Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.578
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 754-762, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621879

RESUMO

This study aims to explore the mechanism of Linggui Zhugan Decoction(LGZGD) in inhibiting Angiotensin Ⅱ(AngⅡ)-induced cardiomyocyte hypertrophy by regulating sigma-1 receptor(Sig1R). The model of H9c2 cardiomyocyte hypertrophy induced by AngⅡ in vitro was established by preparing LGZGD-containing serum and blank serum. H9c2 cells were divided into normal group, AngⅡ model group, 20% normal rat serum group(20% NSC), and 20% LGZGD-containing serum group. After the cells were incubated with AngⅡ(1 µmol·L~(-1)) or AngⅡ with serum for 72 h, the surface area of cardiomyocytes was detected by phalloidine staining, and the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase were detected by micromethod. The mitochondrial Ca~(2+) levels were detected by flow cytometry, and the expression levels of atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), Sig1R, and inositol 1,4,5-triphosphate receptor type 2(IP_3R_2) were detected by Western blot. The expression of Sig1R was down-regulated by transfecting specific siRNA for investigating the efficacy of LGZGD-containing serum on cardiomyocyte surface area, Na~+-K~+-ATPase activity, Ca~(2+)-Mg~(2+)-ATPase activity, mitochondrial Ca~(2+), as well as ANP, BNP, and IP_3R_2 protein expressions. The results showed that compared with the normal group, AngⅡ could significantly increase the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.01), and it could decrease the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+), and the expression of Sig1R(P<0.01). In addition, IP_3R_2 protein expression was significantly increased(P<0.01). LGZGD-containing serum could significantly decrease the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.05, P<0.01), and it could increase the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+ )(P<0.01), and the expression of Sig1R(P<0.05). In addition, IP_3R_2 protein expression was significantly decreased(P<0.05). However, after Sig1R was down-regulated, the effects of LGZGD-containing serum were reversed(P<0.01). These results indicated that the LGZGD-containing serum could inhibit cardiomyocyte hypertrophy induced by AngⅡ, and its pharmacological effect was related to regulating Sig1R, promoting mitochondrial Ca~(2+ )inflow, restoring ATP synthesis, and protecting mitochondrial function.


Assuntos
Miócitos Cardíacos , ATPase Trocadora de Sódio-Potássio , Ratos , Animais , Células Cultivadas , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Hipertrofia/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética
2.
Cell Physiol Biochem ; 58(1): 83-103, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38459804

RESUMO

BACKGROUND/AIMS: Unrestricted increased table salt (NaCl) intake is associated with oxidative stress and inflammation, leading to endothelial dysfunction and atherosclerosis. However, data on salt-induced immunomodulatory effects in the earliest phase of salt loading are scarce. METHODS: In the present study, an animal model of short-term salt loading was employed, including male Sprague Dawley rats consuming a high-salt diet (HSD; 4% NaCl) or standard laboratory chow (low-salt; LSD; 0.4% NaCl) during a 7-day period. The contribution of angiotensin II (ANGII) suppression was tested by adding a group of rats on a high-salt diet receiving ANGII infusions. Samples of peripheral blood/mesenteric lymph node leukocytes, brain blood vessels, and serum samples were processed for flow cytometry, quantitative real-time PCR, total proteome analysis, and multiplex immunoassay. RESULTS: Data analysis revealed the up-regulation of Il 6 gene in the microcirculation of high-salt-fed rats, accompanied by an increased serum level of TNF-alpha cytokine. The high-salt diet resulted in increased proportion of serum mono-unsaturated fatty acids and saturated fatty acids, reduced levels of linoleic (C18:2 ω-6) and α-linolenic (C18:3 ω-3) acid, and increased levels of palmitoleic acid (C16:1 ω-7). The high-salt diet had distinct, lymphoid compartment-specific effects on leukocyte subpopulations, which could be attributed to the increased expression of salt-sensitive SGK-1 kinase. Complete proteome analysis revealed high-salt-diet-induced vascular tissue remodeling and perturbations in energy metabolism. Interestingly, many of the observed effects were reversed by ANGII supplementation. CONCLUSION: Low-grade systemic inflammation induced by a HSD could be related to suppressed ANGII levels. The effects of HSD involved changes in Th17 and Treg cell distribution, vascular wall remodeling, and a shift in lipid and arachidonic acid metabolism.


Assuntos
Cloreto de Sódio na Dieta , Cloreto de Sódio , Ratos , Masculino , Animais , Cloreto de Sódio/farmacologia , Ratos Sprague-Dawley , Linfócitos T Reguladores , Ácidos Graxos , Proteoma , Angiotensina II/farmacologia , Inflamação , Dieta
3.
Phytomedicine ; 128: 155464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484625

RESUMO

BACKGROUND: Ang II induces hypertensive heart failure (HF) via hemodynamic and non-hemodynamic actions. Lycorine (LYC) is an alkaloid derived from Lycoris bulbs, and it possesses anti-cardiovascular disease-related activities. Herein, we explored the potential LYC-mediated regulation of Ang II-induced HF. METHODS: Over 4 weeks, we established a hypertensive HF mouse model by infusing Ang II into C57BL/6 mice using a micro-osmotic pump. For the final two weeks, mice were administered LYC via intraperitoneal injection. The LYC signaling network was then deduced using RNA sequencing. RESULTS: LYC administration strongly suppressed hypertrophy, myocardial fibrosis, and cardiac inflammation. As a result, it minimized heart dysfunction while causing no changes in blood pressure. The Nuclear Factor kappa B (NF-κB) network/phosphoinositol-3-kinase (PI3K)-protein kinase B (AKT) was found to be a major modulator of LYC-based cardioprotection using RNA sequencing study. We further confirmed that in cultured cardiomyocytes and mouse hearts, LYC reduced the inflammatory response and downregulated the Ang II-induced PI3K-AKT/NF-κB network. Moreover, PI3K-AKT or NF-κB axis depletion in cardiomyocytes completely abrogated the anti-inflammatory activities of LYC. CONCLUSION: Herein, we demonstrated that LYC safeguarded hearts in Ang II -stimulated mice by suppressing the PI3K-AKT/NF-κB-induced inflammatory responses. Given the evidence mentioned above, LYC is a robust therapeutic agent for hypertensive HF.


Assuntos
Alcaloides de Amaryllidaceae , Angiotensina II , Camundongos Endogâmicos C57BL , NF-kappa B , Fenantridinas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Alcaloides de Amaryllidaceae/farmacologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fenantridinas/farmacologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Insuficiência Cardíaca/tratamento farmacológico , Remodelação Ventricular/efeitos dos fármacos , Inflamação/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/induzido quimicamente , Modelos Animais de Doenças , Lycoris/química , Miocárdio
5.
Plant Foods Hum Nutr ; 79(1): 182-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38270742

RESUMO

Hypertension is a global health problem and leads to cardiovascular disease and renal injury. Solanum muricatum Aiton leaf extract, rich in flavonoids, is known for its antioxidant capacity. However, the effects of Solanum muricatum Aiton leaf extract on hypertension combined with inflammatory complications were unknown. This study aimed to investigate the impact of Solanum muricatum Aiton leaf extract on hypertension in vivo and in vitro. In vivo, Solanum muricatum Aiton leaf extract led to decrease high blood pressure, improve heart, aorta, and kidney pathology, and enhance the antioxidative activity in spontaneously hypertensive rats (SHR). Our study demonstrated Solanum muricatum Aiton leaf extract inhibited angiotensin-converting enzyme (ACE), epithelial sodium channel (ENaC), sodium glucose co-transporters-1 (SGLT-1), nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). In vitro, Solanum muricatum Aiton leaf extract improved the angiotensin II-induced reactive oxygen species (ROS) and mitochondrial membrane depolarization in NRK-52E cells. Besides, Solanum muricatum Aiton leaf extract could also decrease the expressions of ENaC, SGLT-1, and NF-κB in angiotensin II-treated NRK-52E cells. Solanum muricatum Aiton leaf can be suggested as a novel antihypertensive agent ameliorating hypertension via ACE inhibition, inflammation reduction, and ROS. PLE is a novel anti-hypertensive agent to ameliorate hypertension and its complications, including inflammation.


Assuntos
Hipertensão , Solanum , Ratos , Animais , Solanum/metabolismo , Anti-Hipertensivos/farmacologia , Espécies Reativas de Oxigênio , NF-kappa B/metabolismo , Angiotensina II , Antioxidantes/farmacologia , Inflamação , Hipertensão/tratamento farmacológico , Extratos Vegetais/farmacologia , Ratos Endogâmicos SHR
6.
Int J Biol Sci ; 20(2): 680-700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169582

RESUMO

Vascular remodeling plays a vital role in hypertensive diseases and is an important target for hypertension treatment. Irisin, a newly discovered myokine and adipokine, has been found to have beneficial effects on various cardiovascular diseases. However, the pharmacological effect of irisin in antagonizing hypertension-induced vascular remodeling is not well understood. In the present study, we investigated the protection and mechanisms of irisin against hypertension and vascular remodeling induced by angiotensin II (Ang II). Adult male mice of wild-type, FNDC5 (irisin-precursor) knockout, and FNDC5 overexpression were used to develop hypertension by challenging them with Ang II subcutaneously in the back using a microosmotic pump for 4 weeks. Similar to the attenuation of irisin on Ang II-induced VSMCs remodeling, endogenous FNDC5 ablation exacerbated, and exogenous FNDC5 overexpression alleviated Ang II-induced hypertension and vascular remodeling. Aortic RNA sequencing showed that irisin deficiency exacerbated intracellular calcium imbalance and increased vasoconstriction, which was parallel to the deterioration in both ER calcium dysmetabolism and ER stress. FNDC5 overexpression/exogenous irisin supplementation protected VSMCs from Ang II-induced remodeling by improving endoplasmic reticulum (ER) homeostasis. This improvement includes inhibiting Ca2+ release from the ER and promoting the re-absorption of Ca2+ into the ER, thus relieving Ca2+-dependent ER stress. Furthermore, irisin was confirmed to bind to its receptors, αV/ß5 integrins, to further activate the AMPK pathway and inhibit the p38 pathway, leading to vasoprotection in Ang II-insulted VSMCs. These results indicate that irisin protects against hypertension and vascular remodeling in Ang II-challenged mice by restoring calcium homeostasis and attenuating ER stress in VSMCs via activating AMPK and suppressing p38 signaling.


Assuntos
Angiotensina II , Hipertensão , Camundongos , Masculino , Animais , Angiotensina II/metabolismo , Fibronectinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Remodelação Vascular , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Estresse do Retículo Endoplasmático
7.
J Ethnopharmacol ; 323: 117615, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38163560

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Essential hypertension (EH) is one of the important risk factors of cardio-cerebrovascular diseases, and it can significantly increase the incidence and mortality of acute myocardial infarction, cerebral infarction and hemorrhage. Danhong Formula (DHF) was consisting of Radix et Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Labiatae, Danshen in Chinese) and Flos Carthami (Carthamus tinctorius L., Compositae, Honghua in Chinese) (Plant names have been checked with http://www.the plant list.org on June 28th, 2023) was approved by State Food and Drug Administration of China, that has been used for thousands of years in the treatment of cardiovascular diseases in China with proven safety and efficacy. Though our previous studies have found that DHF improved endothelial dysfunction (ED) and decreased high blood pressure (BP), the underlying mechanisms of its antihypertensive effect still remain unclear. AIM OF THE STUDY: This study investigated whether DHF regulated MicroRNA 24- Phosphatidylinositol 3-Kinase-Serine/Threonine Kinase- Endothelial Nitric Oxide Synthase (miR-24 - PI3K/AKT/eNOS) axis to produce antihypertensive effect and improve endothelial dysfunction. MATERIALS AND METHODS: Firstly, the chemical components of DHF were analyzed by UHPLC-MS. After that, BP was continuously monitored within the 1st, 3rd, and 4th week in SHR to evaluate the antihypertensive effect of DHF intraperitoneal injection. In addition, not only the contents of serum nitric oxide (NO), prostacyclin (PGI2), and angiotensin II (Ang II) were detected, but also the isolated aorta ring experiment was conducted to evaluate the vasomotoricity to evaluate of DHF on improving endothelial dysfunction. Key proteins or mRNA expression associated with miR-24 - PI3K/AKT/eNOS axis in aorta were detected by capillary Western blot, immunohistochemistry or RT-PCR to explore the underlying mechanisms. Index of NO, Ang II PGI2 and key proteins or mRNA expression were also conducted in miR-24-3p over-expression HUVECs model. RESULTS: Compared with SHR control group, DHF (4 mL/kg/day, 2 mL/kg/day, 1 mL/kg/day) treatment significantly reduced high BP in SHR and selectively increased acetylcholine (Ach) induced vasodilation, but not sodium nitroprusside (SNP) in a manner of concentration dependency in isolated aorta ring. DHF (4 mL/kg/day, 1 mL/kg/day) treatment was accompanying an increment of NO and PGI2, and lowering AngII in SHR. Moreover, DHF treatment significantly up-regulated expression of p-PI3K, p-AKT, mTOR, eNOS and p-eNOS, but down-regulated miR-24-3p expression in aorta. Compared with miR-24-3p over-expression HUVECs model group, DHF treatment inhibited miR- 24-3p expression and up-regulated p-PI3K, p-AKT, mTOR and eNOS mRNA expression. Similarly, DHF treatment increased PI3K, AKT, mTOR and eNOS protein expression in HUVECs by Western blot. CONCLUSIONS: These findings suggest that DHF alleviates endothelial dysfunction and reduces high BP in SHR mediated by down-regulating miR-24 via ultimately facilitating up-regulation of PI3K/AKT/eNOS axis. This current study firstly demonstrates a potential direction for antihypertensive mechanism of DHF from microRNA aspect and will promote its clinical applications.


Assuntos
Medicamentos de Ervas Chinesas , Hipertensão , MicroRNAs , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pressão Sanguínea , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Serina-Treonina Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Anti-Hipertensivos , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Hipertensão/tratamento farmacológico , Angiotensina II/farmacologia , Serina-Treonina Quinases TOR , Serina , RNA Mensageiro , Óxido Nítrico/metabolismo
8.
Mol Med ; 30(1): 15, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254035

RESUMO

BACKGROUND: In heart failure (HF), mitochondrial dysfunction and metabolic remodeling lead to a reduction in energy productivity and aggravate cardiomyocyte injury. Supplementation with α-ketoglutarate (AKG) alleviated myocardial hypertrophy and fibrosis in mice with HF and improved cardiac insufficiency. However, the myocardial protective mechanism of AKG remains unclear. We verified the hypothesis that AKG improves mitochondrial function by upregulating NAD+ levels and activating silent information regulator 2 homolog 1 (SIRT1) in cardiomyocytes. METHODS: In vivo, 2% AKG was added to the drinking water of mice undergoing transverse aortic constriction (TAC) surgery. Echocardiography and biopsy were performed to evaluate cardiac function and pathological changes. Myocardial metabolomics was analyzed by liquid chromatography‒mass spectrometry (LC‒MS/MS) at 8 weeks after surgery. In vitro, the expression of SIRT1 or PINK1 proteins was inhibited by selective inhibitors and siRNA in cardiomyocytes stimulated with angiotensin II (AngII) and AKG. NAD+ levels were detected using an NAD test kit. Mitophagy and ferroptosis levels were evaluated by Western blotting, qPCR, JC-1 staining and lipid peroxidation analysis. RESULTS: AKG supplementation after TAC surgery could alleviate myocardial hypertrophy and fibrosis and improve cardiac function in mice. Metabolites of the malate-aspartate shuttle (MAS) were increased, but the TCA cycle and fatty acid metabolism pathway could be inhibited in the myocardium of TAC mice after AKG supplementation. Decreased NAD+ levels and SIRT1 protein expression were observed in heart of mice and AngII-treated cardiomyocytes. After AKG treatment, these changes were reversed, and increased mitophagy, inhibited ferroptosis, and alleviated damage in cardiomyocytes were observed. When the expression of SIRT1 was inhibited by a selective inhibitor and siRNA, the protective effect of AKG was suppressed. CONCLUSION: Supplementation with AKG can improve myocardial hypertrophy, fibrosis and chronic cardiac insufficiency caused by pressure overload. By increasing the level of NAD+, the SIRT-PINK1 and SIRT1-GPX4 signaling pathways are activated to promote mitophagy and inhibit ferroptosis in cardiomyocytes, which ultimately alleviates cardiomyocyte damage.


Assuntos
Estenose da Valva Aórtica , Ferroptose , Insuficiência Cardíaca , Ácidos Cetoglutáricos , Mitofagia , Angiotensina II , Cromatografia Líquida , Ferroptose/efeitos dos fármacos , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Hipertrofia , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/uso terapêutico , Mitofagia/efeitos dos fármacos , Miócitos Cardíacos , NAD , Proteínas Quinases , RNA Interferente Pequeno , Sirtuína 1 , Espectrometria de Massas em Tandem , Animais , Camundongos
9.
Int J Biol Macromol ; 256(Pt 1): 128265, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984577

RESUMO

Consuming a high­sodium diet carries serious health risks and significantly influences the activation state of the renin-angiotensin system (RAS). This study evaluates the protective effect of angiotensin-converting enzyme (ACE) inhibitory peptide IVGFPAYGH on a high­sodium diet-induced liver injury. IVGFPAYGH supplementation increased the activities of liver antioxidase and decreased the levels of liver inflammatory factor in mice fed a high­sodium diet (8 % NaCl). IVGFPAYGH supplementation also reduced liver fatty acid synthesis and promoted fatty acid oxidation, increased the expression of low-density lipoprotein receptor, and improved liver dyslipidemia. Furthermore, IVGFPAYGH supplementation inhibited the activation of the liver RAS via inhibiting ACE activity and reducing angiotensin II levels in mice fed a high­sodium diet. Moreover, IVGFPAYGH supplementation could alter the gut microbiota composition toward a normal gut microbiota composition and increase the abundance of the Lactobacillus genus. IVGFPAYGH supplementation also increased the expression levels of small intestinal tight junction protein and cecum short-chain fatty acids. Thus, IVGFPAYGH supplementation may maintain intestinal homeostasis and improve high­sodium diet-induced liver injury by altering the gut microbiota composition and inhibiting the RAS. IVGFPAYGH is a promising functional ingredient for protecting liver damage caused by a high­sodium diet.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Camundongos , Animais , Sistema Renina-Angiotensina/fisiologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Angiotensina II/metabolismo , Ácidos Graxos/metabolismo , Sódio/metabolismo , Dieta , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
10.
Eur J Pharmacol ; 965: 176307, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160930

RESUMO

OBJECTIVE: Inflammation and vascular smooth muscle cell (VSMC) phenotypic switching are implicated in the pathogenesis of abdominal aortic aneurysm (AAA). Trimethylamine N-oxide (TMAO) has emerged as a crucial risk factor in cardiovascular diseases, inducing vascular inflammation and calcification. We aimed to evaluate the effect of TMAO on the formation of AAA. APPROACH AND RESULTS: Here, we showed that TMAO was elevated in plasma from AAA patients compared with nonaneurysmal subjects by liquid chromatography‒mass spectrometry (LC‒MS) detection. Functional studies revealed that increased TMAO induced by feeding a choline-supplemented diet promoted Ang II-induced AAA formation. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analyses revealed that TMAO induced macrophage infiltration and inflammatory factor release. Conversely, inhibition of TMAO by supplementation with DMB suppressed AAA formation and the inflammatory response. Molecular studies revealed that TMAO regulated VSMC phenotypic switching. Flow cytometry analyses showed that TMAO induces macrophage M1-type polarization. Furthermore, pharmacological intervention experiments suggested that the nuclear factor-κB (NF-κB) signaling pathway was critical for TMAO to trigger AAA formation. CONCLUSIONS: TMAO promotes AAA formation by inducing vascular inflammation and VSMC phenotypic switching through activation of the NF-κB signaling pathway. Thus, TMAO is a prospective therapeutic AAA target.


Assuntos
Aneurisma da Aorta Abdominal , Metilaminas , NF-kappa B , Humanos , Animais , NF-kappa B/metabolismo , Músculo Liso Vascular , Aneurisma da Aorta Abdominal/patologia , Inflamação/metabolismo , Miócitos de Músculo Liso , Angiotensina II/farmacologia , Modelos Animais de Doenças
11.
Microvasc Res ; 151: 104600, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37666318

RESUMO

Atrial fibrillation (AF) is a cardiac disease characterized by disordered atrial electrical activity. Atrial inflammation and fibrosis are involved in AF progression. Costunolide (COS) is a sesquiterpene lactone containing anti-inflammatory and anti-fibrotic activities. This study aims to explore the underlying mechanisms by which COS protects against AF. Male C57BL/6 mice (8- to 10-week-old) were infused with angiotensin (Ang) II for 3 weeks. Meanwhile, different doses of COS (COS-L: 10 mg/kg, COS-H: 20 mg/kg) were administered to mice by intragastric treatment. The results showed irregular and rapid heart rates in Ang II-treated mice. Moreover, the levels of inflammatory cytokines and fibrotic factors were elevated in mice. COS triggered a reduction of Ang II-induced inflammation and fibrosis, which conferred a protective effect. Mechanistically, mitochondrial dysfunction with mitochondrial respiration inhibition and aberrant ATP levels were observed after Ang II treatment. Moreover, Ang-II-induced excessive reactive oxygen species caused oxidative stress, which was further aggravated by inhibiting Nrf2 nuclear translocation. Importantly, COS diminished these Ang-II-mediated effects in mice. In conclusion, COS attenuated inflammation and fibrosis in Ang-II-treated mice by alleviating mitochondrial dysfunction and oxidative stress. Our findings represent a potential therapeutic option for AF treatment.


Assuntos
Fibrilação Atrial , Doenças Mitocondriais , Sesquiterpenos , Camundongos , Masculino , Animais , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/prevenção & controle , Angiotensina II/farmacologia , Camundongos Endogâmicos C57BL , Sesquiterpenos/efeitos adversos , Estresse Oxidativo , Mitocôndrias/metabolismo , Fibrose , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
12.
Curr Drug Targets ; 24(13): 1046-1054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37861036

RESUMO

Advancements in biological sciences revealed the significant role of angiotensin-converting enzyme 2 (ACE2), a key cell surface receptor in various human pathologies. ACE2 is a metalloproteinase that not only functions in the regulation of Angiotensin II but also possesses some non-catalytic roles in the human body. There is considerable uncertainty regarding its protein expression, despite its presence in virtually all organs. The level of ACE2 expression and its subcellular localisation in humans may be a key determinant of susceptibility to various infections, symptoms, and outcomes of numerous diseases. Therefore, we summarize the distribution and expression pattern of ACE2 in different cell types related to all major human tissues and organs. Moreover, this review constitutes accumulated evidences of the important resources for further studies on ACE2 Inhibitory capacity via different natural compounds in order to understand its mechanism as the potential drug target in disease pathophysiology and to aid in the development of an effective therapeutic approach towards the various diseases.


Assuntos
Peptidil Dipeptidase A , Sistema Renina-Angiotensina , Humanos , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Angiotensina II/metabolismo
14.
Hypertens Res ; 46(8): 1923-1933, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308550

RESUMO

Fruit from the Prunus mume tree is a traditional food in Japan. Recently, bainiku-ekisu, an infused juice concentrate of Japanese Prunus mume, is attracting attention as a health promoting supplement. Angiotensin II (Ang II) plays a central role in development of hypertension. It has been reported that bainiku-ekisu treatment attenuates the growth-promoting signaling induced by Ang II in vascular smooth muscle cells. However, whether bainiku-ekisu has any effect on an animal model of hypertension remains unknown. Therefore, this study was designed to explore the potential anti-hypertensive benefit of bainiku-ekisu utilizing a mouse model of hypertension with Ang II infusion. Male C57BL/6 mice were infused with Ang II for 2 weeks and given 0.1% bainiku-ekisu containing water or normal water for 2 weeks with blood pressure evaluation. After 2 weeks, mice were euthanized, and the aortas were collected for evaluation of remodeling. Aortic medial hypertrophy was observed in control mice after Ang II infusion, which was attenuated in bainiku-ekisu group with Ang II infusion. Bainiku-ekisu further attenuated aortic induction of collagen producing cells and immune cell infiltration. Development of hypertension induced by Ang II was also prevented by bainiku-ekisu. Echocardiograph indicated protection of Ang II-induced cardiac hypertrophy by bainiku-ekisu. In vascular fibroblasts, bainiku-ekisu attenuated vascular cell adhesion molecule-1 induction, an endoplasmic reticulum stress marker, inositol requiring enzyme-1α phosphorylation, and enhancement in glucose consumption in response to Ang II. In conclusion, Bainiku-ekisu prevented Ang II-induced hypertension and inflammatory vascular remodeling. Potential cardiovascular health benefit to taking bainiku-ekisu should be further studied.


Assuntos
Hipertensão , Prunus domestica , Prunus , Camundongos , Animais , Angiotensina II/farmacologia , Remodelação Vascular/fisiologia , Camundongos Endogâmicos C57BL , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo
15.
Phytomedicine ; 114: 154793, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011420

RESUMO

BACKGROUND: Aloe-emodin (AE), a natural anthraquinone extract from traditional Chinese medicinal plants, has been certified to protect against acute myocardial ischemia. However, its effect on cardiac remodeling after chronic myocardial infarction (MI) and the possible mechanism remain unclear. PURPOSE: This study investigated the effect of AE on cardiac remodeling and oxidative damage induced by myocardial infarction (MI) in vitro and explored the underlying mechanisms. METHODS: Echocardiography and Masson staining were used to demonstrate myocardial dysfunction and fibrosis. Cell apoptosis was detected by TUNEL staining. The expressions of fibrosis-related factors such as type I collagen, α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) were detected by Western blot. RESULTS: Our data demonstrated that AE treatment significantly improved cardiac function, reduced structural remodeling, and reduced cardiac apoptosis and oxidative stress in mice with myocardial infarction. In vitro, AE could protect neonatal mouse cardiomyocytes (NMCM) from angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and apoptosis, and significantly inhibited (p < 0.05) Ang II-induced reactive oxygen species (ROS) increase. Furthermore, AE treatment significantly reversed the Ang ii-induced upregulation. CONCLUSION: In summary, our work reveals for the first time that AE activates the TGF-ß signaling pathway by up-regulating Smad7 expression, which in turn regulates the expression of fibrosis-related genes, ultimately improving cardiac function, inhibiting the development of cardiac fibrosis and hypertrophy in rats with chronic MI.


Assuntos
Aloe , Cardiomiopatias , Emodina , Infarto do Miocárdio , Camundongos , Ratos , Animais , Emodina/farmacologia , Remodelação Ventricular , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos , Cardiomiopatias/metabolismo , Hipertrofia/patologia , Fibrose , Miocárdio/metabolismo , Angiotensina II/farmacologia , Proteína Smad7/metabolismo
16.
Phytomedicine ; 114: 154779, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37023527

RESUMO

BACKGROUND: Gramine, also named 3-(N,N-dimethylaminomethyl) indole, is a indole alkaloid. It is mainly extracted from various natural raw plants. Despite being the simplest 3-aminomethylindole, Gramine has broad pharmaceutical and therapeutic effects, such as vasodilatation, antioxidation, mitochondrial bioenergetics-related effects, and angiogenesis via modulation of TGFß signaling. However, there is little information available about Gramine's role in heart disease, especially pathological cardiac hypertrophy. PURPOSE: To investigate Gramine's effect on pathological cardiac hypertrophy and clarify the mechanisms behind its action. METHODS: In the in vitro experiment, Gramine (25 µM or 50 µM) was used to investigate its role in Angiotensin II-induced primary neonatal rat cardiomyocytes (NRCMs) hypertrophy. In the in vivo experiment, Gramine (50 mg/kg or 100 mg/kg) was administrated to investigate its role in transverse aortic constriction (TAC) surgery mice. Additionally, we explored the mechanisms underlying these roles through Western blot, Real-time PCR, genome-wide transcriptomic analysis, chromatin immunoprecipitation and molecular docking studies. RESULTS: The in vitro data demonstrated that Gramine treatment obviously improved primary cardiomyocyte hypertrophy induced by Angiotensin II, but had few effects on the activation of fibroblasts. The in vivo experiments indicated that Gramine significantly mitigated TAC-induced myocardial hypertrophy, interstitial fibrosis and cardiac dysfunction. Mechanistically, RNA sequencing and further bioinformatics analysis demonstrated that transforming growth factor ß (TGFß)-related signaling pathway was enriched significantly and preferentially in Gramine-treated mice as opposed to vehicle-treated mice during pathological cardiac hypertrophy. Moreover, this cardio-protection of Gramine was found to mainly involved in TGFß receptor 1 (TGFBR1)- TGFß activated kinase 1 (TAK1)-p38 MAPK signal cascade. Further exploration showed that Gramine restrained the up-regulation of TGFBR1 by binding to Runt-related transcription factor 1 (Runx1), thereby alleviating pathological cardiac hypertrophy. CONCLUSION: Our findings provided a substantial body of evidence that Gramine possessed a potential druggability in pathological cardiac hypertrophy via suppressing the TGFBR1-TAK1-p38 MAPK signaling axis through interaction with transcription factor Runx1.


Assuntos
Angiotensina II , Subunidade alfa 2 de Fator de Ligação ao Core , Ratos , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Angiotensina II/farmacologia , Simulação de Acoplamento Molecular , Cardiomegalia/metabolismo , Miócitos Cardíacos , Transdução de Sinais , Alcaloides Indólicos/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
17.
Sheng Li Xue Bao ; 75(2): 179-187, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37089092

RESUMO

The present study was aimed to investigate the role and mechanism of glutaminolysis of cardiac fibroblasts (CFs) in hypertension-induced myocardial fibrosis. C57BL/6J mice were administered with a chronic infusion of angiotensin II (Ang II, 1.6 mg/kg per d) with a micro-osmotic pump to induce myocardial fibrosis. Masson staining was used to evaluate myocardial fibrosis. The mice were intraperitoneally injected with BPTES (12.5 mg/kg), a glutaminase 1 (GLS1)-specific inhibitor, to inhibit glutaminolysis simultaneously. Immunohistochemistry and Western blot were used to detect protein expression levels of GLS1, Collagen I and Collagen III in cardiac tissue. Neonatal Sprague-Dawley (SD) rat CFs were treated with 4 mmol/L glutamine (Gln) or BPTES (5 µmol/L) with or without Ang II (0.4 µmol/L) stimulation. The CFs were also treated with 2 mmol/L α-ketoglutarate (α-KG) under the stimulation of Ang II and BPTES. Wound healing test and CCK-8 were used to detect CFs migration and proliferation respectively. RT-qPCR and Western blot were used to detect mRNA and protein expression levels of GLS1, Collagen I and Collagen III. The results showed that blood pressure, heart weight and myocardial fibrosis were increased in Ang II-treated mice, and GLS1 expression in cardiac tissue was also significantly up-regulated. Gln significantly promoted the proliferation, migration, mRNA and protein expression of GLS1, Collagen I and Collagen III in the CFs with or without Ang II stimulation, whereas BPTES significantly decreased the above indices in the CFs. α-KG supplementation reversed the inhibitory effect of BPTES on the CFs under Ang II stimulation. Furthermore, in vivo intraperitoneal injection of BPTES alleviated cardiac fibrosis of Ang II-treated mice. In conclusion, glutaminolysis plays an important role in the process of cardiac fibrosis induced by Ang II. Targeted inhibition of glutaminolysis may be a new strategy for the treatment of myocardial fibrosis.


Assuntos
Angiotensina II , Fibroblastos , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Angiotensina II/farmacologia , Camundongos Endogâmicos C57BL , Fibrose , Colágeno/metabolismo , Colágeno/farmacologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , RNA Mensageiro/metabolismo , Miocárdio/patologia
18.
Sci China Life Sci ; 66(10): 2370-2379, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36949230

RESUMO

Hypertension has become a growing public health concern worldwide. In fact, hypertension is commonly associated with increased morbidity and mortality. Currently, oligonucleotide drugs have proven to be promising therapeutic agents for various diseases. In the present study, we aimed to demonstrate that a herbal small RNA (sRNA), XKC-sRNA-h3 (B55710460, F221. I000082.B11), exhibits potent antihypertensive effects by targeting angiotensin-converting enzyme (ACE) in mice. When compared with captopril, oral administration of the sphingosine (d18:1)-XKC-sRNA-h3 bencaosome more effectively prevented angiotensin II-induced hypertensive cardiac damage and alleviated kidney injury in mice. Such findings indicated that XKC-sRNA-h3 may be a novel orally available ACE inhibitor type oligonucleotide drug for hypertension.


Assuntos
Angiotensina II , Hipertensão , Camundongos , Animais , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Captopril/farmacologia , Captopril/uso terapêutico , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Administração Oral , Pressão Sanguínea
19.
Bull Exp Biol Med ; 174(4): 426-430, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36881283

RESUMO

Analysis of the role of genomic regulation of systolic BP (SBP) in normal and hypertensive rats showed the presence of an inverse relationship between the level of Trpa1 gene expression in the anterior hypothalamus and SBP. Losartan, an antagonist of angiotensin II type 1 receptors, shifts it to the region of lower SBP and greater expression of the Trpa1 gene, which can attest to interaction of the TRPA1 ion channel in the anterior hypothalamus with angiotensin II type 1 receptors. No association was found between the expression of the Trpv1 gene in the hypothalamus and SBP. We have previously shown that activation of the peripheral ion channel TRPA1 in the skin also contributes to SBP decrease in hypertensive animals. Hence, activation of the TRPA1 ion channel both in the brain and at the periphery has similar effects on SBP and leads to its decrease.


Assuntos
Hipertensão , Losartan , Ratos , Animais , Losartan/farmacologia , Captopril/farmacologia , Pressão Sanguínea/genética , Angiotensina II/farmacologia , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipotálamo , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética
20.
Proc Natl Acad Sci U S A ; 120(14): e2221242120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36976770

RESUMO

CaV1.2 channels are critical players in cardiac excitation-contraction coupling, yet we do not understand how they are affected by an important therapeutic target of heart failure drugs and regulator of blood pressure, angiotensin II. Signaling through Gq-coupled AT1 receptors, angiotensin II triggers a decrease in PIP2, a phosphoinositide component of the plasma membrane (PM) and known regulator of many ion channels. PIP2 depletion suppresses CaV1.2 currents in heterologous expression systems but the mechanism of this regulation and whether a similar phenomenon occurs in cardiomyocytes is unknown. Previous studies have shown that CaV1.2 currents are also suppressed by angiotensin II. We hypothesized that these two observations are linked and that PIP2 stabilizes CaV1.2 expression at the PM and angiotensin II depresses cardiac excitability by stimulating PIP2 depletion and destabilization of CaV1.2 expression. We tested this hypothesis and report that CaV1.2 channels in tsA201 cells are destabilized after AT1 receptor-triggered PIP2 depletion, leading to their dynamin-dependent endocytosis. Likewise, in cardiomyocytes, angiotensin II decreased t-tubular CaV1.2 expression and cluster size by inducing their dynamic removal from the sarcolemma. These effects were abrogated by PIP2 supplementation. Functional data revealed acute angiotensin II reduced CaV1.2 currents and Ca2+ transient amplitudes thus diminishing excitation-contraction coupling. Finally, mass spectrometry results indicated whole-heart levels of PIP2 are decreased by acute angiotensin II treatment. Based on these observations, we propose a model wherein PIP2 stabilizes CaV1.2 membrane lifetimes, and angiotensin II-induced PIP2 depletion destabilizes sarcolemmal CaV1.2, triggering their removal, and the acute reduction of CaV1.2 currents and contractility.


Assuntos
Angiotensina II , Acoplamento Excitação-Contração , Células Cultivadas , Angiotensina II/metabolismo , Transdução de Sinais , Miócitos Cardíacos/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA