Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Vaccine ; 42(7): 1785-1792, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38365484

RESUMO

Plasmodium vivax malaria is increasingly recognized as a major global health problem and the socio-economic impact of P.vivax-induced burden is huge. Vaccine development against P. vivax malaria has been hampered by the lack of an in vitro culture system and poor access to P. vivax sporozoites. The recent generation of Plasmodium falciparum parasites that express a functional P. vivax AMA1 molecule has provided a platform for in vitro evaluation of PvAMA1 as a potential blood stage vaccine. Three so-called PvAMA1 Diversity Covering (DiCo) proteins were designed to assess their potential to induce a functional and broad humoral immune response to the polymorphic PvAMA1 molecule. Rabbits were immunized with the mixture of three, Pichia-produced, PvAMA1 DiCo proteins, as well as with 2 naturally occurring PvAMA1 alleles. For these three groups, the experimental adjuvant raffinose fatty acid sulfate ester (RFASE) was used, while in a fourth group the purified main mono-esterified constituent (RSL10) of this adjuvant was used. Animals immunized with the mixture of the three PvAMA1 DiCo proteins in RFASE showed high anti-PvAMA1 antibody titers against three naturally occurring PvAMA1variants while also high growth-inhibitory capacity was observed against P. falciparum parasites expressing PvAMA1. This supports further clinical development of the PvAMA1 DiCo mixture as a potential malaria vaccine. However, as the single allele PvAMA1 SalI-group showed similar characteristics in antibody titer and inhibition levels as the PvAMA1 DiCo mixture-group, this raises the question whether a mixture is really necessary to overcome the polymorphism in the vaccine candidate. RFASE induced strong humoral responses, as did the animals immunized with the purified component, RSL10. This suggests that RSL10 is the active ingredient. However, one of the RSL10-immunized animal showed a delayed response, necessitating further research into the clinical development of RSL10.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária Vivax , Parasitos , Animais , Coelhos , Proteínas de Protozoários/genética , Plasmodium vivax , Rafinose , Sulfatos , Proteínas de Membrana/genética , Antígenos de Protozoários/genética , Adjuvantes Imunológicos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Malária Vivax/prevenção & controle , Anticorpos Antiprotozoários
2.
Biol Trace Elem Res ; 202(1): 210-220, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37088826

RESUMO

In leishmaniasis, the protective immunity is largely mediated by proinflammatory cytokine producing abilities of T cells and an efficient parasite killing by phagocytic cells. Notwithstanding a substantial progress that has been made during last decades, the mechanisms or factors involved in establishing protective immunity against Leishmania are not identified. In ancient Indian literature, metallic "bhasma," particularly that of "swarna" or gold (fine gold particles), is indicated as one of the most prominent metal-based therapeutic medicine, which is known to impart protective and curative properties in various health issues. In this work, we elucidated the potential of swarna bhasma (SB) on the effector properties of phagocytes and antigen-activated CD4+ T cells in augmenting the immunogenicity of L. donovani antigens. The characterization of SB revealing its shape, size, composition, and measurement of cytotoxicity established the physiochemical potential for its utilization as an immunomodulator. The activation of macrophages with SB enhanced their capacity to produce nitric oxide and proinflammatory cytokines, which eventually resulted in reduced uptake of parasites and their proliferation in infected cells. Further, in Leishmania-infected animals, SB administration reduced the generation of IL-10, an anti-inflammatory cytokine, and enhanced pro-inflammatory cytokine generation by antigen activated CD4+ T cells with increased frequency of double (IFNγ+/TNFα+) and triple (IFNγ+TNFα+IL-2+) positive cells and abrogated disease pathogeneses at the early days of infection. Our results also suggested that cow-ghee (A2) emulsified preparation of SB, either alone or with yashtimadhu, a known natural immune modulator which enhances the SB's potential in enhancing the immunogenicity of parasitic antigens. These findings suggested a definite potential of SB in enhancing the effector functions of phagocytes and CD4+ T cells against L. donovani antigens. Therefore, more studies are needed to elucidate the mechanistic details of SB and its potential in enhancing vaccine-induced immunity.


Assuntos
Apresentação de Antígeno , Antígenos de Protozoários , Linfócitos T CD4-Positivos , Calotropis , Ouro , Látex , Leishmania donovani , Macrófagos , Ayurveda , Células Th1 , Arsênio , Combinação de Medicamentos , Ouro/administração & dosagem , Ouro/farmacologia , Látex/administração & dosagem , Látex/farmacologia , Chumbo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Linfócitos T CD4-Positivos/imunologia , Fagócitos/efeitos dos fármacos , Fagócitos/imunologia , Leishmaniose/imunologia , Leishmaniose/parasitologia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/imunologia , Antígenos de Protozoários/imunologia , Células Th1/imunologia , Animais , Camundongos , Células RAW 264.7 , Feminino , Camundongos Endogâmicos BALB C
3.
Exp Parasitol ; 244: 108427, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36379272

RESUMO

Toxoplasma gondii (T. gondii) causes considerable financial losses in the livestock industry and can present serious threats to pregnant women, as well as immunocompromised patients. Therefore, it is required to design and produce an efficient vaccine for controlling toxoplasmosis. The present study aimed to evaluate the protective immunity induced by RMS protein (ROP18, MIC4, and SAG1) with Freund adjuvant, calcium phosphate nanoparticles (CaPNs), and chitosan nanoparticles (CNs) in BALB/c mice. The RMS protein was expressed in Escherichia coli (E. coli) and purified using a HisTrap HP column. Thereafter, cellular and humoral immunity was assessed by injecting RMS protein on days 0, 21, and 35 into four groups [RMS, RMS-chitosan nanoparticles (RMS-CNs), RMS-calcium phosphate nanoparticles (RMS-CaPNs), and RMS-Freund]. Phosphate buffered saline (PBS), CNs, CaPNs, and Freund served as the four control groups. The results displayed that vaccination with RMS protein and adjuvants significantly elicited the levels of specific IgG antibodies and cytokines against toxoplasmosis. There were high levels of total IgG, IgG2a, and IFN-γ in vaccinated mice, compared to those in the control groups, especially in the RMS-Freund, indicating a Th-1 type response. The vaccinated and control mice were challenged intraperitoneally with 1 × 103 tachyzoites of the T. gondii RH strain four weeks after the last injection, and in RMS-Freund and RMS-CaPNs groups, the highest increase in survival time was observed (15 days). The RMS can significantly increase Th1 and Th2 responses; moreover, multi-epitope vaccines with adjuvants can be a promising strategy for the production of a vaccine against toxoplasmosis.


Assuntos
Quitosana , Vacinas Protozoárias , Toxoplasma , Toxoplasmose , Vacinas de DNA , Gravidez , Feminino , Animais , Camundongos , Humanos , Antígenos de Protozoários , Proteínas de Protozoários , Escherichia coli , Adjuvantes Imunológicos/farmacologia , Imunidade Humoral , Imunoglobulina G , Fosfatos de Cálcio , Camundongos Endogâmicos BALB C , Anticorpos Antiprotozoários
4.
Vaccine ; 40(1): 133-140, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34802791

RESUMO

BACKGROUND: Pvs48/45 is a Plasmodium vivax gametocyte surface protein involved in the parasite fertilization process. Previous studies showed that Pvs48/45 proteins expressed in Escherichia coli (E. coli) and Chinese hamster ovary (CHO) cells were highly immunoreactive with sera from malaria-endemic areas and highly immunogenic in animal models. Here the immunogenicity in mice of three different vaccine formulations was compared. METHODS: Recombinant (r) Pvs48/45 proteins were expressed in E. coli and CHO, purified, formulated in Alhydrogel, GLA-SE and Montanide ISA-51 adjuvants and used to immunize BALB/c mice. Animals were immunized on days 0, 20 and 40, and serum samples were collected for serological analyses of specific antibody responses using ELISA and immunofluorescence (IFAT). Additionally, ex-vivo transmission-reducing activity (TRA) of sera on P. vivax gametocyte-infected human blood fed to Anopheles albimanus in direct membrane feeding assays (DMFA) was evaluated. RESULTS: Most immunized animals seroconverted after the first immunization, and some developed antibody peaks of 106 with all adjuvants. However, the three adjuvant formulations induced different antibody responses and TRA efficacy. While GLA-SE formulations of both proteins induced similar antibody profiles, Montanide ISA-51 formulations resulted in higher and longer-lasting antibody titers with CHO-rPvs48/45 than with the E. coli formulation. Although the CHO protein formulated in Alhydrogel generated a high initial antibody peak, antibody responses to both proteins rapidly waned. Likewise, anti-Pvs48/45 antibodies displayed differential recognition of the parasite proteins in IFAT and ex vivo blockade of parasite transmission to mosquitoes. The CHO-rPvs48/45 formulated in Montanide ISA-51 induced the most effective ex vivo parasite blockage. CONCLUSIONS: Three out of six vaccine formulations elicited antibodies with ex vivo TRA. The CHO-rPvs48/45 Montanide ISA-51 formulation induced the most stable antibody response, recognizing the native protein and the most robust ex vivo TRA. These results encourage further testing of the vaccine potential of this protein.


Assuntos
Vacinas Antimaláricas , Malária Vivax , Adjuvantes Imunológicos , Animais , Anticorpos Antiprotozoários , Antígenos de Protozoários , Células CHO , Cricetinae , Cricetulus , Escherichia coli , Camundongos , Camundongos Endogâmicos BALB C , Óleo Mineral , Plasmodium vivax , Proteínas de Protozoários
5.
Electrophoresis ; 43(3): 509-515, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34679212

RESUMO

Rhoptry neck protein 2 (RON2) binds to the hydrophobic groove of apical membrane antigen 1 (AMA1), an interaction essential for invasion of red blood cells (RBCs) by Plasmodium falciparum (Pf) parasites. Vaccination with AMA1 alone has been shown to be immunogenic, but unprotective even against homologous challenge in human trials. However, the AMA1-RON2L (L is referred to as the loop region of RON2 peptide) complex is a promising candidate, as preclinical studies with Freund's adjuvant have indicated complete protection against lethal challenge in mice and superior protection against virulent infection in Aotus monkeys. To prepare for clinical trials of the AMA1-RON2L complex, identity and integrity of the candidate vaccine must be assessed, and characterization methods must be carefully designed to not dissociate the delicate complex during evaluation. In this study, we developed a native Tris-glycine gel method to separate and identify the AMA1-RON2L complex, which was further identified and confirmed by Western blotting using anti-AMA1 monoclonal antibodies (mAbs 4G2 and 2C2) and anti-RON2L polyclonal Ab coupled with mass spectrometry. The formation of complex was also confirmed by Capillary Isoelectric Focusing (cIEF). A short-term (48 h and 72 h at 4°C) stability study of AMA1-RON2L complex was also performed. The results indicate that the complex was stable for 72 h at 4°C. Our research demonstrates that the native Tris-glycine gel separation/Western blotting coupled with mass spectrometry and cIEF can fully characterize the identity and integrity of the AMA1-RON2L complex and provide useful quality control data for the subsequent clinical trials.


Assuntos
Antígenos de Protozoários , Vacinas Antimaláricas , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Glicina , Focalização Isoelétrica , Vacinas Antimaláricas/química , Proteínas de Membrana/química , Camundongos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
6.
PLoS One ; 16(7): e0253544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34283841

RESUMO

BACKGROUND: Iron fortification and micronutrient initiatives, specifically, vitamin A, and zinc supplementation are the most cost-effective developmental strategies against malnutrition and health emergencies in pre-school children. Iron-deficiency among pre-school children have been documented, however, studies evaluating the impact of immunoglobulin G (IgG) isotype responses among iron-fortified pre-school children in malaria endemic communities has not been assessed. We evaluated the impact of iron fortification on the IgG responses to GLURP R0, GLURP R2 and MSP3 FVO malaria-specific antigens among pre-school children in malaria endemic areas. METHODS: This community-based, placebo-controlled, double-blinded, cluster-randomized trial study was conducted in Wenchi Municipal and Tain District of Bono Region. The trial was registered at ClinicalTrials.gov-registered trial (Identifier: NCT01001871). Ethical approval was obtained and informed consent were sought from each participant parents/guardian. For the current objective, 871 children aged 6-35 months were screened, from which 435 children received semi-liquid home-made meals mixed with 12.5 mg of iron daily (intervention group), and 436 received micronutrient powder without iron (placebo group) for 5 months. Standardized clinical and epidemiological questionnaires were administered and blood samples taken to measure IgG responses to GLURP R0, GLURP R2 and MSP3 FVO recombinant antigens using the Afro Immunoassay (AIA) protocol. RESULTS: Baseline anthropometry, malaria diagnosis, anaemia and iron status, demographic features and dietary intake were identical among the groups (p > 0.05). After the intervention, there was no significant difference in the IgG response against GLUP R0, GLUP R2 and MSP3 FVO between the iron-containing micronutrient and placebo groups (p > 0.05). The iron-containing micronutrient powder group who were iron-sufficient or iron replete had significantly higher IgG response to GLURP R0 and GLURP R2 compared to iron-deficient and iron-deficiency anaemia in the same group (p < 0.05). The IgG responses to all the three malaria specific antigens were low among children without malaria episode but high among those with two and four episodes due to exposure differences. CONCLUSION: Iron fortification did not influence antibody response against endogenous malaria specific antigens among pre-school children in malaria endemic areas, however, IgG response to malaria specific antigens were high among children with sufficient iron status.


Assuntos
Antígenos de Protozoários/imunologia , Suplementos Nutricionais , Imunoglobulina G/imunologia , Ferro/uso terapêutico , Malária/imunologia , Pré-Escolar , Método Duplo-Cego , Feminino , Gana/epidemiologia , Humanos , Lactente , Masculino , Proteínas de Protozoários/imunologia
7.
Front Cell Infect Microbiol ; 11: 787635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976863

RESUMO

Toxoplasma gondii infects almost all warm-blooded animals, including humans. DNA vaccines are an effective strategy against T. gondii infection, but these vaccines have often been poorly immunogenic due to the poor distribution of plasmids or degradation by lysosomes. It is necessary to evaluate the antigen delivery system for optimal vaccination strategy. Nanoparticles (NPs) have been shown to modulate and enhance the cellular humoral immune response. Here, we studied the immunological properties of calcium phosphate nanoparticles (CaPNs) as nanoadjuvants to enhance the protective effect of T. gondii dense granule protein (GRA7). BALB/c mice were injected three times and then challenged with T. gondii RH strain tachyzoites. Mice vaccinated with GRA7-pEGFP-C2+nano-adjuvant (CaPNs) showed a strong cellular immune response, as monitored by elevated levels of anti-T. gondii-specific immunoglobulin G (IgG), a higher IgG2a-to-IgG1 ratio, elevated interleukin (IL)-12 and interferon (IFN)-γ production, and low IL-4 levels. We found that a significantly higher level of splenocyte proliferation was induced by GRA7-pEGFP-C2+nano-adjuvant (CaPNs) immunization, and a significantly prolonged survival time and decreased parasite burden were observed in vaccine-immunized mice. These data indicated that CaPN-based immunization with T. gondii GRA7 is a promising approach to improve vaccination.


Assuntos
Nanopartículas , Vacinas Protozoárias , Toxoplasma , Vacinas de DNA , Animais , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Fosfatos de Cálcio , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Toxoplasma/genética
8.
Curr Drug Deliv ; 17(9): 806-814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735519

RESUMO

AIM: This study aimed to investigate the existence of phospholipase-A (PLA) activity in Soluble L. major Antigens (SLA) because of no reports for it so far. Liposomes were used as sensors to evaluate PLA activity. OBJECTIVES: Liposomal SLA consisting of Egg Phosphatidylcholine (EPC) or Sphingomyelin (SM) were prepared by two different methods in different pH or temperatures and characterized by Dynamic Light Scattering (DLS) and Thin Layer Chromatography (TLC). METHODS: Lipid hydrolysis led to the disruption of EPC liposomal SLA in both methods but the Film Method (FM) produced more stable liposomes than the Detergent Removal Method (DRM). RESULT: The preparation of EPC liposomal SLA at pH 6 via FM protected liposomes from hydrolysis to some extent for a short time. EPC liposomes but not SM liposomes were disrupted in the presence of SLA. CONCLUSION: Therefore, a phospholipid without ester bond such as SM should be utilized in liposome formulations containing PLA as an encapsulating protein.


Assuntos
Leishmania major/enzimologia , Vacinas contra Leishmaniose/química , Leishmaniose Cutânea/prevenção & controle , Fosfolipases A/metabolismo , Proteínas de Protozoários/química , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/metabolismo , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Ensaios Enzimáticos , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Leishmania major/imunologia , Vacinas contra Leishmaniose/administração & dosagem , Vacinas contra Leishmaniose/metabolismo , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Lipossomos/química , Lipossomos/metabolismo , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/metabolismo , Fosfolipases A/isolamento & purificação , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/metabolismo , Esfingomielinas/administração & dosagem , Esfingomielinas/metabolismo
9.
Parasit Vectors ; 13(1): 363, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690108

RESUMO

BACKGROUND: The fucose-mannose ligand (FML) of Leishmania infantum is a complex glycoprotein which does not elicit adequate immunogenicity in humans. In recent years, adjuvant compounds derived from plants have been used for improving the immunogenicity of vaccines. Glycyrrhizin (GL) is a natural triterpenoid saponin that has known immunomodulatory activities. In the present study, we investigated the effects of co-treatment with FML and GL on the production of cytokines and nitric oxide (NO) by macrophages, in vitro. METHODS: Lipopolysaccharide (LPS) stimulated murine peritoneal macrophages were treated with FML (5 µg/ml) of L. infantum and various concentrations of GL (1 µg/ml, 10 µg/ml and 20 µg/ml). After 48 h of treatment, cell culture supernatants were recovered and the levels of TNF-α, IL-10, IL-12p70 and IP-10 were measured by sandwich ELISA and NO concentration by Griess reaction. RESULTS: Our results indicate that the treatment of activated macrophages with FML plus GL leads to enhanced production of NO, TNF-α and IL-12p70, and reduction of IL-10 levels in comparison with FML treatment alone. CONCLUSIONS: Therefore, we concluded that GL can improve the immunostimulatory effect of FML on macrophages and leads to their polarization towards an M1-like phenotype.


Assuntos
Citocinas/metabolismo , Ácido Glicirrízico/farmacologia , Lectinas/farmacologia , Leishmania infantum/metabolismo , Óxido Nítrico/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos de Protozoários/imunologia , Combinação de Medicamentos , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Lectinas/metabolismo , Vacinas contra Leishmaniose/química , Leishmaniose Visceral/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C/imunologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Mol Immunol ; 124: 161-171, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32585510

RESUMO

Leishmania infantum pyridoxal kinase (PK) protein was characterized after an immunoproteomics screening performed with the sera from patients suffering visceral leishmaniasis (VL). Since it was recognized by sera of mammalian hosts infected by a viscerotropic Leishmania species, PK could emerge as a new vaccine candidate against disease, due to its antigenicity and immunogenicity. In this context, in the present study, the effects of the immunization using PK were evaluated when administered as a DNA plasmid (pDNAA3/PK) or recombinant protein (rPK) plus saponin. The immune response elicited by both vaccination regimens reduced in significant levels the parasite load in spleen, liver, draining lymph nodes and bone marrow, being associated with the development of Th1-type immune response, which was characterized by high levels of IFN-γ, IL-12, GM-CSF, and specific IgG2a antibody, besides low production of IL-4, IL-10, and protein and parasite-specific IgG1 antibodies. CD8+ T cells were more important in the IFN-γ production in the pDNAA3/PK group, while CD4+ T cells contributed more significantly to production of this cytokine in the rPK/Saponin group. In addition, increased IFN-γ secretion, along with low levels of IL-10, were found when PBMCs from VL patients after treatment and healthy individuals were stimulated with the protein. In conclusion, when administered either as a DNA plasmid or recombinant protein plus adjuvant, PK can direct the immune response towards a Th1-type immune profile, protecting mice against L. infantum challenge; therefore, it can be seen as a promising immunogen against human VL.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/imunologia , Piridoxal Quinase/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Humanos , Leishmania infantum/imunologia , Camundongos , Proteínas Recombinantes/imunologia , Vacinas de DNA/imunologia
11.
Vaccine ; 38(29): 4584-4591, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32417142

RESUMO

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi is one of the most important neglected parasitic diseases in the Americas. Vaccines represent an attractive complementary strategy for the control of T. cruzi infection and pre-clinical studies in mice demonstrated that trypomastigote surface antigen (TSA-1) and the flagellar calcium-binding (Tc24) parasite antigens are promising candidates for vaccine development. We performed here the first evaluation of the safety and immunogenicity of two recombinant vaccine antigens (named TSA1-C4 and Tc24-C4) in naïve non-human primates. Three rhesus macaques received 3 doses of each recombinant protein, formulated with E6020 (Eisai Co., Ltd.), a novel Toll-like receptor-4 agonist, in a stable emulsion. All parameters from blood chemistry and blood cell counts were stable over the course of the study and unaffected by the vaccine. A specific IgG response against both antigens was detectable after the first vaccine dose, and increased with the second dose. After three vaccine doses, stimulation of PBMCs with a peptide pool derived from TSA1-C4 resulted in the induction of TSA1-C4-specific TNFα-, IL-2- and IFNγ-producing CD4+ in one or two animals while stimulation with a peptide pool derived from Tc24-C4 only activated IFNγ-producing CD4+T cells in one animal. In two animals there was also activation of TSA1-C4-specific IL2-producing CD8+ T cells. This is the first report of the immunogenicity of T. cruzi-derived recombinant antigens formulated as an emulsion with a TLR4 agonist in a non-human primate model. Our results strongly support the need for further evaluation of the preventive efficacy of this type of vaccine in non-human primates and explore the effect of the vaccine in a therapeutic model of naturally-infected Chagasic non-human primates, which would strengthen the rationale for the clinical development as a human vaccine against Chagas disease.


Assuntos
Doença de Chagas , Vacinas Protozoárias , Trypanosoma cruzi , Animais , Antígenos de Protozoários , Linfócitos T CD8-Positivos , Doença de Chagas/prevenção & controle , Macaca mulatta , Camundongos , Vacinas Sintéticas
12.
Malar J ; 19(1): 12, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31918718

RESUMO

BACKGROUND: Malaria diagnostics by rapid diagnostic test (RDT) relies primarily on the qualitative detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and Plasmodium spp lactate dehydrogenase (pLDH). As novel RDTs with increased sensitivity are being developed and implemented as point of care diagnostics, highly sensitive laboratory-based assays are needed for evaluating RDT performance. Here, a quantitative suspension array technology (qSAT) was developed, validated and applied for the simultaneous detection of PfHRP2 and pLDH in a variety of biological samples (whole blood, plasma and dried blood spots) from individuals living in different endemic countries. RESULTS: The qSAT was specific for the target antigens, with analytical ranges of 6.8 to 762.8 pg/ml for PfHRP2 and 78.1 to 17076.6 pg/ml for P. falciparum LDH (Pf-LDH). The assay detected Plasmodium vivax LDH (Pv-LDH) at a lower sensitivity than Pf-LDH (analytical range of 1093.20 to 187288.5 pg/ml). Both PfHRP2 and pLDH levels determined using the qSAT showed to positively correlate with parasite densities determined by quantitative PCR (Spearman r = 0.59 and 0.75, respectively) as well as microscopy (Spearman r = 0.40 and 0.75, respectively), suggesting the assay to be a good predictor of parasite density. CONCLUSION: This immunoassay can be used as a reference test for the detection and quantification of PfHRP2 and pLDH, and could serve for external validation of RDT performance, to determine antigen persistence after parasite clearance, as well as a complementary tool to assess malaria burden in endemic settings.


Assuntos
Antígenos de Protozoários/sangue , L-Lactato Desidrogenase/sangue , Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Proteínas de Protozoários/sangue , Adolescente , Adulto , África , Animais , Biotina , Calibragem , Criança , Estudos Transversais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Malária Falciparum/sangue , Malária Vivax/sangue , Camundongos , Microesferas , Parasitemia/sangue , Parasitemia/diagnóstico , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , América do Sul , Espanha , Adulto Jovem
13.
Acta sci., Health sci ; 42: e51437, 2020.
Artigo em Inglês | LILACS | ID: biblio-1372266

RESUMO

Concerning the specificities of a longitudinal study, the trajectories of a subject's mean responses not always present a linear behavior, which calls for tools that take into account the non-linearity of individual trajectories and that describe them towards associating possible random effects with each individual. Generalized additive mixed models (GAMMs) have come to solve this problem, since, in this class of models, it is possible to assign specific random effects to individuals, in addition to rewriting the linear term by summing unknown smooth functions, not parametrically specified, then using the P-splines smoothing technique. Thus, this article aims to introduce this methodology applied to a dataset referring to an experiment involving 57 Swiss mice infected by Trypanosoma cruzi, which had their weights monitored for 12 weeks. The analyses showed significant differences in the weight trajectory of the individuals by treatment group; besides, the assumptions required to validate the model were met. Therefore, it is possible to conclude that this methodology is satisfactory in modeling data of longitudinal sort, because, with this approach, in addition to the possibility of including fixed and random effects, these models allow adding complex correlation structures to residuals.


Assuntos
Animais , Masculino , Camundongos , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/parasitologia , Bioterápicos/antagonistas & inibidores , Soro/imunologia , Soro/parasitologia , Trajetória do Peso do Corpo , Pesos e Medidas Corporais , Anticorpos Antiprotozoários/imunologia , Galinhas , Doença de Chagas/tratamento farmacológico , Ensaio Clínico Controlado Aleatório Veterinário , Camundongos , Antígenos de Protozoários/imunologia
14.
Microb Pathog ; 134: 103601, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31212035

RESUMO

Toxoplasma gondii, the etiological agent of toxoplasmosis, can cause severe or lethal damages in both animals and man. So, tends to develop a more effective vaccine to prevent this disease is extremely needed and would be so prominent. The novel dense granule antigen 14 (GRA14) has been identified as a potential vaccine candidate against T. gondii infection. The aim of this study was evaluation of protective immunity induced by prime/boost vaccination strategy of GRA14 antigen with calcium phosphate (CaPNs) or Aluminum hydroxide (Alum) nano-adjuvants in BALB/c mice. The finding showed that immunization with the prime-boost strategy using plasmid DNA (pcGRA14) and recombinant protein (rGRA14) with nano-adjuvants significantly elicited levels of specific IgG antibodies and cytokines against T. gondii infection. Given that, there were the high levels of total IgG, IgG2a, IFN-γ in mice of rGRA14-CaPNs and pcGRA14 + rGRA14-CaPNs groups, which indicating a Th-1 type response. While immunization of mice with Alum based rGRA14 and pcGRA14 + rGRA14 elicited specific IgG1 and IL-4 levels, which was confirmed a Th-2 type response. Mice immunized with DNA prime-protein boost vaccine with nano-adjuvants produce more vigorous specific lymphoproliferative responses than mice immunized with other antigen formulations. In addition, the CaPNs-based prime-boost vaccine of pcGRA14 + rGRA14 showed the longest survival time in mice and the lowest parasitic load in their brain tissue compared to the other groups. The results obtained in this study show that the use of GRA14 based DNA prime-protein boost vaccination regime with CaPNs can dramatically enhanced both humoral and cellular immune responses. Therefore, this strategy can provide a promising approach to the development of an effective vaccine against T. gondii infection in the future.


Assuntos
Antígenos de Protozoários/imunologia , Imunização Secundária/métodos , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Proteínas Recombinantes/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/prevenção & controle , Vacinação , Adjuvantes Imunológicos , Hidróxido de Alumínio , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Fosfatos de Cálcio , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunoglobulina G/sangue , Interferon gama/sangue , Interleucina-4/sangue , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Carga Parasitária , Proteínas de Protozoários/genética , Vacinas Protozoárias/genética , Toxoplasma/genética , Toxoplasmose Animal/imunologia , Vacinas de DNA/imunologia
15.
Vaccine ; 37(28): 3660-3667, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31133469

RESUMO

Mucosal, but not peripheral, vaccination with whole Leishmania amazonensis antigen (LaAg) effectively protects mice against leishmaniasis, likely through a tolerogenic mechanism. Given the crucial role of retinoic acid (RA) in CD4+ Foxp3+ regulatory T cell (Treg) differentiation and mucosal tolerance, here we evaluated the capacity of RA to improve intranasal (i.n.) vaccination with LaAg. To prevent degradation and possible mucosa irritation, RA was encapsulated in solid lipid nanoparticles (RA-SLN). Thus, BALB/c mice were given two i.n. doses of LaAg alone or in association with RA-SLN (LaAg/RA-SLN) prior to challenge with L. amazonensis. No histological sign of irritation or inflammation was produced in the nasal mucosa after RA-SLN administration. LaAg/RA-SLN vaccine was more effective in delaying lesion growth and reducing parasite burdens than LaAg alone (96% and 61% reduction, respectively). At two months after challenge, both vaccinated groups displayed similar T helper (Th) 1-skewed in situ cytokine responses, different from early infection where both Th1 and Th2 responses were suppressed, except for transforming growth factor (TGF)-ß mRNA, that was higher in mice given RA-SLN. At the mucosa, RA-SLN promoted enhanced expression of interleukin (IL)-10 and CD4+ Foxp3+ Treg population. In sum, these data show that RA-SLN is an effective and safe tolerogenic adjuvant for i.n. vaccination against leishmaniasis.


Assuntos
Adjuvantes Imunológicos/química , Leishmaniose Cutânea/imunologia , Nanopartículas/química , Vacinas Protozoárias/química , Vacinas Protozoárias/imunologia , Tretinoína/química , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal/métodos , Animais , Antígenos de Protozoários/imunologia , Citocinas/imunologia , Feminino , Leishmania/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células Th1/imunologia , Células Th2/imunologia , Vacinação/métodos
16.
EBioMedicine ; 42: 145-156, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30885725

RESUMO

BACKGROUND: VAR2CSA is the lead antigen for developing a vaccine that would protect pregnant women against placental malaria. A multi-system feasibility study has identified E. coli as a suitable bacterial expression platform allowing the production of recombinant VAR2CSA-DBL1x-2x (PRIMVAC) to envisage a prompt transition to current Good Manufacturing Practice (cGMP) vaccine production. METHODS: Extensive process developments were undertaken to produce cGMP grade PRIMVAC to permit early phase clinical trials. PRIMVAC stability upon storage was assessed over up to 3 years. A broad toxicology investigation was carried out in rats allowing meanwhile the analysis of PRIMVAC immunogenicity. FINDINGS: We describe the successful cGMP production of 4. 65 g of PRIMVAC. PRIMVAC drug product was stable and potent for up to 3 years upon storage at -20 °C and showed an absence of toxicity in rats. PRIMVAC adjuvanted with Alhydrogel® or GLA-SE was able to generate antibodies able to recognize VAR2CSA expressed at the surface of erythrocytes infected with different strains. These antibodies also inhibit the interaction of the homologous NF54-CSA strain and to a lower extend of heterologous strains to CSA. INTERPRETATION: This work paved the way for the clinical development of an easily scalable low cost effective vaccine that could protect against placental malaria and prevent an estimated 10,000 maternal and 200,000 infant deaths annually. FUND: This work was supported by a grant from the Bundesministerium für Bildung und Forschung (BMBF), Germany through Kreditanstalt für Wiederaufbau (KfW) (Reference No: 202060457) and through funding from Irish Aid, Department of Foreign Affairs and Trade, Ireland.


Assuntos
Imunogenicidade da Vacina , Vacinas Antimaláricas/imunologia , Malária/imunologia , Malária/prevenção & controle , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Biomarcadores , Reações Cruzadas/imunologia , Avaliação Pré-Clínica de Medicamentos , Eritrócitos/imunologia , Feminino , Imunização , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/normas , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Masculino , Camundongos
17.
Protein Expr Purif ; 153: 7-17, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30081196

RESUMO

A transmission-blocking vaccine targeting the sexual stages of Plasmodium species could play a key role in eradicating malaria. Multiple studies have identified the P. falciparum proteins Pfs25 and Pfs48/45 as prime targets for transmission-blocking vaccines. Although significant advances have been made in recombinant expression of these antigens, they remain difficult to produce at large scale and lack strong immunogenicity as subunit antigens. We linked a self-assembling protein, granule lattice protein 1 (Grl1p), from the ciliated protozoan, Tetrahymena thermophila, to regions of the ectodomains of either Pfs25 or Pfs48/45. We found that resulting protein chimera could be produced in E. coli as nanoparticles that could be readily purified in soluble form. When produced in the E. coli SHuffle strain, fusion to Grl1p dramatically increased solubility of target antigens while at the same time directing the formation of particles with diameters centering on 38 and 25 nm depending on the antigen. In a number of instances, co-expression with chaperone proteins and induction at a lower temperature further increased expression and solubility. Based on Western blotting and ELISA analysis, Pfs25 and Pfs48/45 retained their transmission-blocking epitopes within E. coli-derived particles, and the particles themselves elicited strong antibody responses in rabbits when given with an aluminum-based adjuvant. Antibodies against Pfs25-containing nanoparticles blocked parasite transmission in standard membrane-feeding assays. In conclusion, fusion to Grl1p can act as a solubility enhancer for proteins with limited solubility while retaining correct folding, which may be useful for applications such as the production of vaccines and other biologics.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Proteínas de Ligação ao Cálcio/genética , Vacinas Antimaláricas/genética , Malária Falciparum/prevenção & controle , Glicoproteínas de Membrana/genética , Plasmodium falciparum/química , Proteínas de Protozoários/genética , Tetrahymena thermophila/química , Animais , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Bioensaio , Proteínas de Ligação ao Cálcio/administração & dosagem , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/imunologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Imunogenicidade da Vacina , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Glicoproteínas de Membrana/administração & dosagem , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/imunologia , Mosquitos Vetores/parasitologia , Nanopartículas , Plasmodium falciparum/imunologia , Dobramento de Proteína , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Coelhos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Solubilidade , Tetrahymena thermophila/imunologia
18.
J Eukaryot Microbiol ; 65(6): 934-939, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29722096

RESUMO

The 14th International Workshops on Opportunistic Protists (IWOP-14) was held August 10-12, 2017 in Cincinnati, OH, USA. The IWOP meetings focus on opportunistic protists (OIs); for example, free-living amoebae, Pneumocystis spp., Cryptosporidium spp., Toxoplasma, the Microsporidia, and kinetoplastid flagellates. The highlights of Pneumocystis spp. research included the reports of primary homothallism for mating; a potential requirement for sexual replication in its life cycle; a new antigen on the surface of small asci; roles for CLRs, Dectin-1, and Mincle in host responses; and identification of MSG families and mechanisms used for surface variation. Studies of Cryptosporidia spp. included comparative genomics, a new cryopreservation method; the role of mucin in attachment and invasion, and epidemiological surveys illustrating species diversity in animals. One of the five identified proteins in the polar tube of Microsporidia, PTP4, was shown to play a role in host infection. Zebrafish were used as a low cost vertebrate animal model for an evaluation of potential anti-toxoplasma drugs. Folk medicine compounds with anti-toxoplasma activity were presented, and reports on the chronic toxoplasma infection provided evidence for increased tractability for the study of this difficult life cycle stage. Escape from the parasitophorus vacuole and cell cycle regulation were the topics of the study in the acute phase.


Assuntos
Eucariotos , Infecções Oportunistas/parasitologia , Animais , Antígenos de Protozoários , Congressos como Assunto , Cryptosporidium , Modelos Animais de Doenças , Eucariotos/patogenicidade , Humanos , Kinetoplastida , Lectinas Tipo C/metabolismo , Estágios do Ciclo de Vida , Microsporídios , Mucinas/metabolismo , Ohio , Infecções Oportunistas/tratamento farmacológico , Infecções Oportunistas/epidemiologia , Infecções Oportunistas/imunologia , Pneumocystis , Toxoplasma/patogenicidade , Toxoplasmose/tratamento farmacológico , Peixe-Zebra
19.
Emerg Infect Dis ; 24(3): 462-470, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29460730

RESUMO

False-negative results for Plasmodium falciparum histidine-rich protein (HRP) 2-based rapid diagnostic tests (RDTs) are increasing in Eritrea. We investigated HRP gene 2/3 (pfhrp2/pfhrp3) status in 50 infected patients at 2 hospitals. We showed that 80.8% (21/26) of patients at Ghindae Hospital and 41.7% (10/24) at Massawa Hospital were infected with pfhrp2-negative parasites and 92.3% (24/26) of patients at Ghindae Hospital and 70.8% (17/24) at Massawa Hospital were infected with pfhrp3-negative parasites. Parasite densities between pfhrp2-positive and pfhrp2-negative patients were comparable. All pfhrp2-negative samples had no detectable HRP2/3 antigen and showed negative results for HRP2-based RDTs. pfhrp2-negative parasites were genetically less diverse and formed 2 clusters with no close relationships to parasites from Peru. These parasites probably emerged independently by selection in Eritrea. High prevalence of pfhrp2-negative parasites caused a high rate of false-negative results for RDTs. Determining prevalence of pfhrp2-negative parasites is urgently needed in neighboring countries to assist case management policies.


Assuntos
Antígenos de Protozoários/genética , Deleção de Genes , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Idoso , Criança , Eritreia/epidemiologia , Variação Genética , Genótipo , Geografia , Humanos , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Repetições de Microssatélites , Pessoa de Meia-Idade , Programas Nacionais de Saúde , Vigilância da População , Adulto Jovem
20.
J Biomed Mater Res B Appl Biomater ; 106(4): 1587-1594, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28804955

RESUMO

It is believed that an effective vaccine against leishmaniasis will require a T helper type 1 (TH 1) immune response. In this study, we investigated the adjuvanticity of the Toll-like receptor (TLR) 7/8 agonist 3M-052 in combination with the Leishmania donovani 36-kDa nucleoside hydrolase recombinant protein antigen (NH36). NH36 and 3M-052 were encapsulated in separate batches of poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs). The loading efficiency for NH36 was 83% and for 3M-052 was above 95%. In vitro stimulation of bone marrow-derived dendritic cells, measured by IL-12 secretion, demonstrated that 3M-052 (free or MP-formulated) had a concentration-dependent immunostimulatory effect with an optimum concentration of 2 µg/mL. In immunogenicity studies in BALB/c mice, MP-formulated NH36 and 3M-052 elicited the highest serum titers of TH 1-associated IgG2a and IgG2b antibodies and the highest frequency of IFNγ-producing splenocytes. No dose dependency was observed among MP/NH36/3M-052 groups over a dose range of 4-60 µg 3M-052 per injection. The ability of MP-formulated NH36 and 3M-052 to elicit a TH 1-biased immune response indicates the potential for PLGA MP-formulated 3M-052 to be used as an adjuvant for leishmaniasis vaccines. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1587-1594, 2018.


Assuntos
Antígenos de Protozoários , Compostos Heterocíclicos com 3 Anéis , Leishmania donovani/imunologia , Vacinas contra Leishmaniose , Leishmaniose Visceral , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas de Protozoários , Ácidos Esteáricos , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/farmacologia , Relação Dose-Resposta Imunológica , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Imunogenicidade da Vacina , Vacinas contra Leishmaniose/química , Vacinas contra Leishmaniose/farmacologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/patologia , Leishmaniose Visceral/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Molibdoferredoxina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Proteínas de Protozoários/química , Proteínas de Protozoários/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Ácidos Esteáricos/química , Ácidos Esteáricos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA