Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 112(7): 1165-1181.e8, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301648

RESUMO

Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.


Assuntos
Ansiolíticos , Animais , Ansiedade/metabolismo , Hipotálamo , Cerebelo , Transtornos de Ansiedade
2.
ACS Chem Neurosci ; 15(5): 1010-1025, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38382546

RESUMO

Alteration of gut microbiota and microbial metabolites such as short-chain fatty acids (SCFAs) coexisted with stress-generated brain disorders, including depression. Herein, we investigated the effect of SCFAs in a treatment-resistant depression (TRD) model of rat. Rats were exposed to chronic-unpredictable mild stress (CUMS) and repeated adrenocorticotropic hormone (ACTH) injections to generate a TRD-like phenotype. The cecal contents of these animals were engrafted into healthy-recipient rats and allowed to colonize for 4 weeks (TRD-FMT group). Blood, brain, colon, fecal, and cecal samples were collected for molecular studies. Rats exposed to CUMS + ACTH showed TRD-like phenotypes in sucrose-preference (SPT), forced swim (FST), and elevated plus maze (EPM) tests. The TRD-FMT group also exhibited anxiety- and depression-like behaviors. Administration of SCFAs (acetate, propionate, and butyrate at 67.5, 25, and 40 mM, respectively) for 7 days exerted robust antidepressant and antianxiety effects by restoring the levels of SCFAs in plasma and fecal samples, and proinflammatory cytokines (TNF-α and IL-6), serotonin, GABA, norepinephrine, and dopamine in the hippocampus and/or frontal cortex of TRD and TRD-FMT animals. SCFAs treatment elevated the expression of free-fatty acid receptors 2/3, BDNF, doublecortin, and zonula-occludens, and reduced the elevated plasma levels of kynurenine and quinolinic acid and increased mucus-producing goblet cells in TRD and TRD-FMT animals. In 16S sequencing results, decreased microbial diversity in TRD rats corresponds with differences in the genus of Faecalibacterium, Anaerostipes, Allobaculum, Blautia, Peptococcus, Rombustia, Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-002, Solobacterium, Subdolibacterium, and Eubacterium ventriosum. SCFAs may impart beneficial effects via modulation of tryptophan metabolism, inflammation, neurotransmitters, and microbiota-gut-brain axis in TRD rats.


Assuntos
Ansiedade , Depressão , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ácidos Graxos Voláteis , Fenótipo , Hormônio Adrenocorticotrópico , Suplementos Nutricionais , Estresse Psicológico/metabolismo
3.
Phytomedicine ; 113: 154725, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36867963

RESUMO

BACKGROUND: Regulating the microglial phenotype is an attractive strategy for treating diseases of the central nervous system such as depression and anxiety. Gastrodin can quickly cross the blood-brain barrier and mitigate microglia-mediated inflammation, which widely used to treat a variety of central nervous system diseases associated with microglial dysfunction. However, the molecular mechanism by which gastrodin regulates the functional phenotype of microglia remains unclear. PURPOSE: Since the transcription factor "nuclear factor erythroid 2-related factor 2″ (Nrf2) is associated with the anti-inflammatory effects of gastrodin, we hypothesized that gastrodin induces Nrf2 expression in microglia and thereby programs an anti-inflammatory phenotype. STUDY DESIGN: Male C57BL/6 mice, treated or not with gastrodin, were given lipopolysaccharide (LPS) at 0.25 mg/kg/d for 10 days to induce chronic neuroinflammation. The effects of gastrodin on microglial phenotypes, neuroinflammation and depression- and anxiety-like behaviors were evaluated. In another experiment, animals were treated with Nrf2 inhibitor ML385 throughout the 13-day gastrodin intervention period. METHODS: The effects of gastrodin on depression- and anxiety-like behaviors were evaluated through the sucrose preference test, forced swimming test, open field test and elevated plus-maze test; as well as its effects on morphology and molecular and functional phenotypes of hippocampal microglia through immunohistochemistry, real-time PCR and enzyme-linked immunosorbent assays. RESULTS: Chronic exposure to LPS caused hippocampal microglia to secrete inflammatory cytokines, their somata to enlarge, and their dendrites to lose branches. These changes were associated with depression- and anxiety-like behaviors. Gastrodin blocked these LPS-induced alterations and promoted an Arg-1+ microglial phenotype that protected neurons from injury. The effects of gastrodin were associated with Nrf2 activation, whereas blockade of Nrf2 antagonized gastrodin. CONCLUSION: These results suggest that gastrodin acts via Nrf2 to promote an Arg-1+ microglial phenotype, which buffers the harmful effects of LPS-induced neuroinflammation. Gastrodin may be a promising drug against central nervous system diseases that involve microglial dysfunction.


Assuntos
Depressão , Microglia , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fenótipo
4.
Neurochem Res ; 48(7): 2175-2186, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36853481

RESUMO

Activating transcription factor 6 (ATF6) is an endoplasmic reticulum (ER) stress-regulated transcription factor that induces expression of major molecular chaperones in the ER. We recently reported that ATF6ß, a subtype of ATF6, promoted survival of hippocampal neurons exposed to ER stress and excitotoxicity, at least in part by inducing expression of calreticulin, an ER molecular chaperone with high Ca2+-binding capacity. In the present study, we demonstrate that ATF6ß deficiency in mice also decreases calreticulin expression and increases expression of glucose-regulated protein 78, another ER molecular chaperone, in emotional brain regions such as the prefrontal cortex (PFC), hypothalamus, hippocampus, and amygdala. Comprehensive behavioral analyses revealed that Atf6b-/- mice exhibit anxiety-like behavior in the light/dark transition test and hyperactivity in the forced swim test. Consistent with these results, PFC and hypothalamic corticotropin-releasing hormone (CRH) expression was increased in Atf6b-/- mice, as was circulating corticosterone. Moreover, CRH receptor 1 antagonism alleviated anxiety-like behavior in Atf6b-/- mice. These findings suggest that ATF6ß deficiency produces anxiety-like behavior and hyperactivity via a CRH receptor 1-dependent mechanism. ATF6ß could play a role in psychiatric conditions in the emotional centers of the brain.


Assuntos
Calreticulina , Receptores de Hormônio Liberador da Corticotropina , Camundongos , Animais , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Calreticulina/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Ansiedade/metabolismo , Corticosterona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Fator 6 Ativador da Transcrição/metabolismo
5.
Acta Pharmacol Sin ; 44(5): 954-968, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36460834

RESUMO

Chronic pain patients often have anxiety disorders, and some of them suffer from anxiety even after analgesic administration. In this study, we investigated the role of AMPAR-mediated synaptic transmission in the ventromedial prefrontal cortex (vmPFC) in chronic pain-induced persistent anxiety in mice and explored potential drug targets. Chronic inflammatory pain was induced in mice by bilateral injection of complete Freund's adjuvant (CFA) into the planta of the hind paws; anxiety-like behaviours were assessed with behavioural tests; S-nitrosylation and AMPAR-mediated synaptic transmission were examined using biochemical assays and electrophysiological recordings, respectively. We found that CFA induced persistent upregulation of AMPAR membrane expression and function in the vmPFC of anxious mice but not in the vmPFC of non-anxious mice. The anxious mice exhibited higher S-nitrosylation of stargazin (an AMPAR-interacting protein) in the vmPFC. Inhibition of S-nitrosylation by bilaterally infusing an exogenous stargazin (C302S) mutant into the vmPFC rescued the surface expression of GluA1 and AMPAR-mediated synaptic transmission as well as the anxiety-like behaviours in CFA-injected mice, even after ibuprofen treatment. Moreover, administration of ZL006, a small molecular inhibitor disrupting the interaction of nNOS and PSD-95 (20 mg·kg-1·d-1, for 5 days, i.p.), significantly reduced nitric oxide production and S-nitrosylation of AMPAR-interacting proteins in the vmPFC, resulting in anxiolytic-like effects in anxious mice after ibuprofen treatment. We conclude that S-nitrosylation is necessary for AMPAR trafficking and function in the vmPFC under chronic inflammatory pain-induced persistent anxiety conditions, and nNOS-PSD-95 inhibitors could be potential anxiolytics specific for chronic inflammatory pain-induced persistent anxiety after analgesic treatment.


Assuntos
Ansiedade , Dor Crônica , Córtex Pré-Frontal , Receptores de Glutamato , Animais , Camundongos , Ansiedade/etiologia , Ansiedade/metabolismo , Transtornos de Ansiedade , Dor Crônica/complicações , Dor Crônica/metabolismo , Ibuprofeno , Córtex Pré-Frontal/metabolismo , Transmissão Sináptica , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Inflamação/complicações , Inflamação/metabolismo
6.
Exp Brain Res ; 240(10): 2687-2699, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35984483

RESUMO

Individuals with diabetes mellitus (DM) tend to manifest anxiety and depression, which could be related to changes in the expression of calcium/calmodulin-dependent protein kinase IV (CaMKIV), transcription factor cyclic AMP-responsive element binding protein (CREB), phosphorylated CREB (pCREB) and brain-derived neurotrophic factor (BDNF) in different brain regions. The objective of this study was to determine whether mice with type 1 diabetes (T1DM) induced with streptozotocin show a profile of anxious-type behaviors and alterations in the expression/activity of CaMKIV, CREB, pCREB and BDNF in different regions of the brain (prefrontal cortex, amygdala, hippocampus and hypothalamus) in comparison to non-diabetic mice (NDB). Mice with 3 months of chronic DM showed an anxious-like behavioral profile in two anxiety tests (Open Field and Elevated Plus Maze), when compared to NDB. There were significant differences in the expression of cell signaling proteins: diabetic mice had a lower expression of CaMKIV in the hippocampus, a greater expression of CREB in the amygdala and hypothalamus, as well as a lower pCREB/CREB in hypothalamus than NDB mice (P < 0.05). This is the first study evaluating the expression of CaMKIV in the brain of animals with DM, who presented lower expression of this protein in the hippocampus. In addition, it is the first time that CREB was evaluated in amygdala and hypothalamus of animals with DM, who presented a higher expression. Further research is necessary to determine the possible link between expression of CaMKIV and CREB, and the behavioral profile of anxiety in diabetic animals.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Diabetes Mellitus , Tonsila do Cerebelo , Animais , Ansiedade/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diabetes Mellitus/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Camundongos , Córtex Pré-Frontal/metabolismo , Transdução de Sinais , Estreptozocina/metabolismo
7.
J Ethnopharmacol ; 294: 115362, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35551977

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ylang-ylang essential oil (YEO), obtained from the flowers of the tropical tree Cananga odorata (Lam.) Hook. f. & Thomson (family Annonaceae), has been largely used in the traditional medicine with many uses, including anxiety and altered neuronal states. Neuropathic pain is a chronic pain condition with a high incidence of comorbidities, such as anxiety, depression, and other mood disorders, that drastically affect the patient's quality of life. The currently available drugs used for the management of neuropathic pain are inadequate due to poor efficacy and tolerability, highlighting the medicinal need of a better pharmacotherapy. Several clinical studies have reported that massage or inhalation with selected essentials oils reduces symptoms associated to pain and anxiety. AIM OF THE STUDY: The aim of this study was to investigate the analgesic properties of YEO and its efficacy in reducing neuropathy-associated mood alterations. MATERIALS AND METHODS: The analgesic properties were tested in the spared nerve injury (SNI) model using male mice. Anxiolytic, antidepressant, and locomotor properties were also evaluated using behavioural tests. Finally, the YEO mechanism of action was investigated in the spinal cord and hippocampus of neuropathic mice. RESULTS: Oral administration of YEO (30 mg/kg) reduced SNI-induced neuropathic pain and ameliorates pain-related anxiety symptoms that appeared 28 days after surgery. YEO reduced the expression of MAPKs, NOS2, p-p65, markers of neuroinflammation, and promoted normalizing effect on neurotrophin levels (BDNF). CONCLUSIONS: YEO induced neuropathic pain relief and ameliorated pain-associated anxiety, representing an interesting candidate for the management of neuropathic pain conditions and pain-related comorbidities.


Assuntos
Cananga , Neuralgia , Óleos Voláteis , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Cananga/metabolismo , Masculino , Camundongos , Neuralgia/tratamento farmacológico , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos de Plantas/farmacologia , Qualidade de Vida
8.
Cell Rep ; 37(10): 110075, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879284

RESUMO

The neuroendocrine system coordinates metabolic and behavioral adaptations to fasting, including reducing energy expenditure, promoting counterregulation, and suppressing satiation and anxiety to engage refeeding. Here, we show that steroid receptor coactivator-2 (SRC-2) in pro-opiomelanocortin (POMC) neurons is a key regulator of all these responses to fasting. POMC-specific deletion of SRC-2 enhances the basal excitability of POMC neurons; mutant mice fail to efficiently suppress energy expenditure during food deprivation. SRC-2 deficiency blunts electric responses of POMC neurons to glucose fluctuations, causing impaired counterregulation. When food becomes available, these mutant mice show insufficient refeeding associated with enhanced satiation and discoordination of anxiety and food-seeking behavior. SRC-2 coactivates Forkhead box protein O1 (FoxO1) to suppress POMC gene expression. POMC-specific deletion of SRC-2 protects mice from weight gain induced by an obesogenic diet feeding and/or FoxO1 overexpression. Collectively, we identify SRC-2 as a key molecule that coordinates multifaceted adaptive responses to food shortage.


Assuntos
Metabolismo Energético , Jejum/metabolismo , Comportamento Alimentar , Hipotálamo/metabolismo , Neurônios/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Obesidade/metabolismo , Hipernutrição/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/psicologia , Modelos Animais de Doenças , Jejum/psicologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Hipotálamo/fisiopatologia , Masculino , Camundongos Knockout , Coativador 2 de Receptor Nuclear/genética , Obesidade/genética , Obesidade/fisiopatologia , Obesidade/psicologia , Hipernutrição/genética , Hipernutrição/fisiopatologia , Hipernutrição/psicologia , Pró-Opiomelanocortina/genética , Resposta de Saciedade , Transdução de Sinais , Aumento de Peso
9.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638592

RESUMO

The development of neuropathy and of mood alterations is frequent after chemotherapy. These complications, independent from the antitumoral mechanism, are interconnected due to an overlapping in their processing pathways and a common neuroinflammatory condition. This study aims to verify whether in mice the treatment with the proteasome inhibitor bortezomib (BTZ), at a protocol capable of inducing painful neuropathy, is associated with anxiety, depression and supraspinal neuroinflammation. We also verify if the therapeutic treatment with the antagonist of the prokineticin (PK) system PC1, which is known to contrast pain and neuroinflammation, can prevent mood alterations. Mice were treated with BTZ (0.4 mg/kg three times/week for 4 weeks); mechanical allodynia and locomotor activity were evaluated over time while anxiety (dark light and marble burying test), depression (sucrose preference and swimming test) and supraspinal neuroinflammation were checked at the end of the protocol. BTZ treated neuropathic mice develop anxiety and depression. The presence of mood alterations is related to the presence of neuroinflammation and PK system activation in prefrontal cortex, hippocampus and hypothalamus with high levels of PK2 and PKR2 receptor, IL-6 and TNF-α, TLR4 and an upregulation of glial markers. PC1 treatment, counteracting pain, prevented the development of supraspinal inflammation and depression-like behavior in BTZ mice.


Assuntos
Afeto/efeitos dos fármacos , Bortezomib/farmacologia , Inibidores de Proteassoma/farmacologia , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/tratamento farmacológico , Dor/metabolismo , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Biomed Pharmacother ; 144: 112291, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653760

RESUMO

BACKGROUND: Oxytocin (OXT), a neuropeptide involved in mammal reproductive and prosocial behaviors, has been reported to interact with various stressor-provoked neurobiological changes, including neuroendocrine, neurotransmitter, and inflammatory processes. In view of disturbances in psychosocial relationships due to social isolation and physical distancing measures amid the COVID-19 pandemic, being one of the triggering factors for the recent rise in depression and anxiety, OXT is a potential candidate for a new antidepressant. METHODS: In this present study, we have aimed to investigate the effects of oral administration of Rosmarinus officinalis extract (RE), extracted from distillation residue of rosemary essential oil, on central OXT level in the context of other stress biomarkers and neurotransmitter levels in mice models. Tail suspension test (TST) and elevated plus maze test (EPMT) following LPS injection were employed to assess depressive- and anxiety-like behavior in mice, respectively. FINDINGS: Pretreatment with RE for seven days significantly improved behavior in TST and EPMT. Whole-genome microarray analysis reveals that RE significantly reversed TST stress-induced alterations in gene expressions related to oxytocinergic and neurotransmitter pathways and inflammatory processes. In both models, RE significantly increased central Oxt and Oxtr expressions, as well as OXT protein levels. RE also significantly attenuated stress-induced changes in serum corticosterone, brain and serum BDNF levels, and brain neurotransmitters levels in both models. INTERPRETATION: Altogether, our study is the first to report antidepressant- and anxiolytic-like activities of RE through modulating oxytocinergic system in mice brain and thus highlights the prospects of RE in the treatment of depressive disorders of psychosocial nature.


Assuntos
Ansiolíticos/uso terapêutico , Antidepressivos/uso terapêutico , Ocitocina/metabolismo , Extratos Vegetais/uso terapêutico , Receptores de Ocitocina/metabolismo , Rosmarinus , Animais , Ansiolíticos/isolamento & purificação , Ansiolíticos/farmacologia , Antidepressivos/isolamento & purificação , Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Relação Dose-Resposta a Droga , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ocitocina/agonistas , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Receptores de Ocitocina/agonistas
11.
Molecules ; 26(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072024

RESUMO

Overweight, obesity, and psychiatric disorders are serious health problems. To evidence the anxiolytic-like effects and lipid reduction in mice receiving a high-calorie diet and Bertholletia excelsa seeds in a nonpolar extract (SBHX, 30 and 300 mg/kg), animals were assessed in open-field, hole-board, and elevated plus-maze tests. SBHX (3 and 10 mg/kg) potentiated the pentobarbital-induced hypnosis. Chronic administration of SBHX for 40 days was given to mice fed with a hypercaloric diet to determine the relationship between water and food intake vs. changes in body weight. Testes, epididymal white adipose tissue (eWAT), and liver were dissected to analyze fat content, triglycerides, cholesterol, and histological effects after administering the hypercaloric diet and SBHX. Fatty acids, such as palmitoleic acid (0.14%), palmitic acid (21.42%), linoleic acid (11.02%), oleic acid (59.97%), and stearic acid (7.44%), were identified as constituents of SBHX, producing significant anxiolytic-like effects and preventing body-weight gain in mice receiving the hypercaloric diet without altering their water or food consumption. There was also a lipid-lowering effect on the testicular tissue and eWAT and a reduction of adipocyte area in eWAT. Our data evidence beneficial properties of B. excelsa seeds influencing global health concerns such as obesity and anxiety.


Assuntos
Ansiedade/metabolismo , Bertholletia/metabolismo , Lipídeos/química , Sobrepeso/metabolismo , Sementes , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Sistema Nervoso Central , Ingestão de Alimentos , Epididimo/metabolismo , Ácidos Graxos/metabolismo , Hipnose , Masculino , Aprendizagem em Labirinto , Camundongos , Pentobarbital , Testículo/metabolismo
12.
Neuropharmacology ; 195: 108626, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34116110

RESUMO

Cannabis has been used for hundreds of years, with its ability to dampen feelings of anxiety often reported as a primary reason for use. Only recently has the specific role cannabinoids play in anxiety been thoroughly investigated. Here we discuss the body of evidence describing how endocannabinoids and exogenous cannabinoids are capable of regulating the generation and termination of anxiety states. Disruption of the endogenous cannabinoid (eCB) system following genetic manipulation, pharmacological intervention or stress exposure reliably leads to the generation of an anxiety state. On the other hand, upregulation of eCB signaling is capable of alleviating anxiety-like behaviors in multiple paradigms. When considering exogenous cannabinoid administration, cannabinoid receptor 1 (CB1) agonists have a biphasic, dose-dependent effect on anxiety such that low doses are anxiolytic while high doses are anxiogenic, a phenomenon that is evident in both rodent models and humans. Translational studies investigating a loss of function mutation in the gene for fatty acid amide hydrolase, the enzyme responsible for metabolizing AEA, have also shown that AEA signaling regulates anxiety in humans. Taken together, evidence reviewed here has outlined a convincing argument for cannabinoids being powerful regulators of both the manifestation and amelioration of anxiety symptoms, and highlights the therapeutic potential of targeting the eCB system for the development of novel classes of anxiolytics. This article is part of the special issue on 'Cannabinoids'.


Assuntos
Ansiedade/metabolismo , Moduladores de Receptores de Canabinoides/uso terapêutico , Canabinoides/uso terapêutico , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Moduladores de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Humanos
13.
J Cereb Blood Flow Metab ; 41(11): 3111-3126, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34176340

RESUMO

Repetitive hypoxia (RH) exposure affects the initiation and progression of cognitive dysfunction, but little is known about the mechanisms of hypoxic brain damage. In this study, we show that sublethal RH increased anxiety, impaired learning and memory (L/M), and triggered downregulation of brain levels of glucose and several glucose metabolites in zebrafish, and that supplementation of glucose or glucosamine (GlcN) restored RH-induced L/M impairment. Fear conditioning (FC)-induced brain activation of and PKA/CREB signaling was abrogated by RH, and this effect was reversed by GlcN supplementation. RH was associated with decreased brain O-GlcNAcylation and an increased O-GlcNAcase (OGA) level. RH increased brain inflammation and p-Tau and amyloid ß accumulation, and these effects were suppressed by GlcN. Our observations collectively suggest that changes in O-GlcNAc flux during hypoxic exposure could be an important causal factor for neurodegeneration, and that supplementation of the HBP/O-GlcNAc flux may be a potential novel therapeutic or preventive target for addressing hypoxic brain damage.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Glucosamina/farmacologia , Hipóxia/metabolismo , Peixe-Zebra/metabolismo , Proteínas tau/metabolismo , Animais , Ansiedade/metabolismo , Encéfalo/metabolismo , Estudos de Casos e Controles , Disfunção Cognitiva/etiologia , Encefalite/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucosamina/metabolismo , Glucosamina/uso terapêutico , Glucose/metabolismo , Hipóxia/complicações , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/prevenção & controle , Deficiências da Aprendizagem/metabolismo , Masculino , Transtornos da Memória/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
14.
Neurochem Res ; 46(9): 2238-2248, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34036518

RESUMO

Previous studies have shown that testosterone attenuates stress-induced mood dysfunction and memory deterioration. However, the exact mechanism is still unknown. This study was conducted to investigate the role of long-term testosterone undecanoate on the behavioral responses in AD induced by AlCl3 + D-galactose administration and the possible alteration of the gene expression level of the Na/K ATPase pump. Adult male mice received AlCl3 in drinking water (10 mg/kg/day) and (D-gal 200 mg/kg/day), subcutaneously for 90 consecutive days, then received a single intramuscular (I.M) injection of castor oil (vehicle) on day 91, while treated groups received a single I.M injection of either low (100 mg/kg/45 days) or high dose (500 mg/kg/45 days) respectively of long-acting testosterone undecanoate on day 91. The time spent in the interaction zone during the open field test, preference index to novel objects in the novel object recognition test, spontaneous alternation percentage (SAP) in Y-maze test, and escape latency time in the Morris water maze test were used to measure the locomotor activity, long-term memory, and spatial memory in mice, respectively. The results showed that testosterone undecanoate treatment improved locomotor activity, improved preference to novel objects, improved spatial memory, and reversed anxiety and depression induced by AlCl3 + D-galactose administration in male mice, suggesting the enhancement of behavioral and memory functions brought by testosterone treatment. Moreover, testosterone undecanoate treatment did alter gene expression levels of Na/K ATPase isoforms in the brain hippocampus. In most cases, altered gene expression was significant and correlated with the observed behavioral changes. Taken together, our findings provide new insight into the effects of long-acting testosterone undecanoate administration on locomotor activity, long-term memory, anxiety, and spatial memory in male mice with Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , RNA Mensageiro/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Testosterona/análogos & derivados , Cloreto de Alumínio , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Animais , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Galactose , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Teste de Campo Aberto/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/genética , Memória Espacial/efeitos dos fármacos , Testosterona/uso terapêutico
15.
J Pharm Pharmacol ; 73(9): 1161-1168, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-33950239

RESUMO

OBJECTIVES: The exposure of neurons to an excessive excitatory stimulation induces the alteration of the normal neuronal function. Mood disorders are among the first signs of alterations in the central nervous system function. Magnolia officinalis bark extract has been extensively used in the traditional medicine systems of several countries, showing several pharmacological activities. Honokiol, the main constituent of M. officinalis, is a GABA modulator and a CB1 agonist, which is deeply investigated for its role in modulating mood disorders. METHODS: Thus, we evaluated the possible neuroprotective effect of a standardized M. officinalis bark extract (MOE), enriched in honokiol, and its effect on animal mood behavioural tests and in an in vitro model of excitotoxicity. KEY FINDINGS: MOE showed neuroprotective effect using SH-SY5Y cells, by normalizing brain-derived neurotrophic factor release. Then, we tested the effect of MOE in different behavioural tests evaluating anxiety and depression and we observed a selective anxiolytic-like effect. Finally, we confirmed the involvement of CB1 in the final effect of MOE by the co-administration of the CB1 antagonist, AM251. CONCLUSION: These results suggest that MOE could be considered an effective and safe anxiolytic candidate with neuroprotective activity.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/metabolismo , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Magnolia/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Receptor CB1 de Canabinoide/agonistas , Animais , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Compostos de Bifenilo/uso terapêutico , Encéfalo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Moduladores GABAérgicos/farmacologia , Moduladores GABAérgicos/uso terapêutico , Humanos , Lignanas/uso terapêutico , Masculino , Camundongos , Fármacos Neuroprotetores/uso terapêutico , Fitoterapia , Casca de Planta/química , Extratos Vegetais/uso terapêutico , Receptor CB1 de Canabinoide/antagonistas & inibidores
16.
Nutrients ; 13(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917279

RESUMO

BACKGROUND: Age predisposes individuals to a myriad of disorders involving inflammation; this includes stress-related neuropsychiatric disorders such as depression and anxiety, and neurodegenerative diseases. Obesity can further exacerbate these effects in the brain. We investigated whether an inexpensive dietary supplement, s-adenosylmethionine (SAMe), could improve age- and/or obesity-related inflammatory and affective measures in the hippocampus. METHODS: Mice were placed on their diets at six weeks of age and then aged to 14 months, receiving SAMe (0.1 g/kg of food) for the final six weeks of the experiment. Prior to tissue collection, mice were tested for anxiety-like behaviors in the open field test and for metabolic outcomes related to type 2 diabetes. RESULTS: SAMe treatment significantly improved outcomes in aged control mice, where fasting glucose decreased, liver glutathione levels increased, and hippocampal microglia morphology improved. SAMe increased transforming growth factor ß-1 mRNA in both control mice, potentially accounting for improved microglial outcomes. Obese mice demonstrated increased anxiety-like behavior, where SAMe improved some, but not all, open field measures. CONCLUSIONS: In summary, SAMe boosted antioxidant levels, improved diabetic measures, and hippocampal inflammatory and behavioral outcomes in aged mice. The effects of SAMe in obese mice were more subdued, but it could still provide some positive outcomes for obese individuals dealing with anxiety and having difficulty changing their behaviors to improve health outcomes.


Assuntos
Envelhecimento/imunologia , Ansiedade/dietoterapia , Hipocampo/efeitos dos fármacos , Obesidade/complicações , S-Adenosilmetionina/administração & dosagem , Animais , Ansiedade/diagnóstico , Ansiedade/imunologia , Ansiedade/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Glutationa/análise , Glutationa/metabolismo , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Inflamação/dietoterapia , Inflamação/imunologia , Resistência à Insulina , Fígado/patologia , Masculino , Camundongos , Camundongos Obesos , Obesidade/imunologia , Obesidade/metabolismo , Obesidade/patologia , Fator de Crescimento Transformador beta1/análise , Fator de Crescimento Transformador beta1/metabolismo
17.
Metab Brain Dis ; 36(5): 871-888, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651275

RESUMO

Alzheimer's disease (AD) is a worldwide problem, and there are currently no treatments that can stop this disease. To investigate the binding affinity of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) with acetylcholinesterase (AChE), to verify the effects of FSP in an AD model in mice and to evaluate the toxicological potential of this compound in mice. The binding affinity of FSP with AChE was investigated by molecular docking analyses. The AD model was induced by streptozotocin (STZ) in Swiss mice after FSP treatment (1 mg/kg, intragastrically (i.g.)), 1st-10th day of the experimental protocol. Anxiety was evaluated in an elevated plus maze test, and memory impairment was evaluated in the Y-maze, object recognition and step-down inhibitory avoidance tasks. The cholinergic system was investigated based on by looking at expression and activity of AChE and expression of choline acetyltransferase (ChAT). We evaluated expression and activity of Na+/K+-ATPase. For toxicological analysis, animals received FSP (300 mg/kg, i.g.) and aspartate aminotransferase, alanine aminotransferase activities were determined in plasma and δ-aminolevulinate dehydratase activity in brain and liver. FSP interacts with residues of the AChE active site. FSP mitigated the induction of anxiety and memory impairment caused by STZ. FSP protected cholinergic system dysfunction and reduction of activity and expression of Na+/K+-ATPase. FSP did not modify toxicological parameters evaluated and did not cause the death of mice. FSP protected against anxiety, learning and memory impairment with involvement of the cholinergic system and Na+/K+-ATPase in these actions.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Memória/efeitos dos fármacos , Selênio/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Animais , Ansiedade/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Simulação de Acoplamento Molecular , Selênio/uso terapêutico
18.
Immunopharmacol Immunotoxicol ; 43(2): 212-222, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33588680

RESUMO

Aim: The present study was aimed to evaluate the anxiolytic and antidepressant-like effects of schizandrin (from Schisandra chinensis (Turcz.) Baill. which is a functional food) against chronic liver injury in mice.Methods: Chronic liver injury was induced by the treatment of d-galactose (d-GaIN, 200 mg/kg, s.c.) for 8 weeks.Results: Administration of schizandrin (30 mg/kg, i.g.) significantly ameliorated d-GaIN-induced anxiety and depression-like behavior as evident from the results of open field test (OFT), sucrose preference test (SPT), tail suspension test (TST), forced swimming test (FST), novelty-suppressed feeding test (NSFT), and elevated plus maze (EPM) test. In addition, schizandrin remarkably reduced the oxidative stress due to its potential to enhance the levels of decreased CAT, GSH/GSSG, SOD, and increased MDA in peripheral and brain, the antioxidant activities might be related with the Nrf2/HO-1 pathway. Furthermore, schizandrin could dramatically inhibit the neuroinflammation in mice by reducing pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) through regulating NF-κB/NLRP3/Iba-1 signaling. Besides, the elevated levels of ammonia, AST, and ALT were significantly reduced by schizandrin.Conclusion: The present data revealed that hyperammonemia produced due to liver injury-induced oxidative stress and neuroinflammation in the hippocampus and prefrontal cortex resulting in anxiety and depression were improved by schizandrin.


Assuntos
Ansiedade/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ciclo-Octanos/uso terapêutico , Depressão/tratamento farmacológico , Mediadores da Inflamação/antagonistas & inibidores , Lignanas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Compostos Policíclicos/uso terapêutico , Animais , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ciclo-Octanos/farmacologia , Depressão/induzido quimicamente , Depressão/metabolismo , Galactose/toxicidade , Mediadores da Inflamação/metabolismo , Lignanas/farmacologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Compostos Policíclicos/farmacologia , Schisandra
19.
Phytomedicine ; 83: 153474, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33548867

RESUMO

BACKGROUND: Limonene, a common terpene found in citrus fruits, is assumed to reduce stress and mood disorders. Dopamine and γ-aminobutyric acid (GABA) have been reported to play an important role in modulating anxiety in different parts of the brain. HYPOTHESIS/PURPOSE: Herein, we report the anxiolytic activity of limonene. In addition, we identified a possible mechanism underlying the effect of limonene on DAergic and GABAergic neurotransmission. STUDY DESIGN: In this study, mice were injected with saline in the control group and limonene in the test group before behavioral analysis. We performed immunoblotting and high-performance liquid chromatography (HPLC) analysis after the behavioral study. RESULTS: The limonene treated group showed increased locomotor activity and open-arm preference in the elevated plus maze experiment. Limonene treatment increased the expression of both tyrosine hydroxylase and GAD-67 proteins and significantly upregulated dopamine levels in the striatum. Furthermore, tissue dopamine levels were increased in the striatum of mice following limonene treatment, and depolarization-induced GABA release was enhanced by limonene pre-treatment in PC-12 cells. Interestingly, limonene-induced anxiolytic activity and GABA release augmentation were blocked by an adenosine A2A receptor (A2AR) antagonist. CONCLUSION: Our results suggest that limonene inhibits anxiety-related behavior through A2A receptor-mediated regulation of DAergic and GABAergic neuronal activity.


Assuntos
Ansiolíticos/farmacologia , Corpo Estriado/efeitos dos fármacos , Limoneno/farmacologia , Receptor A2A de Adenosina/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Ratos , Transmissão Sináptica/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/metabolismo
20.
Biomed Pharmacother ; 137: 111306, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33524786

RESUMO

Protective effects of Puerariae flos extract (PFE) on ethanol (EtOH) exposure have been previously verified. This study attempts to explore the protective effects of PEF on EtOH withdrawal models. Sixty male Kunming mice were involved which were randomly divided into five groups (intact control, EtOH group (35-day EtOH exposure), EtOH withdrawal group (28-day exposure + 7-day withdrawal), EtOH withdrawal group + positive control (Deanxit) group, and EtOH withdrawal group + PFE group). The changes of neuropsychological behaviors; hippocampal BDNF expression and CA1 neuronal density; and plasma corticotropin-releasing hormone (CRH), ACTH, and CORT levels were observed. It was found that depression-like behaviors reduced by EtOH exposure and increased by withdrawal under the 28-day EtOH exposure and 7-day withdrawal conditions. In addition, anxiety-like behaviors worsened by EtOH exposure and unchanged by withdrawal. Deanxit and PEF ameliorated such behaviors (vs. withdrawal group). Hippocampal BDNF expression was significantly downregulated by EtOH exposure and upregulated by withdrawal. Deanxit and PEF significantly upregulated the BDNF expression. The hippocampal CA1 neuronal density significantly decreased by EtOH exposure but unchanged by withdrawal and treatments. The plasma CRH, ACTH, and CORT levels show a significant enhancement by EtOH exposure and reduced by withdrawal. They were further reduced by Deanxit and PEF. The protective effects of PEF on EtOH chronic withdrawal mouse models were verified. The results of this study also indicated a complicated scenario of neuropsychological behaviors, hippocampal BDNF expression, and hypothalamic-pituitary-adrenal axis which are affected by the timing of EtOH exposure and withdrawal.


Assuntos
Alcoolismo/tratamento farmacológico , Ansiedade/prevenção & controle , Região CA1 Hipocampal/efeitos dos fármacos , Depressão/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Pueraria , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Hormônio Adrenocorticotrópico/sangue , Alcoolismo/metabolismo , Alcoolismo/patologia , Alcoolismo/psicologia , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Hormônio Liberador da Corticotropina/sangue , Depressão/metabolismo , Depressão/patologia , Depressão/psicologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/isolamento & purificação , Hidrocortisona/sangue , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Masculino , Camundongos , Pueraria/química , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Síndrome de Abstinência a Substâncias/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA