Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 15(9): 5000-5011, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38618651

RESUMO

The anti-obesity effect of conjugated linoleic acid (CLA) has been well elucidated, but whether CLA affects fat deposition by regulating intestinal dietary fat absorption remains largely unknown. Thus, this study aimed to investigate the effects of CLA on intestinal fatty acid uptake and chylomicron formation and explore the possible underlying mechanisms. We found that CLA supplementation reduced the intestinal fat absorption in HFD (high fat diet)-fed mice accompanied by the decreased serum TG level, increased fecal lipids and decreased intestinal expression of ApoB48 and MTTP. Correspondingly, c9, t11-CLA, but not t10, c12-CLA induced the reduction of fatty acid uptake and TG content in PA (palmitic acid)-treated MODE-K cells. In the mechanism of fatty acid uptake, c9, t11-CLA inhibited the binding of CD36 with palmitoyltransferase DHHC7, thus leading to the decreases of CD36 palmitoylation level and localization on the cell membrane of the PA-treated MODE-K cells. In the mechanism of chylomicron formation, c9, t11-CLA inhibited the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the PA-treated MODE-K cells. In in vivo verification, CLA supplementation reduced the DHHC7-mediated total and cell membrane CD36 palmitoylation and suppressed the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the jejunum of HFD-fed mice. Altogether, these data showed that CLA reduced intestinal fatty acid uptake and chylomicron formation in HFD-fed mice associated with the inhibition of DHHC7-mediated CD36 palmitoylation and the downstream ERK pathway.


Assuntos
Antígenos CD36 , Quilomícrons , Dieta Hiperlipídica , Ácidos Linoleicos Conjugados , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Animais , Antígenos CD36/metabolismo , Antígenos CD36/genética , Ácidos Linoleicos Conjugados/farmacologia , Camundongos , Masculino , Quilomícrons/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Aciltransferases/metabolismo , Aciltransferases/genética , Absorção Intestinal/efeitos dos fármacos
2.
J Ethnopharmacol ; 330: 118211, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636580

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qilong capsule (QC) is developed from the traditional Chinese medicine formula Buyang Huanwu Decoction, which has been clinically used to invigorate Qi and promote blood circulation to eliminate blood stasis. Myocardial ischemia‒reperfusion injury (MIRI) can be attributed to Qi deficiency and blood stasis. However, the effects of QC on MIRI remain unclear. AIM OF THE STUDY: This study aimed to investigate the protective effect and possible mechanism of QC on platelet function in MIRI rats. MATERIALS AND METHODS: The left anterior descending artery of adult Sprague‒Dawley rats was ligated for 30 min and then reperfused for 120 min with or without QC treatment. Then, the whole blood viscosity, plasma viscosity, coagulation, platelet adhesion rate, platelet aggregation, and platelet release factors were evaluated. Platelet CD36 and its downstream signaling pathway-related proteins were detected by western blotting. Furthermore, the active components of QC and the molecular mechanism by which QC regulates platelet function were assessed via molecular docking, platelet aggregation tests in vitro and BLI analysis. RESULTS: We found that QC significantly reduced the whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation induced by ADP or AA in rats with MIRI. The inhibition of platelet activation by QC was associated with reduced levels of ß-TG, PF-4, P-selectin and PAF. Mechanistically, QC effectively attenuated the expression of platelet CD36 and thus inhibited the activation of Src, ERK5, and p38. The active components of QC apparently suppressed platelet aggregation in vitro and regulated the CD36 signaling pathway. CONCLUSIONS: QC improves MIRI-induced hemorheological disorders, which might be partly attributed to the inhibition of platelet activation via CD36-mediated platelet signaling pathways.


Assuntos
Plaquetas , Antígenos CD36 , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão Miocárdica , Ativação Plaquetária , Agregação Plaquetária , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Transdução de Sinais/efeitos dos fármacos , Masculino , Ativação Plaquetária/efeitos dos fármacos , Antígenos CD36/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Ratos , Simulação de Acoplamento Molecular
3.
PeerJ ; 12: e17062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435992

RESUMO

Background: Obesity leads to an elevated risk of developing gastrointestinal disease such as gastric ulcers. Callistemon citrinus leaf extract has shown antioxidant, antimicrobial, hepatoprotective, and chemoprotective effects against colon cancer. The aim of this study is to evaluate the gastroprotective effect of C. citrinus leaf extract on indomethacin-induced gastric ulcers in obese rats. Methods: Gastric ulcers were induced in female obese Wistar rats using a single oral dose of indomethacin (IND). In the first stage, the rats were fed with a high fat sugar diet (HFSD) for 15 weeks to induce obesity and, at the same time, the diet of the other group of animals included daily administration of ethanolic C. citrinus leaf extract (250 mg/kg) in addition to HFSD. In the second stage, gastric ulcers were induced with IND (30 mg/kg). The gastroprotective activity of C. citrinus, the inflammatory enzyme activities, and cytokines in the stomach were determined. Results: C. citrinus produced a reduction of gastric lesions caused by IND. Myeloperoxidase (MPO), cyclooxygenase-2 (COX-2), and 5-lipoxygenase (5-LOX) activities also decreased. Although inflammatory biomarkers such as TNFα, IL-6, AOPP, and leptin were significantly decreased by C. citrinus, adiponectin levels increased. Moreover, C. citrinus decreased weight gain and morphological and biochemical parameters. Conclusion: The use of indomethacin in rats fed with a high fat-sugar diet increased gastric ulcers. Gastroprotective effect of C. citrinus in obese rats is attributed to the reduction of pro-inflammatory cytokines and the inflammatory enzymes.


Assuntos
Indometacina , Úlcera Gástrica , Feminino , Ratos , Animais , Úlcera Gástrica/induzido quimicamente , Ratos Wistar , Anti-Inflamatórios , Obesidade/complicações , Antígenos CD36 , Açúcares , Citocinas , Extratos Vegetais/farmacologia
4.
Redox Biol ; 70: 103064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320455

RESUMO

Amyloid-beta (Aß) is a key factor in the onset and progression of Alzheimer's disease (AD). Selenium (Se) compounds show promise in AD treatment. Here, we revealed that selenoprotein K (SELENOK), a selenoprotein involved in immune regulation and potentially related to AD pathology, plays a critical role in microglial immune response, migration, and phagocytosis. In vivo and in vitro studies corroborated that SELENOK deficiency inhibits microglial Aß phagocytosis, exacerbating cognitive deficits in 5xFAD mice, which are reversed by SELENOK overexpression. Mechanistically, SELENOK is involved in CD36 palmitoylation through DHHC6, regulating CD36 localization to microglial plasma membranes and thus impacting Aß phagocytosis. CD36 palmitoylation was reduced in the brains of patients and mice with AD. Se supplementation promoted SELENOK expression and CD36 palmitoylation, enhancing microglial Aß phagocytosis and mitigating AD progression. We have identified the regulatory mechanisms from Se-dependent selenoproteins to Aß pathology, providing novel insights into potential therapeutic strategies involving Se and selenoproteins.


Assuntos
Doença de Alzheimer , Antígenos CD36 , Microglia , Selenoproteínas , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Lipoilação , Camundongos Transgênicos , Microglia/metabolismo , Fagocitose , Selenoproteínas/genética , Selenoproteínas/metabolismo , Antígenos CD36/metabolismo
5.
Circ Res ; 134(5): 505-525, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422177

RESUMO

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Assuntos
Cardiomiopatias , Resistência à Insulina , Animais , Camundongos , Ratos , Adenosina Trifosfatases , Arginina , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Antígenos CD36/genética , Fibrose , Inflamação , Leucina , Lipídeos , Lisina , Alvo Mecanístico do Complexo 1 de Rapamicina , Miócitos Cardíacos , Mononucleotídeo de Nicotinamida , Receptor 4 Toll-Like/genética
6.
Zhongguo Zhen Jiu ; 44(2): 169-174, 2024 Feb 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38373762

RESUMO

OBJECTIVES: To observe the effects of Lizhong Tongmai acupuncture (acupuncture for regulating middle jiao and promoting meridians) on trimethylamine-N-oxide (TMAO), CD36 expression, and cholesterol deposition in atherosclerotic (AS) mice, exploring potential mechanism of electroacupuncture (EA) in treating AS. METHODS: A total of 31 male SPF-grade C57BL/6J ApoE-/- mice were fed with high-fat diet for 8 weeks to establish AS model. After successful modeling, the remaining 30 mice were randomly divided into a model group, a medication group, and an EA group, with 10 mice in each group. An additional 10 normal mice of the same strain were selected as a blank group. The mice in the blank group and the model group received no intervention. The mice in the medication group were treated with intragastric administration of atorvastatin calcium. The mice in the EA group were treated with EA at "Neiguan" (PC 6), "Tianshu" (ST 25) and "Zusanli" (ST 36). The same-side "Neiguan" (PC 6) and "Zusanli" (ST 36), "Tianshu" (ST 25) and the tail of the mice were connected to the EA apparatus, with disperse-dense wave, a frequency of 2 Hz/15 Hz, and a current intensity of 0.3 mA for 10 min per session. Acupuncture was performed unilaterally per session, alternating between the left and right sides, with a frequency of once every other day. After intervention, HE staining was used to observe the pathological morphology of the aorta. Microplate assays were conducted to measure triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels in serum. Ultra high performance liquid chromatography-mass spectrometry technique (UPLC-MS) was employed to detect TMAO level in plasma. Western blot was performed to assess CD36 protein expression level in the aorta. Microanalysis was used to measure cholesterol ester (CE) level in the aorta and the CE/TC ratio was calculated. RESULTS: Compared with the blank group, the mice in the model group exhibited significant pathological changes of atherosclerosis, serum TG, TC, LDL-C levels were increased (P<0.01), and HDL-C level was decreased (P<0.01); the plasma TMAO level, aortic CE level, and the CE/TC ratio were increased (P<0.01), along with elevated CD36 protein expression level in the aorta (P<0.01). Compared with the model group, the mice in the medication group and the EA group showed improvements in aortic pathology, serum TG, TC, LDL-C levels were reduced, HDL-C levels were increased (P<0.05); plasma TMAO levels, aortic CE levels, and the CE/TC ratio were decreased (P<0.01), and CD36 protein expression levels were lowered (P<0.05). The serum TG and TC levels in the EA group were higher than those in the medication group (P<0.05). CONCLUSIONS: The Lizhong Tongmai acupuncture can ameliorate aortic pathological changes, regulate blood lipid levels, reduce plasma TMAO level, inhibit CD36 protein expression in the aorta, and decrease cholesterol deposition. These effects may contribute to the therapeutic mechanism of EA in treating AS.


Assuntos
Aterosclerose , Eletroacupuntura , Metilaminas , Masculino , Camundongos , Animais , Antígenos CD36/genética , LDL-Colesterol/metabolismo , Cromatografia Líquida , Camundongos Endogâmicos C57BL , Pontos de Acupuntura , Camundongos Knockout para ApoE , Espectrometria de Massas em Tandem , Aterosclerose/genética , Aterosclerose/terapia , Aterosclerose/metabolismo
7.
Phytother Res ; 37(7): 3042-3056, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36882189

RESUMO

Diabetic cardiomyopathy (DCM), one of the major complications of type 2 diabetes, is a leading cause of heart failure and death in advanced diabetes. Although there is an association between DCM and ferroptosis in cardiomyocytes, the internal mechanism of ferroptosis leading to DCM development remains unknown. CD36 is a key molecule in lipid metabolism that mediates ferroptosis. Astragaloside IV (AS-IV) confers various pharmacological effects such as antioxidant, anti-inflammatory, and immunomodulatory. In this study, we demonstrated that AS-IV was able to recover the dysfunction of DCM. In vivo experiments showed that AS-IV ameliorated myocardial injury and improved contractile function, attenuated lipid deposition, and decreased the expression level of CD36 and ferroptosis-related factors in DCM rats. In vitro experiments showed that AS-IV decreased CD36 expression and inhibited lipid accumulation and ferroptosis in PA-induced cardiomyocytes. The results demonstrated that AS-IV decreased cardiomyocyte injury and myocardial dysfunction by inhibiting ferroptosis mediated by CD36 in DCM rats. Therefore, AS-IV regulated the lipid metabolism of cardiomyocytes and inhibited cellular ferroptosis, which may have potential clinical value in DCM treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Ferroptose , Ratos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Regulação para Baixo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Miócitos Cardíacos , Antígenos CD36/metabolismo , Lipídeos
8.
J Investig Med ; 71(3): 191-201, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708288

RESUMO

The molecular mechanisms of opium action with regard to coronary artery disease (CAD) have not yet been determined. The aim of this study was to evaluate the effect of opium on the expression of scavenger receptors including CD36, CD68, and CD9 tetraspanin in monocytes and the plasma levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), malondialdehyde (MDA), and nitric oxide metabolites (NOx) in CAD patients with and without opium addiction. This case-control study was conducted on three groups: (1) opium-addicted CAD patients (CAD + OA, n = 30); (2) CAD patients with no opium addiction (CAD, n = 30); and (3) individuals without CAD and opium addiction as the control group (Ctrl, n = 17). The protein and mRNA levels of CD9, CD36, and CD68 were evaluated by the flow cytometry and quantitative polymerase chain reaction (RT-qPCR) methods, respectively. The consumption of atorvastatin, aspirin, and glyceryl trinitrate was found be higher in the CAD groups compared with the control group. The plasma level of TNF-α was significantly higher in the CAD + OA group than in the CAD and Ctrl groups (p = 0.001 and p = 0.005, respectively). MDA levels significantly increased in CAD and CAD + OA patients in comparison with the Ctrl group (p = 0.010 and p = 0.002, respectively). No significant differences were found in CD9, CD36, CD68, IFN-γ, and NOx between the three groups. The findings demonstrated that opium did not have a significant effect on the expression of CD36, CD68, and CD9 at gene and protein levels, but it might be involved in the development of CAD by inducing inflammation through other mechanisms.


Assuntos
Doença da Artéria Coronariana , Humanos , Estudos de Casos e Controles , Antígenos CD36/genética , Doença da Artéria Coronariana/complicações , Inflamação/complicações , Ópio , Tetraspanina 29/metabolismo , Fator de Necrose Tumoral alfa
9.
Biochimie ; 208: 75-85, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36528184

RESUMO

Sertoli cells provide structural and nutritional support for germ cell development. They actively metabolize glucose and convert it into lactate, which is an important source of energy for germ cells. They also oxidize fatty acids (FA), stored as triacylglycerides (TAGs) within lipid droplets (LD), to fulfill their own energy requirements. So, the combined regulation of lactate production and FA metabolism may be relevant to the physiology of seminiferous tubules. Resveratrol (RSV) is a nutritional supplement found primarily in red grape skin that exhibits multiple beneficial health effects: it is cardioprotective, anti-inflammatory, anticancer, and antiaging. The aim of this study was to evaluate the effect of RSV in Sertoli cells lactate production and lipid metabolism. Sertoli cell cultures obtained from 20-day-old rats were incubated for different times with 10 or 50 µM RSV. RSV treatment increased lactate production and glucose consumption. These increments were accompanied by a rise in GLUT1 expression, which is the main glucose transporter in Sertoli cells. On the other hand, RSV decreased LD content and TAG levels. In addition, an increase in ATGL and FAT/CD36 mRNA levels was observed, which suggests augmented cytoplasmatic FA availability. RSV treatment also increased P-ACC levels, which might indicate that RSV promotes FA transport into the mitochondria to be oxidized. An enhanced expression of LCAD and MCAD, enzymes that participate in the oxidation of FA, was also observed. Altogether, these results suggest that RSV simultaneously regulates Sertoli cells lactate production and lipid metabolism, ensuring an adequate energetic balance both in germ and Sertoli cells.


Assuntos
Ácido Láctico , Células de Sertoli , Masculino , Animais , Ratos , Resveratrol/farmacologia , Antígenos CD36 , Ácidos Graxos , Glucose , Gotículas Lipídicas , Metabolismo dos Lipídeos , Células Cultivadas
10.
J Ethnopharmacol ; 302(Pt A): 115923, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36375645

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginsenoside Rg1 (Rg1) is one of the main active components in Panax ginseng C. A. Meyer (ginseng), which has been widely used to delay senescence or improve health conditions for more than 2000 years. Increasing studies have revealed that Rg1 could regulate cell proliferation and differentiation, as well as anti-inflammatory and anti-apoptotic effects, and might have protective effects on many chronic kidney diseases. AIM OF THE STUDY: Diabetic nephropathy (DN) is one of the most dangerous microvascular complications of diabetes and is the leading cause of end-stage renal disease worldwide. However, the role and mechanism of Rg1 against high-glucose and high-fat-induced glomerular fibrosis in DN are not clear. This study aimed to investigate the protective effect of Rg1 on DN and its possible mechanism. MATERIALS AND METHODS: The type 2 diabetes mellitus (T2DM) mice models were established with a high-fat diet (HFD) combined with an intraperitoneal injection of streptozotocin (STZ). Urine protein and serum biochemical indexes were detected by corresponding kits. The kidney was stained with H&E, PAS, and Masson to observe the pathological morphology, glycogen deposition, and fibrosis. The expression of CD36 and p-PLC in the kidney cortex was detected by IHC. The expressions of FN and COL4 were detected by IF. Western blot and PCR were performed to examine protein and mRNA expressions of kidney fibrosis and TRPC6/NFAT2-related pathways in DN mice. Calcium imaging was used to examine the effect of Rg1 on [Ca2+]i in PA + HG-induced human mesangial cells (HMCs). Visualization of the interaction between Rg1 and CD36 was detected by molecular docking. RESULTS: Rg1 treatment for 8 weeks could prominently decrease urinary protein, serum creatinine, and urea nitrogen and downgrade blood lipid levels and renal lipid accumulation in T2DM mice. The pathological results indicated that Rg1 treatment attenuated renal pathological injury and glomerular fibrosis. The further results demonstrated that Rg1 treatment remarkably decreased the expressions of CD36, TRPC6, p-PLC, CN, NFAT2, TGF-ß, p-Smad2/3, COL4, and FN in renal tissues from T2DM mice. Calcium imaging results found that Rg1 downgraded the base levels of [Ca2+]i and ΔRatioF340/F380 after BAPTA and CaCl2 treatment. Molecular docking results showed that Rg1 could interact with CD36 with a good affinity. CONCLUSION: These results revealed that Rg1 could ameliorate renal lipid accumulation, pathological damage, and glomerular fibrosis in T2DM mice. The mechanism may be involved in reducing the overexpression of CD36 and inhibiting the TRPC6/NFAT2 signaling pathway in renal tissues of T2DM mice.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Animais , Humanos , Camundongos , Cálcio/metabolismo , Antígenos CD36/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/patologia , Fibrose , Rim , Simulação de Acoplamento Molecular , Transdução de Sinais , Canal de Cátion TRPC6/metabolismo
11.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499624

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and has become a growing public health concern worldwide. Polyphenols may improve high-fat diet (HFD)-related NAFLD. Our previous study found that ferulic acid (FA) and p-coumaric acid (p-CA) were the polyphenols with the highest content in foxtail millet. In this study, we investigated the mechanism underlying the impact of ferulic acid and p-coumaric acid (FA/p-CA) on non-alcoholic fatty liver (NAFLD). The association of FA and p-CA with fatty liver was first analyzed by network pharmacology. Synergistic ameliorating of NAFLD by FA and p-CA was verified in oleic acid (OA) and palmitic acid (PA) (FFA)-treated hepatocytes. Meanwhile, FA/p-CA suppressed final body weight and TG content and improved liver dysfunction in HFD-induced NAFLD mice. Mechanistically, our data indicated that FA and p-CA bind to histone deacetylase 1 (HDAC1) to inhibit its expression. The results showed that peroxisome proliferator activated receptor gamma (PPARG), which is positively related to HDAC1, was inhibited by FA/p-CA, and further suppressed fatty acid binding protein (FABP) and fatty acid translocase (CD36). It suggests that FA/p-CA ameliorate NAFLD by inhibiting free fatty acid uptake via the HDAC1/PPARG axis, which may provide potential dietary supplements and drugs for prevention of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Antígenos CD36/metabolismo , Dieta Hiperlipídica , Ácidos Graxos não Esterificados/metabolismo , Histona Desacetilase 1/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polifenóis/uso terapêutico , PPAR gama/metabolismo
12.
Res Vet Sci ; 150: 89-97, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35809418

RESUMO

Gastrointestinal tract (GIT) epithelial cells detect nutrients in the lumen via G-protein coupled receptors (GPRs) located in the gut epithelial cells especially in enteroendocrine cells. Dietary free fatty acids (FFA) are the major energy source and also acts as signalling molecules for FFA receptors. Long chain fatty acids (LCFA) activate LCFA receptors, GPR40/FFAR1 and GPR120/FFAR4 which trigger intracellular signalling and release gut hormones or modifies gene expression that facilitate fat digestion and absorption. However, there is a paucity of information on chemosensing of nutrients and digestion in ruminants. Hence, present study was aimed to evaluate chemosensing of fat digestion and absorption by the expression pattern of GPR40, GPR120, chylomicron forming genes, fatty acid translocase (CD36/FAT), microsomal triglyceride transfer protein (MTTP) and apolipoprotein B (APOB) in the various segments of GIT in sheep supplemented with calcium salts of long chain fatty acids (CSLCFAs) along with the secretory patterns of gut peptides cholecystokinin (CCK) and peptide tyrosine tyrosine (PYY). The study was carried out for a period 60 days with eighteen adult ewes of 8-12 months of age and they were divided into three groups with six animals each as group-I, group-II and group-III. All the experimental animals were stall fed with a basal diet and maintained as per animal husbandry standards. Group-II and group-III were supplemented additionally with 3% and 5% CSLCFAs, respectively on dry matter intake. The results from the study indicated that the supplementation of CSLCFAs upregulated (P < 0.05) the relative mRNA expression of GPR40 and GPR120 in the various segments of GIT of sheep in correspondence to level of dietary fat. Abundance of mRNA expression of CD36, MTTP and APOB increased (P < 0.05) in the GIT of sheep in accordance to quantity of LCFAs in the diet where these genes facilitate fatty acid uptake. Feeding of CSLCFAs enhanced (P < 0.05) pre-feeding level of CCK from day 15 onwards, whereas, post-feeding CCK and PYY increased in all the experimental sheep. However, the increase was higher (P < 0.05) in sheep supplemented with CSLCFAs by 10.80 ± 1.45% and 14.25 ± 1.17%, respectively in comparison to group-I. The comprehensive results of the study concluded that feeding of additional CSLCFAs upregulated the expression of GPR40, GPR120, CD36, and chemosensing of LCFAs by these genes triggered the signalling transduction that enhanced CCK and PYY levels to facilitate fat digestion and absorption in accordance with quantity of dietary fat. This was further evident from the significant upregulation of MTTP and APOB in the various segments of GIT supported the high content of dietary fat at cellular fat metabolism in the gut that regulates the fatty acid uptake.


Assuntos
Antígenos CD36 , Receptores Acoplados a Proteínas G , Animais , Apolipoproteínas B/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Colecistocinina/metabolismo , Gorduras na Dieta/metabolismo , Gorduras na Dieta/farmacologia , Digestão , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados , Feminino , RNA Mensageiro , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ovinos/genética , Tirosina
13.
Nutr Neurosci ; 25(10): 2011-2022, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33926365

RESUMO

AIM: Individuals undernourished in utero or during early life are at high risk of developing obesity and metabolic disorders and show an increased preference for consuming sugary and fatty food. This study aimed at determining whether impaired taste detection and signalling in the lingual epithelium and the brain might contribute to this altered pattern of food intake. METHODS: The preference for feeding fat and sweet food and the expression in circumvallate papillae and hypothalamus of genes coding for sweet and fat receptors and transducing pathways were evaluated in adult rats born to control or calorie-restricted dams. Expression in the hypothalamus and the brain's reward system of genes involved in the homeostatic and hedonic control of food intake was also determined. RESULTS: Male and female undernourished animals exhibited increased expression in taste papillae and hypothalamus of T1R1, T1R2, CD36, gustducin, TRMP5 and PLC-ß2 genes, all of which modulate sweet and fat detection and intracellular signalling. However, the severity of the effect was greater in females than in males. Moreover, male, but not female, undernourished rats consumed more standard and sweetened food than their control counterparts and presented increased hypothalamic AgRP and NPY mRNAs levels together with enhanced dopamine transporter and dopamine receptor D2 expression in the ventral tegmental area. CONCLUSIONS: Maternal undernutrition induces sex-specific changes in food preferences and gene expression in taste papillae, hypothalamus and brain reward regions. The gene expression alterations in the male offspring are in line with their preference for consuming sugary and fatty food.


Assuntos
Desnutrição , Paladar , Proteína Relacionada com Agouti/metabolismo , Animais , Antígenos CD36/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Hipotálamo/metabolismo , Masculino , Desnutrição/metabolismo , Ratos , Receptores Dopaminérgicos/metabolismo
14.
J Investig Med ; 70(8): 1728-1735, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34872933

RESUMO

The molecular mechanisms of opium with regard to coronary artery disease (CAD) have not yet been determined. The aim of the present study was to evaluate the effect of opium on the expression of scavenger receptors including CD36, CD68, and CD9 tetraspanin in monocytes and the plasma levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), malondialdehyde (MDA), and nitric oxide metabolites (NOx) in patients with CAD with and without opium addiction. This case-control study was conducted in three groups: (1) opium-addicted patients with CAD (CAD+OA, n=30); (2) patients with CAD with no opium addiction (CAD, n=30); and (3) individuals without CAD and opium addiction as the control group (Ctrl, n=17). Protein and messenger RNA (mRNA) levels of CD9, CD36, and CD68 were evaluated by flow cytometry and reverse transcription-quantitative PCR methods, respectively. Consumption of atorvastatin, aspirin, and glyceryl trinitrate was found to be higher in the CAD groups compared with the control group. The plasma level of TNF-α was significantly higher in the CAD+OA group than in the CAD and Ctrl groups (p=0.001 and p=0.005, respectively). MDA levels significantly increased in the CAD and CAD+OA groups in comparison with the Ctrl group (p=0.010 and p=0.002, respectively). No significant differences were found in CD9, CD36, CD68, IFN-γ, and NOx between the three groups. The findings demonstrated that opium did not have a significant effect on the expression of CD36, CD68, and CD9 at the gene and protein levels, but it might be involved in the development of CAD by inducing inflammation through other mechanisms.


Assuntos
Doença da Artéria Coronariana , Ópio , Humanos , Estudos de Casos e Controles , Antígenos CD36/genética , Doença da Artéria Coronariana/complicações , Inflamação , Tetraspanina 29/metabolismo , Fator de Necrose Tumoral alfa
15.
Indian J Pharmacol ; 53(4): 286-293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414906

RESUMO

OBJECTIVE: High-density lipoprotein (HDL) cholesterol-mediated atherosclerotic plaque regression has gained wide therapeutic attention. The whole plant methanolic extract of the medicinal plant Desmodium gyrans Methanolic Extract (DGM) has shown to mitigate hyperlipidemia in high fat- and-cholesterol fed rats and rabbits with significant HDL enhancing property. The study aimed to assess the functionality and mechanistic basis of HDL promoting effect of DGM. MATERIALS AND METHODS: Macrophage cholesterol efflux and foam cell formation assays were performed in THP-1 macrophages. Male Wistar rats were given DGM extract over 1 month and assessed the serum HDL, Apolipoprotein A1 (Apo-A1), and paraoxonase activity. Quantitative Polymerase chain reaction was carried out to assess the expression level of Apo-A1, SR-B1 (Scavenger receptor B1), and Cholesteryl ester transfer protein (CETP) on cDNA of HepG2 cells exposed to DGM. RESULTS: Pretreatment of DGM inhibited uptake of oxidized lipids and enhanced the lipid efflux by THP-1-derived macrophages. Oral administration of DGM (100 and 250 mg/kg) progressively enhanced the serum HDL, Apo-A1 level, and associated paraoxonase activity in normal male Wistar rats. In support to this, DGM exposed HepG2 cells documented dose-dependent increase in the expression of SR-B1 and Apo-A1 mRNA, while reduced the CETP expression. CONCLUSION: Overall the results indicated that DGM modulates lipid trafficking and possesses functional HDL enhancing potential through increased Apo-A1 levels and paraoxonase activity. Further, reduced CETP expression and increased expression of SR-B1 suggest the reverse cholesterol transport promoting role of DGM.


Assuntos
Fabaceae , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas HDL/fisiologia , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Animais , Apolipoproteína A-I/genética , Antígenos CD36/genética , Proteínas de Transferência de Ésteres de Colesterol/genética , Células Espumosas/fisiologia , Células Hep G2 , Humanos , Masculino , Ratos , Ratos Wistar , Células THP-1
16.
Life Sci ; 279: 119672, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34097971

RESUMO

AIMS: Intestinal nutrient absorption plays a vital role in developing obesity, and nutrient transporters expressed in the enterocytes facilitate this process. Moreover, previous studies have shown that specific foods and diets can affect their cell levels. Herein, we investigated the effects of pequi oil (PO), which is high in several bioactive compounds, on intestinal nutrient transporter levels as well as on intestinal morphology and metabolic biomarkers. MAIN METHODS: Groups of male C57BL/6 mice were fed either a standard (C) or a high-fat diet (HFD) and pequi oil (CP and HFDP with PO by gavage at 150 mg/day) for eight weeks. Food intake and body weight were monitored, serum metabolic biomarkers, intestinal transporter levels and histological analyses were performed. KEY FINDINGS: PO increased caloric intake without increasing body or fat mass regardless of diet. The HFD group treated with PO reduced fasting blood glucose and villus width. PO did not affect GLUT2, L-FABP, FATP4, NPC1L1, NHE3 or PEPT1 content in CP or HFDP groups. GLUT5 and FAT/CD36 levels were reduced in both CP and HFDP. SIGNIFICANCE: Our data suggest that PO attenuated monosaccharide and fatty acid absorption, contributing to lower fasting glycemia and higher food intake without affecting body weight or visceral fat of high-fat feed mice.


Assuntos
Glicemia/metabolismo , Antígenos CD36/metabolismo , Carotenoides/farmacologia , Transportador de Glucose Tipo 5/metabolismo , Hiperglicemia/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Óleos de Plantas/farmacologia , Animais , Biomarcadores/metabolismo , Caderinas/metabolismo , Dieta Hiperlipídica , Ingestão de Energia , Ericales/química , Ácidos Graxos/metabolismo , Controle Glicêmico , Hiperglicemia/etiologia , Hiperglicemia/patologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações
17.
Anim Sci J ; 92(1): e13554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33938087

RESUMO

Our previous work has demonstrated that Yupingfeng, a Chinese herb medicine, considered as prebiotic showed beneficial properties in poultry health and disease prevention and regulated intestinal microbiota. The effects of Yupingfeng on fatty acids related to meat flavor and ruminal microbiota are not yet known in Qingyuan black goat. In this study, we supplemented fermented (FYP) and unfermented (UYP) Yupingfeng in different combinations to 90 goats. Compared with the normal control group, FYP and UYP significantly increased the concentration of palmitic acid, octadecanoic acid, and arachidonate acid (related to meat flavor) in the longissimus dorsi muscle (p < .05). In addition, the significant upregulation of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid translocase (CD36) was observed in the FYP and UYP groups (p < .05). In addition, Firmicutes and Bacteroidetes were the most abundance in goat rumen. At the genus level, FYP and UYP significantly increased Ruminococcus related to fiber degradation, and Alistipes related to short-chain fatty acids production. In summary, Yupingfeng could improve fatty acids of goat meat, which is probably triggered by the increase of PPARγ and CD36, and microbial activity. Besides, FYP showed more beneficial effects than UYP, with increased flavor fatty acids and beneficial microbes.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Medicamentos de Ervas Chinesas/administração & dosagem , Ácidos Graxos/metabolismo , Fermentação , Qualidade dos Alimentos , Microbioma Gastrointestinal/efeitos dos fármacos , Cabras/metabolismo , Cabras/microbiologia , Carne/análise , Músculo Esquelético/metabolismo , Rúmen/microbiologia , Animais , Antígenos CD36/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Ácidos Graxos/análise , PPAR gama/metabolismo , Ruminococcus
18.
J Ethnopharmacol ; 276: 114178, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33945857

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Si-Miao-Yong-An decoction (SMYAD) is a renowned traditional Chinese medicinal formula. SMYAD was originally recorded in the "Shi Shi Mi Lu", which was edited by medical scientist Chen Shi'duo during the Qing Dynasty. SMYAD has been traditionally used to treat thromboangiitis obliterans. At present, it is mainly used in clinical applications and research of cardiovascular diseases. AIM OF THE STUDY: To explore the effects of SMYAD on the pathological changes of atherosclerosis (AS) and the differentiation of monocytes, macrophages, and regulatory T (Treg) cells in apolipoprotein E knockout (ApoE-/-) mice. MATERIALS AND METHODS: Eight C57BL/6J mice, which were fed with normal diet for 16 weeks, were used as control group. Forty ApoE-/- mice were randomly divided into model group, atorvastatin group, SMYAD low-dose (SMYAD-LD) group, SMYAD medium-dose (SMYAD-MD) group, and SMYAD high-dose (SMYAD-HD) group. ApoE-/- mice were fed with western diet (WD) for 8 weeks, and the drugs were continuously administered for 8 weeks. The levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured by the esterase method. Morphological changes of the aortic sinus in mice were observed by hematoxylin-eosin (HE) staining, the lipid infiltration of the aorta and aortic sinus were observed by oil red O staining, and the spleen index was calculated. The proportion of Ly6Chigh and Ly6Clow monocyte subsets, macrophages, and their M1 phenotype, as well as Treg cells in spleen were measured by flow cytometry. The expressions of cluster of differentiation 36 (CD36), scavenger receptor A1 (SRA1), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), F4/80, and fork head frame protein 3 (FOXP3) in aortic sinus were assessed by immunohistochemical staining. The serum levels of oxidized low density lipoprotein (ox-LDL), interleukin-1ß (IL-1ß), IL-18, transforming growth factor-ß (TGF-ß), and IL-10 were measured by enzyme-linked immunosorbent assays (ELISA). RESULTS: Compared with the model group, the level of serum TC and LDL-C decreased in the SMYAD group, the pathological changes of aortic sinus decreased, and lipid infiltration of aorta and aortic sinus also decreased. These decreases were accompanied by a significant downregulation of CD36, SRA1, and LOX-1. Furthermore, the proportions of Ly6Chigh pro-inflammatory monocyte subsets, macrophages, and their M1 phenotypes in spleen decreased significantly, while the proportion of Treg cells increased. In addition, while the expression of F4/80 decreased, the expression of FOXP3 increased in the aorta sinus. The levels of serum pro-inflammatory factors IL-1ß and IL-18 decreased. CONCLUSIONS: SMYAD can improve the pathological changes associated with AS and can inhibit lipid deposition in ApoE-/- mice induced by WD diet. The likely mechanism is the inhibition of the differentiation and recruitment of monocytes and macrophages, the promotion of the differentiation and recruitment of Treg cells, as well as the reduction of the secretion of pro-inflammatory factors.


Assuntos
Apolipoproteínas E/genética , Diferenciação Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Aorta/metabolismo , Aorta/patologia , Antígenos CD36/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Citocinas/sangue , Medicamentos de Ervas Chinesas/uso terapêutico , Fatores de Transcrição Forkhead/metabolismo , Lipoproteínas LDL/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Depuradores Classe E/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Triglicerídeos/sangue
19.
Molecules ; 26(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807712

RESUMO

BACKGROUND: Tart cherries (Prunus cerasus L.) are a rich source of anthocyanins. They are phytochemical flavonoids found in red and blue fruits, and vegetables that can reduce hyperlipidemia. Visceral Adipose Tissue (VAT) has emerged as a major player in driving obesity-related inflammatory response. METHODS: This study has investigated the potential positive effects of tart cherries on rats with Diet-Induced Obesity (DIO). In particular, the inflammatory status in retroperitoneal (RPW) and perigonadal (PGW) adipose tissue were studied. Rats were fed ad libitum for 17 weeks with a hypercaloric diet with the supplementation of tart cherries seeds powder (DS) and seeds powder plus tart cherries juice containing 1mg of anthocyanins (DJS). In RPW and PGW, expression of CRP, IL-1 ß, TNF-α, CCL2 and CD36, were measured by qRT-PCR, Western blot and immunohistochemistry techniques. RESULTS: No differences in the weight of RPW and PGW animals were found between DS and DJS groups compared to DIO rats. However, an increase of inflammatory markers was observed in DIO group in comparison with control lean rats. A modulation of these markers was evident upon tart cherry supplementation. CONCLUSION: Study results suggest that tart cherry enriched-diet did not modify the accumulation of visceral fat, but it decreased inflammatory markers in both tissues. Therefore, this supplementation could be useful, in combination with healthy lifestyles, to modify adipose tissue cell metabolism limiting-obesity related organ damage.


Assuntos
Biomarcadores/metabolismo , Sucos de Frutas e Vegetais , Gordura Intra-Abdominal/metabolismo , Obesidade/dietoterapia , Prunus avium/química , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Regulação da Expressão Gênica , Gordura Intra-Abdominal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Obesidade/etiologia , Paniculite/dietoterapia , Paniculite/genética , Paniculite/metabolismo , Ratos Wistar , Sementes
20.
Cytokine ; 142: 155475, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667961

RESUMO

BACKGROUND: Progression of chronic inflammatory disease, atherosclerosis is a multifactorial process. Cluster of differentiation 36 (CD36) mediated downstream activation of Toll like receptor 2 (TLR2) and NLRP3 (Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome signaling pathway actively participates during chronic inflammation. Nowadays, synergistic combinations of bioactive compounds attained priority in the field of drug discovery and development as therapeutic agents. An investigation regarding the anti-inflammatory potential of a novel drug formulation, BASk which is a combination of three bioactive compounds Betulinic acid (B):Apigenin (A):Skimmianine (Sk) remains the focus area of this research study. We also elucidate the molecular mechanism behind the therapeutic potential of BASk through CD36 mediated activation TLR2-NLRP3 signaling pathway. METHODS: OxLDL induced hPBMCs used to screen out a suitable combination of BASk via MTT, COX, LOX, NOS and MPO assays. Hypercholesterolemia is induced in rabbits by supplementing with 1% cholesterol + 0.5% cholic acid and treated with BASk (2:2:1) (5 mg/Kg) and atorvastatin (10 mg/Kg) for 60 days. CD36, TLR2, NLRP3, NFκB, cytokines, endothelial damage were quantified by reverse transcription, real time PCR, ELISA, flow cytometry and histopathology. RESULTS: hPBMCs pretreated with BASk at 2:2:1 ratio significantly decreased the activities of COX, 15-LOX, NOS and MPO on OxLDL induction than quercetin. Down regulation of CD36, TLR2, MyD88, TRAF6 by BASk further buttressed NLRP3 inflammasome activation mediated by the transcription factor NFκB. This is in correlation with the effect of BASk by balancing pro (IL-1ß, IL-18) and anti-inflammatory (TGF-ß) mediators in the aortic endothelial cells. CONCLUSION: BASk exerted its anti-inflammatory potential by reducing pro-inflammatory mediators during cholesterol supplementation via down regulating CD36 mediated TLR2 - NLRP3 inflammasome cascade. This deciphers a synergistic combination named BASk (2:2:1) as a novel drug formulation against chronic inflammatory disease, atherosclerosis.


Assuntos
Apigenina/farmacologia , Antígenos CD36/metabolismo , Colesterol na Dieta/efeitos adversos , Dieta Hiperlipídica , Triterpenos Pentacíclicos/farmacologia , Quinolinas/farmacologia , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Araquidonato 15-Lipoxigenase/metabolismo , Aterosclerose/sangue , Biomarcadores/sangue , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipídeos/sangue , Masculino , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase/metabolismo , Peroxidase/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ácido Betulínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA