH-PX) were detected using biochemical tests. Consecutive i.p. administration of ß-elemene relieved SNI-induced mechanical allodynia (with an EC50 of 16.40 mg/kg). SNI significantly increased the expression of p-ERK in spinal astrocytes but not microglia on day 29. ß-elemene reversed spinal astrocytic ERK activation and subsequent upregulation of proinflammatory cytokines in SNI rats, with no effect on the expression of p38 and JNK in spinal glia. ß-elemene also exerted antioxidative effects by increasing the levels of SOD and GSH-PX and decreasing the level of MDA. Our results suggest that SNI induces robust astrocytic ERK activation within the SDH in the late phase of neuropathic pain. ß-elemene exerts remarkable analgesic effects on neuropathic pain, possibly by inhibiting spinal astrocytic ERK activation and subsequent neuroinflammatory processes. Our findings suggest that ß-elemene might be a promising analgesic for the treatment of chronic pain.


Assuntos
Hiperalgesia , Neuralgia , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Ratos , Ratos Sprague-Dawley , Sesquiterpenos , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo
4.
Biomed Res Int ; 2021: 8893563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790825

RESUMO

Sophora viciifolia Hance is an edible plant used in traditional Chinese medicine. Sophocarpine, a tetracyclic quinolizidine alkaloid, is one of the most abundant active ingredients in Sophora viciifolia Hance. Here, we study the analgesic and anti-inflammatory effects, as well as the acute toxicity of sophocarpine from Sophora viciifolia Hance in mice. Sophocarpine (20, 40, and 80 mg/kgbw) significantly prolonged the delay period before a hot plate reaction occurred (all P < 0.05), and the delay before a tail-flick response was induced by a warm bath (P < 0.05; P < 0.01). Sophocarpine (40, 80 mg/kg) resulted in dose-dependent inhibition of the writhing reaction induced by acetic acid in mice (P < 0.05; P < 0.001, respectively). Sophocarpine (80 mg/kg) reduced the total duration of a formalin-induced pain response (P < 0.05). Sophocarpine prolonged the foot-licking latency of mice after the hot plate reaction, and this effect was antagonized by calcium chloride and enhanced by verapamil. Sophocarpine (20, 40, and 80 mg/kg) significantly inhibited xylene-induced ear edema (P < 0.01; P < 0.001; P < 0.001, respectively) and the penetration of acetic acid-induced dye into the peritoneal cavity (P < 0.01; P < 0.01; P < 0.001, respectively). It also reduced the levels of proinflammatory cytokine interleukin (IL)-1ß, IL-6, and prostaglandin E2 (P < 0.05, P < 0.01, P < 0.001) and those of serum nitric oxide (P < 0.05). The results of this study suggest that sophocarpine possesses certain analgesic and anti-inflammatory activities, which may be related to calcium and inhibition of the secretion of inflammatory factors.


Assuntos
Alcaloides/farmacologia , Dor/tratamento farmacológico , Alcaloides/metabolismo , Analgésicos/metabolismo , Analgésicos/farmacologia , Animais , Animais não Endogâmicos , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Medicina Tradicional Chinesa/métodos , Camundongos , NF-kappa B , Dor/fisiopatologia , Extratos Vegetais/farmacologia , Sophora/metabolismo
5.
Biomed Pharmacother ; 143: 112185, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34543985

RESUMO

Bauhinia scandens L. (Family, Fabaceae) is a medicinal plant used for conventional and societal medication in Ayurveda. The present study has been conducted to screen the chemical, pharmacological and biochemical potentiality of the methanol extracts of B. scandens stems (MEBS) along with its related fractions including carbon tetrachloride (CTBS), di-chloromethane (DMBS) and n-butanol (BTBS). UPLC-QTOF-MS has been implemented to analyze the chemical compounds of the methanol extracts of Bauhinia scandens stems. Additionally, antinociceptive and anti-inflammatory effects were performed by following the acetic acid-induced writhing test and formalin-mediated paw licking test in the mice model. The antipyretic investigation was performed by Brewer Yeast induced pyrexia method. The clot lysis method was implemented to screen the thrombolytic activity in human serum. Besides, the in silico study was performed for the five selected chemical compounds of Bauhinia scandens, found by UPLC-QTOF-MS By using Discover Studio 2020, UCSF Chimera, PyRx autodock vina and online tools. The MEBS and its fractions exhibited remarkable inhibition in dose dependant manner in the antinociceptive and antiinflammatory investigations. The antipyretic results of MEBS and DMBS were close to the standard drug indomethacin. Investigation of the thrombolytic effect of MEBS, CTBS, DMBS, and BTBS revealed notable clot-lytic potentials. Besides, the phenolic compounds of the plant extracts revealed strong binding affinity to the COX-1, COX-2, mPGES-1 and plasminogen activator enzymes. To recapitulate, based on the research work, Bauhinia scandens L. stem and its phytochemicals can be considered as prospective wellsprings for novel drug development and discovery by future researchers.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Antipiréticos/farmacologia , Bauhinia , Fibrinolíticos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Analgésicos/isolamento & purificação , Analgésicos/metabolismo , Analgésicos/toxicidade , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/toxicidade , Antipiréticos/isolamento & purificação , Antipiréticos/metabolismo , Antipiréticos/toxicidade , Bauhinia/química , Coagulação Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Febre/metabolismo , Febre/microbiologia , Febre/prevenção & controle , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/metabolismo , Fibrinolíticos/toxicidade , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos , Simulação de Acoplamento Molecular , Dor/induzido quimicamente , Dor/metabolismo , Dor/prevenção & controle , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Extratos Vegetais/toxicidade , Caules de Planta , Ligação Proteica
6.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557235

RESUMO

The current study attempted, for the first time, to qualitatively and quantitatively determine the phytochemical components of Elatostema papillosum methanol extract and their biological activities. The present study represents an effort to correlate our previously reported biological activities with a computational study, including molecular docking, and ADME/T (absorption, distribution, metabolism, and excretion/toxicity) analyses, to identify the phytochemicals that are potentially responsible for the antioxidant, antidepressant, anxiolytic, analgesic, and anti-inflammatory activities of this plant. In the gas chromatography-mass spectroscopy analysis, a total of 24 compounds were identified, seven of which were documented as being bioactive based on their binding affinities. These seven were subjected to molecular docking studies that were correlated with the pharmacological outcomes. Additionally, the ADME/T properties of these compounds were evaluated to determine their drug-like properties and toxicity levels. The seven selected, isolated compounds displayed favorable binding affinities to potassium channels, human serotonin receptor, cyclooxygenase-1 (COX-1), COX-2, nuclear factor (NF)-κB, and human peroxiredoxin 5 receptor proteins. Phytol acetate, and terpene compounds identified in E. papillosum displayed strong predictive binding affinities towards the human serotonin receptor. Furthermore, 3-trifluoroacetoxypentadecane showed a significant binding affinity for the KcsA potassium channel. Eicosanal showed the highest predicted binding affinity towards the human peroxiredoxin 5 receptor. All of these findings support the observed in vivo antidepressant and anxiolytic effects and the in vitro antioxidant effects observed for this extract. The identified compounds from E. papillosum showed the lowest binding affinities towards COX-1, COX-2, and NF-κB receptors, which indicated the inconsequential impacts of this extract against the activities of these three proteins. Overall, E. papillosum appears to be bioactive and could represent a potential source for the development of alternative medicines; however, further analytical experiments remain necessary.


Assuntos
Simulação por Computador , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Urticaceae/química , Analgésicos/química , Analgésicos/metabolismo , Analgésicos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antidepressivos/química , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/metabolismo , Conformação Proteica
7.
Naunyn Schmiedebergs Arch Pharmacol ; 393(9): 1715-1728, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32388600

RESUMO

The present research work was designed to examine the neuroprotective effect of ethanolic extract of Solanum virginianum Linn. (SV) in chronic construction injury (CCI) of sciatic nerve-induced neuropathic pain in rats. The extract was initially standardized by high-performance thin-layer chromatography using solasodine as a biomarker and was then subjected to assess the degree of mechanical allodynia, thermal allodynia, mechanical hyperalgesia, thermal hyperalgesia and biochemical evaluations. Administration of SV (100 and 200 mg/kg; p.o.) and pregabalin (10 mg/kg; p.o.) as a reference standard significantly debilitated hyperalgesia and allodynia and notably restored the altered antioxidant level and pro-inflammatory cytokine (IL-1ß and TNF-α) expression in a dose-dependent manner. Further, to appraise the mechanistic approach of solasodine, docking simulation studies were done on the 3D structure of the voltage-gated N-type calcium channel (Cav 2.2), R-type calcium channel (Cav 2.3) and sodium channel (Nav 1.7), and the results revealed that solasodine properly positioned into Phe 19, Leu 32, Met 51 and Met 71 (FLMM pocket) of Cav 2.2 and Cav 2.3 and being a competitor of Ca2+/N-lobe it may inactivate these calcium channels but did not bind into the desired binding pocket of Nav 1.7. Thus, the study confirmed the role of solasodine as a major biomarker for the observed neuroprotective nature of Solanum virginianum.


Assuntos
Analgésicos/farmacologia , Hiperalgesia/prevenção & controle , Simulação de Acoplamento Molecular , Neuralgia/prevenção & controle , Limiar da Dor/efeitos dos fármacos , Extratos Vegetais/farmacologia , Neuropatia Ciática/tratamento farmacológico , Alcaloides de Solanáceas/farmacologia , Solanum , Analgésicos/isolamento & purificação , Analgésicos/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Sítios de Ligação , Ligação Competitiva , Canais de Cálcio Tipo N/efeitos dos fármacos , Canais de Cálcio Tipo N/metabolismo , Modelos Animais de Doenças , Etanol/química , Feminino , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Ligação Proteica , Ratos Wistar , Neuropatia Ciática/metabolismo , Neuropatia Ciática/fisiopatologia , Alcaloides de Solanáceas/isolamento & purificação , Alcaloides de Solanáceas/metabolismo , Solanum/química , Solventes/química
8.
Biomed Pharmacother ; 126: 110042, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32203893

RESUMO

Medicinal plants from traditional chinese medicine are used increasingly worldwide for their benefits to health and quality of life for the relevant clinical symptoms related to pain. Among them, Salvia miltiorrhiza Bunge is traditionally used in asian countries as antioxidant, anticancer, anti-inflammatory and analgesic agent. In this context, several evidences support the hypothesis that some tanshinones, in particular cryptotanshinone (CRY), extracted from the roots (Danshen) of this plant exhibit analgesic actions. However, it is surprisingly noted that no pharmacological studies have been carried out to explore the possible analgesic action of this compound in terms of modulation of peripheral and/or central pain. Therefore, in the present study, by using peripheral and central pain models of nociception, such as tail flick and hot plate test, the analgesic effect of CRY in mice was evaluated. Successively, by the aim of a computational approach, we have evaluated the interaction mode of this diterpenoid on opioid and cannabinoid system. Finally, CRY was dosed in mice serum by an HPLC method validated according to European Medicines Agency guidelines validation rules. Here, we report that CRY displayed anti-nociceptive activity on both hot plate and tail flick test, with a prominent long-lasting peripheral analgesic effect. These evidences were indirectly confirmed after the daily administration of the tanshinone for 7 and 14 days. In addition, the analgesic effect of CRY was reverted by naloxone and cannabinoid antagonists and amplified by arginine administration. These findings were finally supported by HPLC and docking studies, that revealed a noteworthy presence of CRY on mice serum 1 h after its intraperitoneal administration and a possible interaction of tested compound on µ and k receptors. Taken together, these results provide a new line of evidences showing that CRY can produce analgesia against various phenotypes of nociception with a mechanism that seems to be related to an agonistic activity on opioid system.


Assuntos
Analgésicos/metabolismo , Analgésicos/farmacologia , Fenantrenos/metabolismo , Fenantrenos/farmacologia , Analgésicos/química , Animais , Humanos , Masculino , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Medição da Dor , Fenantrenos/química , Conformação Proteica , Receptores Opioides/química , Receptores Opioides/metabolismo
9.
J Pharm Biomed Anal ; 172: 67-77, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31029802

RESUMO

A potent synthetic α2-adrenergic agonist called PT-31, (3-(2-chloro-6-fluorobenzyl)-imidazolidine-2,4-dione), was recently detected as a potential drug to be used as an adjuvant drug to treat chronic pain. The excellent pharmacological property of PT-31 highlights the importance in elucidating its metabolism, which could provide valuable information about its metabolite profile for further pharmacokinetics studies and additionally to estimate the impact of its metabolites on the efficacy, safety and elimination of PT-31. In this work, the study of the in vitro metabolism of PT-31 was initially carried out by using a liquid chromatography coupled to ion trap multiple-stage mass spectrometer (LC-IT-MSn) and a hybrid triple quadrupole/linear ion trap mass spectrometer (LC-QTrap). The production of at least three unknown oxidative metabolites was observed. Structural identification of the unknown metabolites was carried out by combination of LC-MS experiments, including selected reaction monitoring (SRM) and multi-stage full scan experiments. Further analysis of 1H-NMR led to the structural confirmation of the major metabolite. The results indicated that PT-31 was metabolized by a hydroxylation reaction in the imidazolidine-2,4-dione ring in rat and human liver microsomes, producing the metabolite 3-(2-chloro-6-fluorobenzyl)-5-hydroxyimidazolidine-2,4-dione in rat liver microsomes. A carbon hydroxylation onto the benzyl ring, produced two other minor metabolites of the PT-31 in rat liver microsomes.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/metabolismo , Analgésicos/metabolismo , Microssomos Hepáticos/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacocinética , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Analgésicos/farmacocinética , Analgésicos/uso terapêutico , Animais , Dor Crônica/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Imidazolidinas/metabolismo , Imidazolidinas/farmacocinética , Imidazolidinas/uso terapêutico , Espectroscopia de Ressonância Magnética , Oxirredução , Ratos , Espectrometria de Massas em Tandem
10.
Int J Pharm Compd ; 22(6): 498-503, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30384350

RESUMO

In the outpatient pharmacy compounding, gabapentin, an anti-epileptic agent, has been commonly prescribed to be prepared alone or in combination with other agents in Pluronic lecithin organogel for transdermal pain management and palliative care. The objective of this study was to formulate and characterize gabapentin encapsulated elastic liposomes and then compare the gabapentin-based liposomes with compounded gabapentin-based Pluronic lecithin organogel regarding their efficiency in transdermal delivery of gabapentin. We demonstrated that our small 100-nm unilamellar vesicles of gabapentin encapsulated approximately 6.9 mg/mL Å} 0.2 mg/mL with up to 70% of encapsulation efficiency. Gabapentin released slowly from liposomes over 12 hours while it rapidly released from Pluronic lecithin organogel within 4 hours. We also showed that after 24 hours liposomes significantly accelerated the percutaneous penetration of gabapentin through the porcine skin leading to higher cumulative drug concentrations (~98% of drug permeated with a mean flux of 188.94 µg/cm2/h Å} 42.16 µg/cm2/h) as compared to Pluronic lecithin organogel (~55 % of drug permeated with a mean flux of 56.32 µg/cm2/h Å} 41.93 µg/cm2/h). In conclusion, the elastic liposomal formulation showed higher efficiency than the compounded Pluronic lecithin organogel in the transdermal delivery of gabapentin through porcine skin.


Assuntos
Analgésicos/administração & dosagem , Gabapentina/administração & dosagem , Lipídeos/química , Absorção Cutânea , Pele/metabolismo , Administração Cutânea , Analgésicos/química , Analgésicos/metabolismo , Animais , Composição de Medicamentos , Liberação Controlada de Fármacos , Elasticidade , Gabapentina/química , Gabapentina/metabolismo , Géis , Cinética , Lecitinas/química , Lipossomos , Poloxâmero/química
11.
PLoS One ; 13(3): e0193451, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558494

RESUMO

BACKGROUND: Ursolic acid (UA) is a promising molecule with anti-inflammatory, analgesic and potential anti-arthritic activity. METHODS: This study was undertaken to make formulation and evaluation of Ocimum sanctum L. leaf extract (OLE) loaded nano-structured lipid carriers (OLE-NLCs) for improved transdermal delivery of UA. Different surfactants, solid lipids and liquid lipids were used for the preparation of NLCs. The NLCs were developed using emulsion solvent diffusion and evaporation method. Different physicochemical properties, entrapment efficacy, in vitro release evaluation, and ex vivo permeation studies of the prepared NLCs were carried out. The in vivo anti-arthritic activity of OLE-loaded NLC gel and control gel formulation (OLE free NLC gel) against Complete Freund's Adjuvant (CFA) induced arthritis in wister albino rats was also carried out. RESULTS: OLE-NLCs were composed of spherical particles having a mean particle size of ~120 nm, polydispersity index of ~0.162 and zeta potential of ~ -27 mV. The high entrapment efficiency (EE) of UA ~89.56% was attained. The in vitro release study demonstrated a prolonged release of UA from the NLCs up to 12 h. The developed formulation was found to be significantly better with respect to the drug permeation amount with an enhancement ratio of 2.69 as compared with marketed formulation. The in vivo biological activity investigations, studies showed that the newly prepared NLCs formulation of OLE showed excellent anti-arthritic activity and the results were found at par with standard marketed diclofenac gel for its analgesic and anti-arthritic activities. These results were also supported by radiological analysis and molecular docking studies. CONCLUSION: The overall results proved that the prepared OLE-NLCs were very effective for the treatment of arthritis and the results were found at par with standard marketed the standard formulation of diclofenac gel.


Assuntos
Analgésicos/farmacologia , Artrite Experimental/tratamento farmacológico , Lipídeos/química , Simulação de Acoplamento Molecular , Ocimum sanctum/química , Extratos Vegetais/farmacologia , Triterpenos/química , Analgésicos/química , Analgésicos/metabolismo , Analgésicos/uso terapêutico , Animais , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Interleucina-1/antagonistas & inibidores , Masculino , Camundongos , Tamanho da Partícula , Permeabilidade , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/uso terapêutico , Conformação Proteica , Ratos , Ratos Wistar , Pele/efeitos dos fármacos , Pele/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Ácido Ursólico
12.
Eur J Pharmacol ; 823: 105-109, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408089

RESUMO

Sinomenine, a major bioactive ingredient isolated from traditional Chinese medicine Sinomenium acutum, has been reported to have analgesic effects in various pain animal models. N-demethylsinomenine, the N-demethylated product of sinomenine, has been identified to be the major metabolite of sinomenine and is also a natural component extracted from Sinomenium acutum. This study examined the anti-allodynic effects of N-demethylsinomenine in a mouse model of postoperative pain. A significant and sustained mechanical allodynia that lasted for 4 days was induced by making a surgical incision on the right hind paw in mice. Acute treatment with N-demethylsinomenine (10-40 mg/kg, s.c.) relieved the mechanical allodynia in a dose-dependent manner. Although there was no difference in maximal analgesic effect between N-demethylsinomenine (40 mg/kg, s.c.) and sinomenine (40 mg/kg, s.c.), the onset of action of N-demethylsinomenine was quicker than sinomenine. Repeated treatment with N-demethylsinomenine (10-40 mg/kg/day, s.c.) also dose-dependently exerted sustained antinociception against postoperative allodynia and did not produce analgesic tolerance and carry-over effect. The anti-allodynia induced by N-demethylsinomenine (40 mg/kg, s.c.) was attenuated by bicuculline, a selective γ-aminobutyric acid type A (GABAA) receptor antagonist. In addition, the doses of N-demethylsinomenine used here did not alter the locomotor activity in mice. Our findings demonstrated that N-demethylsinomenine exerts behaviorally-specific anti-allodynia against postoperative allodynia mediated through the GABAA receptors, suggesting it may be a useful novel pharmacotherapy for the control of postoperative pain.


Assuntos
Analgésicos/metabolismo , Analgésicos/farmacologia , Hiperalgesia/tratamento farmacológico , Morfinanos/metabolismo , Morfinanos/farmacologia , Dor Pós-Operatória/tratamento farmacológico , Analgésicos/uso terapêutico , Animais , Bicuculina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfinanos/uso terapêutico , Receptores de GABA-A/metabolismo
13.
Neurochem Res ; 42(7): 1983-1994, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382595

RESUMO

The potential clinical utility of galanin peptidic analogs has been hindered by poor metabolic stability, lack of brain penetration, and hyperglycemia. In addition to possessing potent anticonvulsant efficacy, galanin analogs are analgesic in various assays. The purpose of these studies was to evaluate the lead galanin receptor type 2 (GalR2)-preferring analog, NAX 810-2, in various pain assays, as well as determine any potential for insulin inhibition, growth hormone stimulation, and cognitive impairment. NAX 810-2 was evaluated in mouse (carrageenan, formalin, tail flick, plantar incision) and rat pain models (partial sciatic nerve ligation). NAX 810-2 dose-dependently increased paw withdrawal latency following plantar administration of carrageenan (ED50 4.7 mg/kg). At a dose of 8 mg/kg, NAX 810-2 significantly attenuated nociceptive behaviors following plantar administration of formalin, and this was observed for both phase I (acute) and phase II (inflammatory) components of the formalin behavioral response. NAX-810-2 was active at higher doses in the mouse tail flick model (ED50 20.2 mg/kg) and similarly, reduced mechanical allodynia following plantar incision in mice at a dose of 24 mg/kg. NAX 810-2 also reduced mechanical allodynia in the partial sciatic nerve ligation model at a dose of 4 mg/kg. In addition, NAX 810-2 did not impair insulin secretion at doses of 2.5 and 8 mg/kg (acutely) or at a dose of 8 mg/kg given daily for 5 days. Similarly, 8 mg/kg (twice daily, 5 days) of NAX 810-2 did not increase growth hormone levels. These results demonstrate that NAX 810-2 possesses a favorable pre-clinical profile as a novel and first-in-class analgesic.


Assuntos
Analgésicos/metabolismo , Analgésicos/uso terapêutico , Galanina/análogos & derivados , Dor/tratamento farmacológico , Receptor Tipo 2 de Galanina/metabolismo , Analgésicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Galanina/metabolismo , Galanina/farmacologia , Galanina/uso terapêutico , Masculino , Camundongos , Dor/patologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
14.
J Food Sci ; 82(5): 1224-1230, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28346686

RESUMO

The ability of catechins and their related compounds to inhibit breast cancer resistance protein (BCRP) function in Caco-2 cell monolayers was investigated with mitoxantrone as a BCRP substrate. The gallate or pyrogallol moiety on the catechin structure seemed to promote increased cellular accumulation and inhibit efflux transport of mitoxantrone. The ability of gallate catechins such as (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) to increase cellular accumulation and inhibit efflux transport of mitoxantrone was greater than that of nongallate catechins. Gallic acid octyl ester (GAO) also increased intracellular mitoxantrone accumulation. Experiments using GAO derivatives indicated that the gallate moiety required the presence of a long carbon chain for BCRP inhibition. Cellular accumulation and reduced efflux transport of mitoxantrone were greater with epigallocatechin 3-(3″-O-butyl) gallate than with EGCG. EGCG inhibition of BCRP seemed to be restricted by hydrophobicity. The co-administration of catechins, particularly EGCG and related compounds, with greater hydrophobicity may increase the therapeutic activities of BCRP substrates such as mitoxantrone.


Assuntos
Analgésicos/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Mitoxantrona/metabolismo , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Chá/química
15.
Eur J Med Chem ; 126: 202-217, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27776274

RESUMO

µ-Opioid receptor (MOR) agonists are analgesics used clinically for the treatment of moderate to severe pain, but their use is associated with severe adverse effects such as respiratory depression, constipation, tolerance, dependence, and rewarding effects. In this study, we identified N-({2-[(4-bromo-2-trifluoromethoxyphenyl)sulfonyl]-1,2,3,4-tetrahydro-1-isoquinolinyl}methyl)cyclohexanecarboxamide (1) as a novel opioid receptor agonist by high-throughput screening. Structural modifications made to 1 to improve potency and blood-brain-barrier (BBB) penetration resulted in compounds 45 and 46. Compound 45 was a potent MOR/KOR (κ-opioid receptor) agonist, and compound 46 was a potent MOR and medium KOR agonist. Both 45 and 46 demonstrated a significant anti-nociceptive effect in a tail-flick test performed in wild type (WT) B6 mice. The ED50 value of 46 was 1.059 mg/kg, and the brain concentrations of 45 and 46 were 7424 and 11696 ng/g, respectively. Accordingly, compounds 45 and 46 are proposed for lead optimization and in vivo disease-related pain studies.


Assuntos
Analgésicos/química , Analgésicos/farmacologia , Benzamidas/química , Benzamidas/farmacologia , Receptores Opioides mu/metabolismo , Adenilil Ciclases/metabolismo , Analgésicos/síntese química , Analgésicos/metabolismo , Animais , Benzamidas/síntese química , Benzamidas/metabolismo , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Masculino , Camundongos , Simulação de Dinâmica Molecular , Conformação Proteica , Receptores Opioides mu/química , Relação Estrutura-Atividade
16.
J Ethnopharmacol ; 195: 283-297, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27864110

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The medicinal plant generally known as monkey's comb (Amphilophium crucigerum) has been popularly described for the treatment of neuropathic and inflammatory pain, specially seeds preparations. AIM OF THE STUDY: The goal of the present study was to evaluate the antinociceptive effect of the crude extract (Crd) and dichloromethane fraction (Dcm) of A. crucigerum seeds, and investigate the involvement of transient receptor potential vanilloid 1 (TRPV1) receptor in this effect. MATERIALS AND METHODS: Male Swiss mice were used in this study. The effects of Crd and Dcm was tested on capsaicin-induced Ca2+ influx or the specific binding of [3H]-resiniferatoxin. Moreover, after treatment with Crd or Dcm, animals were exposed to acute pain (hot water tail-flick and capsaicin intraplantar test) or chronic pain models (injection of complete Freund's adjuvant or partial ligation of the sciatic nerve). Acute adverse effects were also noted: locomotor activity, corporal temperature, hepatic or renal damage, gastrointestinal transit alteration, and ulcerogenic activity. RESULTS: The oral administration of Crd or Dcm resulted in an antinociceptive effect in the hot water tail-flick (48°C) and capsaicin intraplantar tests. Furthermore, these preparations exhibited antinociceptive and anti-inflammatory effects in a chronic inflammatory pain model, and antinociceptive effects in a neuropathic pain model. Moreover, Crd and Dcm reduced capsaicin-induced Ca2+ influx and diminished the [3H]-resiniferatoxin specific binding to spinal cord membranes. Acute adverse events were not found with Crd or Dcm administration. CONCLUSION: In conclusion, our results support the analgesic effect of A. crucigerum and suggest the presence of compounds that may act as TRPV1 antagonists.


Assuntos
Analgésicos/farmacologia , Bignoniaceae/química , Dor Crônica/prevenção & controle , Etanol/química , Cloreto de Metileno/química , Neuralgia/prevenção & controle , Nociceptividade/efeitos dos fármacos , Dor Nociceptiva/prevenção & controle , Extratos Vegetais/farmacologia , Sementes/química , Solventes/química , Medula Espinal/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Analgésicos/isolamento & purificação , Analgésicos/metabolismo , Analgésicos/toxicidade , Animais , Ligação Competitiva , Sinalização do Cálcio/efeitos dos fármacos , Capsaicina/farmacologia , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Modelos Animais de Doenças , Diterpenos/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Medição da Dor , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Extratos Vegetais/toxicidade , Plantas Medicinais , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Canais de Cátion TRPV/metabolismo
17.
Bioanalysis ; 8(8): 829-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27005853

RESUMO

Sativex(®) is an oromucosal spray indicated for the treatment of moderate-to-severe spasticity in multiple sclerosis and is also an effective analgesic for advanced cancer patients. Sativex contains Δ(9)-tetrahydrocannabinol (THC) and cannabidiol in an approximately 1:1 ratio. The increasing prevalence of medicinal cannabis products highlights the importance of reliable bioanalysis and re-evaluation of the interpretation of positive test results for THC, as legal implications may arise in workplace, roadside and sports drug testing situations. This article summarizes published research on the bioanalysis of THC and cannabidiol, with particular focus on Sativex. Common screening and confirmatory testing of blood, urine, oral fluid and hair samples are outlined. Correlations between matrices and current analytical pitfalls are also addressed.


Assuntos
Analgésicos/análise , Extratos Vegetais/análise , Analgésicos/metabolismo , Analgésicos/uso terapêutico , Canabidiol , Dopagem Esportivo , Dronabinol , Combinação de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Cabelo/química , Humanos , Esclerose Múltipla/tratamento farmacológico , Extratos Vegetais/metabolismo , Extratos Vegetais/uso terapêutico , Local de Trabalho
18.
Mol Pain ; 11: 27, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25962909

RESUMO

The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics (herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins and Kinchington group describes a strategy to use the replication defective HSV vector to deliver two different gene products (enkephalin and TNF soluble receptor) for the treatment of post-herpetic neuralgia. Dr. Hao group addresses the observation that the pro-inflammatory cytokines are an important shared mechanism underlying both neuropathic pain and the development of opioid analgesic tolerance and withdrawal. The use of gene therapy strategies to enhance expression of the anti-pro-inflammatory cytokines is summarized. Development of multiple gene therapy strategies may have the benefit of targeting specific pathologies associated with distinct chronic pain conditions (by Guest Editors, Drs. C. Fairbanks and S. Hao).


Assuntos
Dor Crônica/genética , Dor Crônica/terapia , Terapia Genética , Vetores Genéticos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Analgésicos/metabolismo , Analgésicos/uso terapêutico , Animais , Humanos , Manejo da Dor/métodos
19.
Pain ; 156(9): 1647-1659, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25932687

RESUMO

Glycine transporter 1 (GlyT1) plays a crucial role in regulating extracellular glycine concentrations and might thereby constitute a new drug target for the modulation of glycinergic inhibition in pain signaling. Consistent with this view, inhibition of GlyT1 has been found to induce antinociceptive effects in various animal pain models. We have shown previously that the lidocaine metabolite N-ethylglycine (EG) reduces GlyT1-dependent glycine uptake by functioning as an artificial substrate for this transporter. Here, we show that EG is specific for GlyT1 and that in rodent models of inflammatory and neuropathic pain, systemic treatment with EG results in an efficient amelioration of hyperalgesia and allodynia without affecting acute pain. There was no effect on motor coordination or the development of inflammatory edema. No adverse neurological effects were observed after repeated high-dose application of EG. EG concentrations both in blood and spinal fluid correlated with an increase of glycine concentration in spinal fluid. The time courses of the EG and glycine concentrations corresponded well with the antinociceptive effect. Additionally, we found that EG reduced the increase in neuronal firing of wide-dynamic-range neurons caused by inflammatory pain induction. These findings suggest that systemically applied lidocaine exerts antihyperalgesic effects through its metabolite EG in vivo, by enhancing spinal inhibition of pain processing through GlyT1 modulation and subsequent increase of glycine concentrations at glycinergic inhibitory synapses. EG and other substrates of GlyT1, therefore, may be a useful therapeutic agent in chronic pain states involving spinal disinhibition.


Assuntos
Analgésicos/uso terapêutico , Glicinas N-Substituídas/uso terapêutico , Neuralgia/tratamento farmacológico , Inflamação Neurogênica/tratamento farmacológico , Limiar da Dor/efeitos dos fármacos , Analgésicos/metabolismo , Animais , Modelos Animais de Doenças , Adjuvante de Freund/toxicidade , Ácido Glutâmico/farmacologia , Glicina/líquido cefalorraquidiano , Glicina/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Glicinas N-Substituídas/metabolismo , Glicinas N-Substituídas/farmacologia , Neuralgia/etiologia , Neuralgia/patologia , Inflamação Neurogênica/etiologia , Medição da Dor , Estimulação Física/efeitos adversos , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/fisiologia , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Medula Espinal/fisiopatologia , Xenopus laevis
20.
J Nat Med ; 69(4): 487-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25894075

RESUMO

We aimed to study the antinociceptive effects of myricetin 3-O-ß-galactoside (Mi), a substance isolated from the hydroalcoholic extract of Davilla elliptica. This study examined male Swiss mice, inducible nitric oxide synthase C57B16/J knockout mice (iNOS(-/-)), and their corresponding wild type (WT). Formalin and tail-flick tests were used to evaluate the nociceptive threshold, and the carrageenan-induced paw edema test was used as a model for inflammation. The following drugs were administered to investigate the involvement of the nitrergic and opioidergic systems: L-NAME, a nonspecific nitric oxide synthase (NOS) inhibitor; L-arginine (L-Arg), a precursor for the synthesis of nitric oxide (NO); D-arginine (D-Arg), an inactive isomer for the synthesis of NO; aminoguanidine (Am), an inducible nitric oxide synthase (iNOS) inhibitor; and naloxone, a nonselective antagonist of opioid receptors. The results showed that oral pretreatment with Mi caused a dose-dependent inhibition of the inflammatory phase of the formalin test and did not alter motor performance. Intraperitoneal injection of L-NAME caused a reduction in the licking time during the second phase of the formalin test. The administration of L-Arg (but not D-Arg) reversed the antinociceptive effect of L-NAME. Furthermore, pre-administration of aminoguanidine potentiated the antinociceptive effect. Mi did not cause an antinociceptive effect in iNOS knockouts and led to a reduction in the nitrite concentration in the paws of mice. Carrageenan-induced paw edema was reduced in Swiss mice and WT mice when compared to iNOS(-/-) mice. Pre-administration of naloxone (NLX) did not reverse the antinociceptive effect of Mi, excluding the opioidergic system as a mediator of the antinociceptive effect. Thus, the results suggest that the antinociceptive and anti-inflammatory effects of myricetin 3-O-ß-galactoside are related to peripheral inhibition of nitric oxide synthesis, mainly iNOS.


Assuntos
Analgésicos/metabolismo , Anti-Inflamatórios/metabolismo , Edema/tratamento farmacológico , Galactosídeos/química , Óxido Nítrico/química , Plantas Medicinais/química , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA