Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(3): e0259807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275912

RESUMO

Francisella tularensis is the etiologic agent of tularemia and a Tier I Select Agent. Subspecies tularensis (Type A) is the most virulent of the four subspecies and inhalation of as few as 10 cells can cause severe disease in humans. Due to its niche as a facultative intracellular pathogen, a successful tularemia vaccine must induce a robust cellular immune response, which is best achieved by a live, attenuated strain. F. tularensis strains lacking lipopolysaccharide (LPS) O-antigen are highly attenuated, but do not persist in the host long enough to induce protective immunity. Increasing the persistence of an O-antigen mutant may help stimulate protective immunity. Alginate encapsulation is frequently used with probiotics to increase persistence of bacteria within the gastrointestinal system, and was used to encapsulate the highly attenuated LVS O-antigen mutant WbtIG191V. Encapsulation with alginate followed by a poly-L-lysine/alginate coating increased survival of WbtIG191V in complement-active serum. In addition, BALB/c mice immunized intraperitoneally with encapsulated WbtIG191V combined with purified LPS survived longer than mock-immunized mice following intranasal challenge. Alginate encapsulation of the bacteria also increased antibody titers compared to non-encapsulated bacteria. These data suggest that alginate encapsulation provides a slow-release vehicle for bacterial deposits, as evidenced by the increased antibody titer and increased persistence in serum compared to freely suspended cells. Survival of mice against high-dose intranasal challenge with the LVS wildtype was similar between mice immunized within alginate capsules or with LVS, possibly due to the low number of animals used, but bacterial loads in the liver and spleen were the lowest in mice immunized with WbtIG191V and LPS in beads. However, an analysis of the immune response of surviving mice indicated that those vaccinated with the alginate vehicle upregulated cell-mediated immune pathways to a lesser extent than LVS-vaccinated mice. In summary, this vehicle, as formulated, may be more effective for pathogens that require predominately antibody-mediated immunity.


Assuntos
Francisella tularensis , Tularemia , Alginatos , Animais , Vacinas Bacterianas , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Antígenos O/genética , Tularemia/microbiologia , Vacinas Atenuadas
2.
Int J Antimicrob Agents ; 58(6): 106450, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34644604

RESUMO

Few studies have assessed the clinical and bacterial characteristics of Pseudomonas aeruginosa (PA) bacteraemic pneumonia (BP) episodes. This study analysed all non-duplicate PA-BP episodes from a tertiary hospital in 2013-2017. Epidemiology, clinical data, antimicrobial therapy and outcomes were recorded. Whole-genome sequencing was performed on PA blood isolates. The impact on early and late overall mortality of host, antimicrobial treatment and pathogen factors was assessed by multivariate logistic regression analysis. Of 55 PA-BP episodes, 32 (58.2%) were caused by extensively drug-resistant (XDR) PA. ST175 (32.7%) and ST235 (25.5%) were the most frequent high-risk clones. ß-Lactamases/carbapenemases were detected in 29 isolates, including blaVIM-2 (27.2%) and blaGES type (25.5%) [blaGES-5 (20.0%), blaGES-1 (3.6%) and blaGES-20 (1.8%)]. The most prevalent O-antigen serotypes were O4 (34.5%) and O11 (30.9%). Overall, an extensive virulome was identified in all isolates. Early mortality (56.4%) was independently associated with severe neutropenia (aOR = 4.64, 95% CI 1.11-19.33; P = 0.035) and inappropriate empirical antimicrobial therapy (aOR = 5.71, 95% CI 1.41-22.98; P = 0.014). Additionally, late mortality (67.3%) was influenced by septic shock (aOR = 8.85, 95% CI 2.00-39.16; P = 0.004) and XDR phenotype (aOR = 5.46, 95% CI 1.25-23.85; P = 0.024). Moreover, specific genetic backgrounds [ST235, blaGES, gyrA (T83I), parC (S87L), exoU and O11 serotype] showed significant differences in patient outcomes. Our results confirm the high mortality associated with PA-BP. Besides relevant clinical characteristics and inappropriate empirical therapy, bacteria-specific genetics factors, such as XDR phenotype, adversely affect the outcome of PA-BP.


Assuntos
Antibacterianos/uso terapêutico , Bacteriemia/mortalidade , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/mortalidade , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Genoma Bacteriano/genética , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular , Antígenos O/genética , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/mortalidade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Centros de Atenção Terciária , Sequenciamento Completo do Genoma , beta-Lactamases/genética
3.
Int J Biol Macromol ; 165(Pt B): 2197-2204, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33058985

RESUMO

A denitrifying bacterium Pseudomonas veronii A-6-5 was isolated from a deep aquifer contaminated with nitrates and uranium. The O-polysaccharide (OPS) was isolated by mild acid degradation of the lipopolysaccharide of P. veronii A-6-5 and studied using sugar analysis and 1D and 2D 1H and 13C NMR spectroscopy. The trisaccharide O-repeating unit was found to have the following structure: [Formula: see text] [Formula: see text] where Hb is 3-hydroxybutanoyl. The genome of P. veronii A-6-5 was sequenced and a respective OPS gene cluster was identified. Functions of the proteins encoded in the gene cluster, including the enzymes involved in the O-polysaccharide biosynthesis and glycosyl transferases, were putatively assigned by comparison with available database sequences. Formation of a new coordination bond between uranyl and the O-polysaccharide from P. veronii A-6-5 was demonstrated using FTIR spectroscopy; it may affect uranyl migration in the groundwaters due to its immobilization on microbial biofilms. Applied importance of this work is that the structure of the O-polysaccharide of a strain isolated from uranium-contaminated groundwater was determined and the character of interaction between the polysaccharide and the uranyl ion was established. The data obtained are of importance for development of the biotechnologies for treatment of uranium-contaminated groundwater and activated sludge.


Assuntos
Família Multigênica , Antígenos O/química , Antígenos O/genética , Pseudomonas/química , Urânio/isolamento & purificação , Biodegradação Ambiental , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Genoma Bacteriano , Conformação Molecular , Monossacarídeos/química , Espectroscopia de Prótons por Ressonância Magnética , Pseudomonas/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Urânio/química
4.
Sci Rep ; 10(1): 12414, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709982

RESUMO

The increase of antimicrobial resistance (AMR), and lack of new classes of licensed antimicrobials, have made alternative treatment options for AMR pathogens increasingly attractive. Recent studies have demonstrated anti-bacterial efficacy of a humanised monoclonal antibody (mAb) targeting the O25b O-antigen of Escherichia coli ST131. To evaluate the phenotypic effects of antibody binding to diverse clinical E. coli ST131 O25b bacterial isolates in high-throughput, we designed a novel mAb screening method using high-content imaging (HCI) and image-based morphological profiling to screen a mAb targeting the O25b O-antigen. Screening the antibody against a panel of 86 clinical E. coli ST131 O25:H4 isolates revealed 4 binding phenotypes: no binding (18.60%), weak binding (4.65%), strong binding (69.77%) and strong agglutinating binding (6.98%). Impaired antibody binding could be explained by the presence of insertion sequences or mutations in O-antigen or lipopolysaccharide core biosynthesis genes, affecting the amount, structure or chain length of the O-antigen. The agglutinating binding phenotype was linked with lower O-antigen density, enhanced antibody-mediated phagocytosis and increased serum susceptibly. This study highlights the need to screen candidate mAbs against large panels of clinically relevant isolates, and that HCI can be used to evaluate mAb binding affinity and potential functional efficacy against AMR bacteria.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Antibacterianos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/ultraestrutura , Infecções por Escherichia coli/microbiologia , Estudos de Viabilidade , Humanos , Sequências Repetitivas Dispersas/genética , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Antígenos O/genética , Antígenos O/imunologia , Filogenia , Polimorfismo de Nucleotídeo Único , Virulência/imunologia
5.
Int J Biol Macromol ; 154: 1375-1381, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730968

RESUMO

Lipopolysaccharide (LPS) of Ochrobactrum cytisi IPA7.2, a bacterium isolated from the roots of Solanum tuberosum L., was extracted from dry bacterial cells and chemically characterized. The O-specific polysaccharide was obtained by mild acid hydrolysis of the LPS and studied by sugar analysis and 1H and 13C NMR spectroscopy, including 1H,1H COSY, 1H,1H TOCSY, 1H,1H ROESY, 1H,13C HSQC, and 1H,13C HMBC experiments. The polysaccharide was linear and consisted of trisaccharide repeating units of the following structure: A putative O-antigen gene cluster of O. cytisi IPA7.2 was identified and found to be consistent with the O-specific polysaccharide structure. The LPS of Ochrobactrum cytisi IPA7.2 promoted the growth of potato microplants in vitro.


Assuntos
Família Multigênica/genética , Antígenos O/química , Antígenos O/genética , Ochrobactrum/química , Rizosfera , Sequência de Carboidratos , Antígenos O/farmacologia , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento
6.
Vaccine ; 25(33): 6167-75, 2007 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-17629369

RESUMO

Shigella dysenteriae serotype 1 (S. dysenteriae 1) causes severe shigellosis that is typically associated with high mortality. Antibodies against Shigella serotype-specific O-polysaccharide (O-Ps) have been shown to be host protective. In this study, the rfb locus and the rfp gene with their cognate promoter regions were PCR-amplified from S. dysenteriae 1, cloned, and sequenced. Deletion analysis showed that eight rfb ORFs plus rfp are necessary for biosynthesis of this O-Ps. A tandemly-linked rfb-rfp gene cassette was cloned into low copy plasmid pGB2 to create pSd1. Avirulent Salmonella enterica serovar Typhi (S. Typhi) Ty21a harboring pSd1 synthesized S. Typhi 9, 12 LPS as well as typical core-linked S. dysenteriae 1 LPS. Animal immunization studies showed that Ty21a (pSd1) induces protective immunity against high stringency challenge with virulent S. dysenteriae 1 strain 1617. These data further demonstrate the utility of S. Typhi Ty21a as a live, bacterial vaccine delivery system for heterologous O-antigens, supporting the promise of a bifunctional oral vaccine for prevention of shigellosis and typhoid fever.


Assuntos
Disenteria Bacilar/imunologia , Disenteria Bacilar/prevenção & controle , Antígenos O/imunologia , Salmonella typhi/genética , Vacinas contra Shigella/imunologia , Shigella dysenteriae/genética , Shigella dysenteriae/imunologia , Animais , Avaliação Pré-Clínica de Medicamentos , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Antígenos O/genética , Vacinas contra Shigella/genética , Fatores de Tempo
7.
J Bacteriol ; 182(19): 5317-24, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10986232

RESUMO

Judged by migration of its lipopolysaccharide (LPS) in gel electrophoresis, the O antigen of Rhizobium etli mutant strain CE166 was apparently of normal size. However, its LPS sugar composition and staining of the LPS bands after electrophoresis indicated that the proportion of its LPS molecules that possessed O antigen was only 40% of the wild-type value. Its LPS also differed from the wild type by lacking quinovosamine (2-amino-2,6-dideoxyglucose). Both of these defects were due to a single genetic locus carrying a Tn5 insertion. The deficiency in O-antigen amount, but not the absence of quinovosamine, was suppressed by transferring into this strain recombinant plasmids that shared a 7.8-kb stretch of the R. etli CE3 lps genetic region alpha, even though this suppressing DNA did not carry the genetic region mutated in strain CE166. Strain CE166 gave rise to pseudonodules on legume host Phaseolus vulgaris, whereas the mutant suppressed by DNA from lps region alpha elicited nitrogen-fixing nodules. However, the nodules in the latter case developed slowly and were widely dispersed. Two other R. etli mutants that had one-half or less of the normal amount of O antigen also gave rise to pseudonodules on P. vulgaris. The latter strains were mutated in lps region alpha and could be restored to normal LPS content and normal symbiosis by complementation with wild-type DNA from this region. Hence, the symbiotic role of LPS requires near-normal abundance of O antigen and may require a structural feature conferred by quinovosamine.


Assuntos
Fabaceae/microbiologia , Glucosamina/análogos & derivados , Lipopolissacarídeos , Antígenos O/genética , Plantas Medicinais , Rhizobium/fisiologia , Sequência de Carboidratos , Genes Bacterianos , Glucosamina/química , Glucosamina/genética , Glucosamina/fisiologia , Lipopolissacarídeos/química , Dados de Sequência Molecular , Antígenos O/química , Antígenos O/fisiologia , Fenótipo , Rhizobium/genética , Supressão Genética , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA