Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.220
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Microb Pathog ; 190: 106635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579934

RESUMO

The plant Erythrina indica comes under Fabaceae family, mainly used for used in traditional medicine as nervine sedative, antiepileptic, antiasthmatic, collyrium in opthalmia, antiseptic. Current study focused synthesize of silver nanoparticles (AgNPs) by E. indica leaf ethanol extract. The green-synthesized AgNPs underwent characterization using multiple analytical techniques, including UV-visible, FTIR, DLS, SEM, TEM, XRD, and EDX, and estimation of their antioxidant activity and antimicrobial activity. Phytochemical analysis identified alkaloids, tannins, saponins, flavonoids, and phenols as secondary metabolites. The Total Phenol Content (TPC) was determined to be 237.35 ± 2.02 mg GAE-1, indicating a substantial presence of phenolic compounds. The presence of AgNPs was verified through UV-Visible analysis at 420 nm, and FT-IR revealed characteristic phenolic functional groups. DLS analysis indicated a narrow size distribution (polydispersity index - PDI: 3.47%), with SEM revealing spherical AgNPs of approximately 20 nm. TEM showed homogeneous, highly polycrystalline AgNPs with lattice spacing at 0.297. XRD analysis demonstrated crystallinity and purity, with distinct reflection peaks corresponding to miller indices of JCPDS card no. 01 087 1473. In vitro, AgNPs exhibited robust antioxidant activity like; DPPH, ABTS, and H2O2, surpassing E. indica-assisted synthesis. ABTS assay indicated higher antioxidant activity (81.94 ± 0.05%) for AgNPs at 734 nm, while E. indica extraction showed 39.67 ± 0.07%. At 532 nm, both E. indica extraction (57.71 ± 0.11%) and AgNPs (37.41 ± 0.17%) exhibited H2O2 scavenging. Furthermore, AgNPs displayed significant antimicrobial properties, inhibiting Staphylococcus aureus (15.7 ± 0.12 mm) and Candida albicans (10.7 ± 0.17 mm) byfor the concentration of 80 µg/mL. Through the characterizations underscore of the potential of Erythrina indica-synthesized AgNPs, rich in polyphenolic compounds, for pharmacological, medical, biological applications and antipyretic properties.


Assuntos
Anti-Infecciosos , Antioxidantes , Erythrina , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos , Extratos Vegetais , Folhas de Planta , Prata , Prata/química , Prata/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Erythrina/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Folhas de Planta/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Fenóis/química , Fenóis/farmacologia , Difração de Raios X , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/análise , Química Verde , Candida albicans/efeitos dos fármacos , Taninos/farmacologia , Taninos/química
2.
An Acad Bras Cienc ; 96(3): e20230237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655919

RESUMO

Species of the genus Podocarpus L'Hér. ex Pers.present biological activities, such as analgesic, antioxidant, antifungal, acting in the fight against anemia, depurative and fortifying. Podocarpus lambertii Klotzch ex Endl. is a Brazilian native species popularly known as maritime pine and lacks information about its phytochemical profile and possible biological activities. The study was conducted to determine the phytochemical composition of soluble plant extracts of acetone (EA), ethyl acetate (EAE) and hexane (HE) from leaves of P. lambertii; evaluate the antimicrobial potential by the broth microdilution technique; antioxidant potential by the DPPH method, as well as to evaluate the biofilm inhibition capacity by the crystal violet assay and reduction of the yellow tetrazolium salt (MTT). Phytochemical screening detected the presence of flavonoids, triterpenoids, steroids, tannins, alkaloids and saponins. All extracts showed antimicrobial activity on the microorganisms tested, and the EA showed the best results. High free radical scavenging potential was observed only in EAE (96.35%). The antibiofilm potential was observed in the EAE extract. The results contribute to the knowledge of the species and indicate the potential of P. lambertii extracts as a source of plant bioactives for the development of new alternative strategies to control resistant microorganisms.


Assuntos
Antioxidantes , Biofilmes , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos , Extratos Vegetais , Folhas de Planta , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Biofilmes/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/análise , Folhas de Planta/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
3.
BMC Complement Med Ther ; 24(1): 137, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566161

RESUMO

BACKGROUND: A study carried out by World Health Organization revealed that around 80% of individuals globally depends on herbal forms of medication with 40% of pharmaceutical products being sourced from medicinal plants. The study objective was to evaluate the phytochemicals composition, in vitro antimicrobial and antioxidant properties of the leaves of Terminalia catappa L. aqueous and methanolic extracts. METHODS: Antimicrobial activity was analyzed by disk diffusion, the minimum inhibitory concentration in-vitro assays with ciprofloxacin as the standard for antibacterial assay while nystatin for antifungal assay. Ferric reducing antioxidant power and 2,2-diphenyl-1-picryl-hydrazyl-hydrate assays were used for the evaluation of antioxidant properties of the crude extracts while the groups responsible for this activity identified using Fourier transform infrared spectrophotometer. RESULTS: The study found that the leaves of Terminalia catappa contained alkaloids, tannins, steroids, cardiac glycosides, flavonoids, phenols, saponins, and coumarins, but terpenoids were absent. Presence of functional groups associated with this class of compounds such as OH vibrational frequencies were observed in IR spectrum of the crude extracts. Methanolic extract from Terminalia catappa exhibited greater antibacterial properties against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus, whereas aqueous extract displayed greater antibacterial activity against Bacillus subtilis for all concentrations tested. The amount of the sample that scavenged 50 percent of DPPH (IC50) was found to be 8.723, 13.42 and 13.04 µg/mL for L-ascorbic acid, Terminalia catappa L. methanolic and aqueous extracts respectively. The antimicrobial and antioxidant activities varied with the extract concentration and solvent used in extractions. CONCLUSION: Terminalia catappa L. leaves are prospective for use as a source of therapeutic agents that could lead to the advancement of new antimicrobial and antioxidant products.


Assuntos
Anti-Infecciosos , Terminalia , Humanos , Antioxidantes/química , Metanol , Terminalia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Estudos Prospectivos , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Água
4.
PLoS One ; 19(4): e0302329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662667

RESUMO

Seriphidium herba-alba (Asso), a plant celebrated for its therapeutic qualities, is widely used in traditional medicinal practices throughout the Middle East and North Africa. In a detailed study of Seriphidium herba-alba (Asso), essential oils and extracts were analyzed for their chemical composition and antimicrobial properties. The essential oil, characterized using mass spectrometry and retention index methods, revealed a complex blend of 52 compounds, with santolina alcohol, α-thujone, ß-thujone, and chrysanthenone as major constituents. Extraction yields varied significantly, depending on the plant part and method used; notably, methanol soaking of aerial parts yielded the most extract at 17.75%. The antimicrobial analysis showed that the extracts had selective antibacterial activity, particularly against Staphylococcus aureus, and broad-spectrum antifungal activity against organisms such as Candida albicans and Aspergillus spp. The methanol-soaked extract demonstrated the strongest antimicrobial properties, indicating its potential as a natural antimicrobial source. This study not only underscores the therapeutic potential of Seriphidium herba-alba (Asso) in pharmaceutical applications but also sets a foundation for future research focused on isolating specific bioactive compounds and in vivo testing.


Assuntos
Anti-Infecciosos , Testes de Sensibilidade Microbiana , Óleos Voláteis , Extratos Vegetais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Candida albicans/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Burseraceae/química , Antifúngicos/farmacologia , Antifúngicos/química
5.
Sci Rep ; 14(1): 8079, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582926

RESUMO

With the growing resistance of pathogenic microbes to traditional drugs, biogenic silver nanoparticles (SNPs) have recently drawn attention as potent antimicrobial agents. In the present study, SNPs synthesized with the aid of orange (Citrus sinensis) peel were engineered by screening variables affecting their properties via Plackett-Burman design. Among the variables screened (temperature, pH, shaking speed, incubation time, peel extract concentration, AgNO3 concentration and extract/AgNO3 volume ratio), pH was the only variable with significant effect on SNPs synthesis. Therefore, SNPs properties could be enhanced to possess highly regular shape with zeta size of 11.44 nm and zeta potential of - 23.7 mV. SNPs purified, capped and stabilized by cloud point extraction technique were then checked for their antimicrobial activity against Bacillus cereus, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Candida albicans. The maximum antimicrobial activity of SNPs was recorded against E. coli, L. monocytogenes and C. albicans with clear zone diameter of 33.2, 31.8 and 31.7 mm, respectively. Based on minimum inhibition concentration and minimum bactericidal concentration of SNPs (300 mg/l) as well as their effect on respiratory chain dehydrogenases, cellular sugar leakage, protein leakage and lipid peroxidation of microbial cells, E. coli was the most affected. Scanning electron microscopy, protein banding and DNA fragmentation proved obvious ultrastructural and molecular alterations of E. coli treated with SNPs. Thus, biogenic SNPs with enhanced properties can be synthesized with the aid of Citrus peel; and such engineered nanoparticles can be used as potent antimicrobial drug against E. coli.


Assuntos
Anti-Infecciosos , Citrus sinensis , Citrus , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Citrus/química , Escherichia coli/metabolismo , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Citrus sinensis/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia
6.
BMC Complement Med Ther ; 24(1): 128, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509538

RESUMO

BACKGROUND: Casuarina equisetifolia belongs to the Casuarina species with the most extensive natural distribution, which contain various phytochemicals with potential health benefits. This study aimed to investigate the chemical composition and biological activities of different extracts of Casuarina equisetifolia. METHODS: The n-hexane extract was analyzed for its unsaponifiable and fatty acid methyl esters fractions, while chloroform, ethyl acetate, and butanol extracts were studied for their phenolic components. Six different extracts of C. equisetifolia needles were evaluated for their total phenolic content, total flavonoid content, and their antioxidant, antimicrobial, and cytotoxic activities. RESULTS: The n-hexane extract contained mainly hydrocarbons and fatty acid methyl esters, while ten phenolic compounds were isolated and identified in the chloroform, ethyl acetate, and butanol extracts. The methanolic extract exhibited the highest total phenolic and flavonoid content, highest antioxidant activity, and most potent cytotoxic activity against HepG-2 and HCT-116 cancer cell lines. The ethyl acetate extract showed the most significant inhibition zone against Staphylococcus aureus and Bacillus subtilis. CONCLUSION: Casuarina equisetifolia extracts showed promising antioxidant, antimicrobial, and cytotoxic activities. Overall, Casuarina equisetifolia is a versatile tree with a variety of uses, and its plant material can be used for many different purposes.


Assuntos
Anti-Infecciosos , Antineoplásicos , Hexanos , Humanos , Antioxidantes/química , Clorofórmio , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Acetatos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Flavonoides/farmacologia , Flavonoides/análise , Butanóis
7.
J Ethnopharmacol ; 327: 118055, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38484951

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trachyspermum roxburghianum (DC.) H. Wolff, commonly known as 'Ajamoda,' is a neglected Indian spice highly used in Ayurveda and folklore remedies as an antimicrobial for chronic wounds and discharges, along with many other disease conditions. AIM OF THE STUDY: The objective of the study was to explore chemical composition and to investigate the antioxidant, antimicrobial, analgesic, and wound healing activities of T. roxburghianum fruit essential oil from India. MATERIALS AND METHODS: The phytochemical characterization of the oil was determined through standard qualitative procedures and the gas chromatography-mass spectrometry (GC-MS) technique. The in vitro antioxidant aptitude was assessed by scavenging DPPH and ABTS radicals. The antimicrobial potential of the oil was investigated using the disc diffusion method, followed by the determination of minimum inhibitory concentration against Gram-positive and Gram-negative bacterial and fungal strains. The analgesic potential was evaluated using thermal and chemically induced pain models in Swiss albino mice. Wound healing was assessed in vivo, including determining wound contraction rates, histopathology, and hydroxyproline estimation, using the excision wound model in Swiss albino mice. RESULTS: GC-MS analysis identified 55 compounds with major terpenoids, including thymol (13.8%), limonene (11.5%), and others. Substantial radical-scavenging activity was exhibited by T. roxburghianum fruit essential oil (TREO) (IC50 94.41 ± 2.00 µg/mL in DPPH assay and 91.28 ± 1.94 µg/mL in ABTS assay). Microorganisms were inhibited with low MIC (2 µL/mL for the inhibition of Staphylococcus aureus and Bacillus subtilis; 4 µL/mL against Salmonella typhi and 16 µL/mL against Candida albicans). In the cytotoxicity study, no cytotoxicity was observed on the Monkey Normal Kidney Cell line (Vero). Significant antinociceptive effects were observed (25.47 ± 1.10 % of inhibition at 100 mg/kg and 44.31 ± 1.69 % at 200 mg/kg). A remarkable rate of wound closure and epithelization, along with a marked increase in hydroxyproline content, were observed for the oil during wound healing in mice. CONCLUSIONS: The results suggested that oil could be utilized as a potential source of wound healing therapeutics.


Assuntos
Anti-Infecciosos , Benzotiazóis , Óleos Voláteis , Ácidos Sulfônicos , Camundongos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Hidroxiprolina , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/química , Cicatrização , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Testes de Sensibilidade Microbiana
8.
Microb Pathog ; 190: 106613, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484919

RESUMO

This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year. Antimicrobial testing revealed that both types of AgNPs inhibited either the growth of planktonic cells or the metabolic activity of biofilm sessile cells in Gram-negative bacteria and yeasts. No comparable activity was found towards Gram-positives. Overall, pAgNPs exhibited a higher antimicrobial efficacy compared to their monodisperse counterparts, suggesting that their size and shape may provide a broader spectrum of interactions with target cells. Both AgNP preparations showed no cytotoxicity towards a human keratinocyte cell line. Furthermore, in vivo tests using a silkworm animal model indicated the biocompatibility of the phytosynthesized AgNPs, as they had no adverse effects on insect larvae viability. These findings emphasize the potential of targeted AgNPs synthesized from viticultural waste as environmentally friendly antimicrobial agents with minimal impact on higher organisms.


Assuntos
Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Vitis , Prata/farmacologia , Prata/química , Prata/metabolismo , Nanopartículas Metálicas/química , Animais , Humanos , Vitis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Tamanho da Partícula , Química Verde , Bactérias Gram-Negativas/efeitos dos fármacos , Bombyx , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Larva/efeitos dos fármacos , Leveduras/efeitos dos fármacos
9.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 88-96, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430036

RESUMO

Biosynthesis of silver nanoparticles using natural compounds derived from plant kingdom is currently used as safe and low-cost technique for nanoparticles synthesis with important abilities to inhibit multidrug resistant microorganisms (MDR). ESKAPE pathogens, especially MDR ones, are widely spread in hospital and intensive care units. In the present study, AgNPs using Ducrosia flabellifolia aqueous extract were synthesized using a reduction method. The green synthesized D. flabellifolia-AgNPs were characterized by UV-Vis spectrophotometer, Scanning electron microscopy (SEM), and X-ray diffraction assays. The tested D. flabellifolia aqueous extract was tested for its chemical composition using Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS). Anti-quorum sensing and anti-ESKAPE potential of D. flabellifolia-AgNPs was also performed.  Results from LC-ESI-MS technique revealed the identification of chlorogenic acid, protocatechuic acid, ferulic acid, caffeic acid, 2,5-dihydroxybenzoic acid, and gallic acid as main phytoconstituents. Indeed, the characterization of newly synthetized D. flabellifolia-AgNPs revealed spherical shape with mean particle size about 16.961±2.914 nm. Bio-reduction of silver was confirmed by the maximum surface plasmon resonance of D. flabellifolia-AgNPs at 430 nm. Newly synthetized D. flabellifolia-AgNPs were found to possess important anti-ESKAPE activity with low minimal inhibitory concentrations (MICs) ranging from 0.078 to 0.312 mg/mL, and low minimal bactericidal concentrations (MBCs) varying from 0.312 to 0.625 mg/mL. Moreover, D. flabellifolia-AgNPs were active against Candida utilis ATCC 9255, C. tropicalis ATCC 1362, and C. albicans ATCC 20402 with high mean diameter of growth inhibition at 5 mg/mL, low MICs, and minimal fungicidal concentrations values (MFCs). The newly synthetized D. flabellifolia-AgNPs were able to inhibit violacein production in Chromobacterium violaceum, pyocyanin in Pseudomonas aeruginosa starter strains.  Hence, the newly synthesized silver nanoparticles using D. flabellifolia aqueous extract can be used as an effective alternative to combat ESKAPE microorganisms. These silver nanoparticles can attenuate virulence of Gram-negative bacteria by interfering with the quorum sensing system and inhibiting cell-to-cell communication.


Assuntos
Anti-Infecciosos , Apiaceae , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Percepção de Quorum , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Candida albicans , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química
10.
Sci Rep ; 14(1): 5789, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461344

RESUMO

The production of surface compounds coated with active substances has gained significant attention in recent years. This study investigated the physical, mechanical, antioxidant, and antimicrobial properties of a composite made of starch and zinc oxide nanoparticles (ZnO NPs) containing various concentrations of Ferula gummosa essential oil (0.5%, 1%, and 1.5%). The addition of ZnO NPs improved the thickness, mechanical and microbial properties, and reduced the water vapor permeability of the starch active film. The addition of F. gummosa essential oil to the starch nanocomposite decreased the water vapor permeability from 6.25 to 5.63 g mm-2 d-1 kPa-1, but this decrease was significant only at the concentration of 1.5% of essential oils (p < 0.05). Adding 1.5% of F. gummosa essential oil to starch nanocomposite led to a decrease in Tensile Strength value, while an increase in Elongation at Break values was observed. The results of the antimicrobial activity of the nanocomposite revealed that the pure starch film did not show any lack of growth zone. The addition of ZnO NPs to the starch matrix resulted in antimicrobial activity on both studied bacteria (Staphylococcus aureus and Escherichia coli). The highest antimicrobial activity was observed in the starch/ZnO NPs film containing 1.5% essential oil with an inhibition zone of 340 mm2 on S. aureus. Antioxidant activity increased significantly with increasing concentration of F. gummosa essential oil (P < 0.05). The film containing 1.5% essential oil had the highest (50.5%) antioxidant activity. Coating also improved the chemical characteristics of fish fillet. In conclusion, the starch nanocomposite containing ZnO NPs and F. gummosa essential oil has the potential to be used in the aquatic packaging industry.


Assuntos
Anti-Infecciosos , Ferula , Nanopartículas , Óleos Voláteis , Óxido de Zinco , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antioxidantes/farmacologia , Antioxidantes/química , Staphylococcus aureus , Vapor , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Amido/química , Escherichia coli , Nanopartículas/química
11.
Int J Biol Macromol ; 264(Pt 1): 130626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453123

RESUMO

Silver-Carrageenan (Ag/Carr) nanocomposite film for food packing application by the green method using Argemone albiflora leaf extract has been developed in this study. Different plant parts of Argemone albiflora (blue stem prickly poppy) are used all over the world for the treatment of microbial infections, jaundice, skin diseases etc. GC-MS analysis was used to examine the phytochemical found in the Argemone albiflora leaf extract which reduces the metal ions to nanoscale. The biopolymer employed in the synthesis of nanocomposite film was carrageenan, a natural carbohydrate (polysaccharide) extracted from edible red seaweeds. We developed a food packing that is biodegradable, eco-friendly, economical and free from harmful chemicals. These films possess better UV barrier and mechanical and antimicrobial properties with 1 mM AgNO3 solution. The presence of silver nanoparticles in the carrageenan matrix was evident from FESEM. The mechanical properties were analysed by a Universal testing machine (UTM) and different properties like water vapour permeability (WVP), moisture content (MC) and total soluble matter (TSM) important for food packing applications were also analysed. The antimicrobial properties of the synthesized film samples were studied against E. coli and S. aureus pathogenic bacteria. These films were employed for the storage of cottage cheese (dairy product) and strawberries (fruit). This packing increased the shelf life of the packed food effectively. Ag/Carr films are biodegradable within four weeks.


Assuntos
Anti-Infecciosos , Argemone , Nanopartículas Metálicas , Nanocompostos , Carragenina/química , Prata/química , Embalagem de Alimentos , Nanopartículas Metálicas/química , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Nanocompostos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química
12.
Chem Biodivers ; 21(5): e202301822, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426739

RESUMO

Borago officinalis L., an annual herb belonging to the Boraginaceae family, is used in the traditional medical practices of various countries and for multiple treatments, including respiratory disorders, colds, influenza, diarrhea, cramps, inflammation, palpitation, hypertension menopause, and post-menopausal symptoms. Its pharmacological properties and biological activities - among them antioxidant, antimicrobial, anticancer, anti-inflammatory, insecticidal, antigenotoxic, and anti-obesity activity - were demonstrated in vitro and in vivo and are related to its rich content of bioactive compounds (mainly phenolic acids, flavonoids, anthocyanins, alkaloids, and terpenes) extracted from various parts of B. officinalis including leaves, flowers, seeds, and roots. This review summarizes all updated information on applied extraction processes, phytochemistry, pharmacology, and toxicity of B. officinalis.


Assuntos
Borago , Compostos Fitoquímicos , Extratos Vegetais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Borago/química , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação
13.
Int J Biol Macromol ; 263(Pt 2): 130358, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412939

RESUMO

The present study aims to develop and characterize biodegradable packaging films from lemon peel-derived pectin and chitosan incorporated with a bioactive extract from neem leaves. The films (PCNE) contained varying concentrations of neem leaf extract and were comprehensively assessed for their physical, optical, mechanical, and antimicrobial attributes. The thickness, moisture content, water solubility, and water vapor permeability of the biodegradable packaging films increased with the increasing concentration of neem leaf extract. Comparatively, the tensile strength of the films decreased by 42.05 % compared to the control film. The Scanning Electron Microscopy (SEM) confirmed that the resultant blended pectin-chitosan films showed a uniform structure without cracks. Furthermore, the analysis targeting Staphylococcus aureus and Aspergillus niger indicated that the films had potent antimicrobial activity. Based on these results, the optimum films were selected and subsequently applied on apricot fruits to increase their shelf life at ambient temperature. The findings, after examining factors such as colour, firmness, total soluble solids, shrinkage, weight loss, and appearance, concluded that the apricots coated by PCNE-5 had the most delayed signs of spoilage and increased their shelf life by 50 %. The results showed the potential applicability of lemon peel pectin-chitosan-neem leaf extract blend films in biodegradable food packaging.


Assuntos
Anti-Infecciosos , Quitosana , Prunus armeniaca , Embalagem de Alimentos , Quitosana/química , Pectinas/química , Frutas/química , Anti-Infecciosos/química , Permeabilidade
14.
Z Naturforsch C J Biosci ; 79(1-2): 25-39, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38414256

RESUMO

Verbascum sinaiticum is locally used to treat wound, stomachache, viral infection, cancer, sunstroke fever, abdominal colic, diarrhea, hemorrhage, anthrax, and hepatitis. The objective of this study was to identify the compounds and to evaluate the antimicrobial and antioxidant activity of the extracts and isolated compounds from V. sinaiticum. The 1H-NMR, 13C-NMR, and DEPT-135 were used to elucidate the structures of isolated compounds. Essential oils were extracted by hydrodistillation method and their chemical analyses were performed by GC-MS. The broth microdilution method was used to evaluate the antimicrobial activity. The radical scavenging activity of the extracts and isolated compounds were evaluated using DPPH method. Silica gel column chromatographic separation of root extracts afforded seven known compounds: 3'-(4''-methoxy phenyl)-3'-oxo-propionyl hexadecanoate (1), harpagoside (2), pulverulentoside I (3), scrophuloside B4 (4), scropolioside A (5), scropolioside-D2 (6), and harpagide 6-O-ß-glucoside (7), which are all reported from this species for the first time. The EO extracts from leaves and roots were the most susceptible to Streptococcus agalactiae, with a 2 mg/mL MIC. The EO from roots was effective against Candida albicans and Trichophyton mentagrophytes, with a MIC of 8 mg/mL. The MeOH and CH2Cl2/CH3OH (1:1) root extracts showed the maximum activity against S. epidermidis with MIC values of 0.25 mg/mL. The strongest antibacterial effects were demonstrated against Staphylococcus epidermidis, which exhibited a 0.0625 mg/mL MIC for compound 1. The strongest radical scavenging activity was exhibited by the methanol extract (IC50 = 3.4 µg/mL), and compounds 4, 6, 5, 3, 7, and 2 with IC50 values of 3.2, 3.38, 3.6, 3.8, 4.2, and 4.7 µg/mL, respectively, in comparison with ascorbic acid (IC50 = 1.3 µg/mL). The results of the molecular docking analysis of compounds revealed minimal binding energies range from -38.5 to -43.1 kJ/mol, -33.1 to -42.7 kJ/mol, -34.7 to -39.3.7 kJ/mol, -25.5 to -37.6 kJ/mol against human myeloperoxidase (PDB ID: 1DNU), murA enzyme (PDB ID: 1UAE), human topoisomerase IIß (PDB ID: 4fm9), S. epidermidis FtsZ (PDB number: 4M8I) proteins, respectively. The docking results and the in vitro antibacterial activity are in good agreement. These findings show that the isolated compounds 2-7 can act as potential antioxidants and strong antibacterials against Staphylococcus aureus and S. epidermidis. As a result, V. sinaiticum root extracts have the potential to be effective in treating diseases caused by bacteria and free radicals, as long as further investigation has been suggested for the ultimate decision of this plant's potential candidate.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Verbascum , Humanos , Antioxidantes/química , Óleos Voláteis/química , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Testes de Sensibilidade Microbiana
15.
Chem Biodivers ; 21(4): e202400026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372467

RESUMO

Ruta chalepensis L. is a versatile herb used in culinary arts and traditional medicine. The study aimed to determine the chemical composition of an ethanolic extract from R. chalepensis and the total phenolic and flavonoid content. Additionally, the extracts' antimicrobial and antioxidant activities were tested. The disc diffusion method and minimum inhibitory concentration (MIC) were used to test the antibacterial properties on four types of bacteria: Escherichia coli, Proteus penneri, Bacillus cereus, and Staphylococcus aureus. A colorimetric assay was used to evaluate the total phenolic and flavonoid content, and the DPPH method was used to assess the antioxidant activity. The phytochemical constituents were determined using LC-MS/MS. The results indicated that R. chalepensis ethanolic extract had 34 compounds, and the predominant compounds were quercetin (9.2 %), myricetin (8.8 %), and camphene (8.0 %). Moreover, the extract had a good level of polyphenols and flavonoids, as demonstrated by inhibiting free radicals (DPPH) (IC50 was 41.2±0.1). Also, the extract exhibited robust antimicrobial activity against P. penneri and S. aureus with an MIC of 12.5 and 25.0 µg/mL, respectively. In conclusion, the results suggest that the R. chalepensis ethanolic extract has good antioxidant and antibacterial properties that could be utilized to develop new antibacterial agents.


Assuntos
Anti-Infecciosos , Ruta , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Cromatografia Líquida , Etanol , Flavonoides/química , Flavonoides/farmacologia , Fenóis/farmacologia , Fenóis/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ruta/química , Staphylococcus aureus , Espectrometria de Massas em Tandem , Polifenóis/química , Polifenóis/farmacologia , Quercetina/química , Quercetina/isolamento & purificação , Quercetina/farmacologia
16.
Sci Rep ; 14(1): 3430, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341481

RESUMO

Chitosan is a natural biodegradable biopolymer that has drawbacks in mechanical and antibacterial properties, limiting its usage in biological and medicinal fields. Chitosan is combined with other naturally occurring substances possessing biological antibacterial qualities in order to broaden its application. Ethanolic apricot kernel seed extract was prepared, analyzed, and incorporated into chitosan film with different concentrations (0.25, 0.5, and 0.75 wt%). Furthermore, the effect of AKSE and γ-radiation (20 Gy and 20 kGy) on the physical properties of the film was studied. The prepared films were characterized by Fourier transform infrared spectroscopy (FTIR), which revealed that AKSE did not cause any change in the molecular structure, whereas the γ-irradiation dose caused a decrease in the peak intensity of all concentrations except 0.75 wt%, which was the most resistant. In addition, their dielectric, optical, and antimicrobial properties were studied. Also, AKSE-enhanced optical qualities, allowed them to fully block light transmission at wavelengths of 450-600 nm. The dielectric properties, i.e., permittivity (ε'), dielectric loss (ε''), and electrical conductivity (σ), increased with increasing AKSE concentration and film irradiation. The antimicrobial studies revealed that the antimicrobial activity against Escherichia coli and Canodida albicans increased with AKSE incorporation.


Assuntos
Anti-Infecciosos , Quitosana , Prunus armeniaca , Quitosana/farmacologia , Quitosana/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Embalagem de Alimentos/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
17.
Int J Nanomedicine ; 19: 1469-1485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380146

RESUMO

Background: Nowadays, recycling agricultural waste is of the utmost importance in the world for the production of valuable bioactive compounds and environmental protection. Olive leaf bioactive compounds have a significant potential impact on the pharmaceutical industry. These compounds possess remarkable biological characteristics, including antimicrobial, antiviral, anti-inflammatory, hypoglycemic, and antioxidant properties. Methods: The present study demonstrates a green synthetic approach for the fabrication of nickel oxide nanoparticles (NiO-olive) using aqueous wasted olive leaf extract. Calcination of NiO-olive at 500°C led to the fabrication of pure NiO nanoparticles (NiO-pure). Different techniques, such as thermal gravimetric analysis (TGA), Fourier-transform infrared spectra (FTIR), ultraviolet-visible spectra (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM) fitted with energy-dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM), were used to characterize both NiO-olive and NiO-pure. The extract and nanoparticles were assessed for antiparasitic activity against adult ticks (Hyalomma dromedarii) and antimicrobial activity against Bacillus cereus, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Results: From XRD, the crystal sizes of NiO-olive and NiO-pure were 32.94 nm and 13.85 nm, respectively. TGA, FTIR, and EDX showed the presence of olive organic residues in NiO-olive and their absence in NiO-pure. SEM and TEM showed an asymmetrical structure of NiO-olive and a regular, semi-spherical structure of NiO-pure. UV-Vis spectra showed surface plasmon resonance of NPs. Antiparasitic activity showed the highest mortality rate of 95% observed at a concentration of 0.06 mg/mL after four days of incubation. The antimicrobial activity showed the largest inhibition zone diameter of 33 ± 0.2 mm against the Candida albicans strain. Conclusion: Nanoparticles of NiO-olive outperformed nanoparticles of NiO-pure and olive leaf extract in both antiparasitic and antimicrobial tests. These findings imply that NiO-olive may be widely used as an eco-friendly and effective antiparasitic and disinfection of sewage.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Olea , Antiparasitários , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
18.
Int J Biol Macromol ; 261(Pt 1): 129698, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272421

RESUMO

The present study aimed to develop food packaging films by using a combination of pectin (PE) and sodium alginate (SA) enriched with Acetyl-11-keto-beta-boswellic acid (AKBA) as a functional or active ingredient. The fabricated films underwent comprehensive evaluation of their morphological, chemical, mechanical, barrier, optical, thermal, antioxidant, and antimicrobial properties. SEM and FTIR analysis showed that AKBA had good compatibility with film-forming components. The AKBA-loaded film samples exhibited a decrease in their barrier properties and tensile strength, but enhancements in both elongation at break and thickness values was observed. With the addition of AKBA, a significant increase (p < 0.05) in the ultraviolet barrier properties of the films and total colour variation (ΔE) was observed. TGA analysis of the films unveiled an improvement in thermal resistance with the incorporation of AKBA. Moreover, the films loaded with AKBA exhibited potent antioxidant activity in the ABTS and DPPH assay methods. Disk diffusion analysis showed the antimicrobial activity of AKBA-loaded films against P. aeruginosa, highlighting the potential of AKBA as a natural antimicrobial agent for the safety of food products. The results demonstrate the practical application of PE and SA active films loaded with AKBA, particularly within the food packaging industry.


Assuntos
Anti-Infecciosos , Triterpenos , Alginatos/química , Pectinas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Triterpenos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Embalagem de Alimentos/métodos
19.
BMC Biotechnol ; 24(1): 3, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233817

RESUMO

The growing spread of infectious diseases has become a potential global health threat to human beings. According to WHO reports, in this study, we investigated the impact of co-cultivating the isolated endophytic fungus Aspergillus sp. CO2 and Bacillus sp. COBZ21 as a method to stimulate the production of natural bioactive substances. (GC/MS)-based metabolomics profiling of two sponge-associated microbes, Aspergillus sp. CO2 and Bacillus sp. COBZ21, revealed that the co-culture of these two isolates induced the accumulation of metabolites that were not traced in their axenic cultures. By detection of different activities of extracts of Bacillus sp. COBZ21 and Aspergillus sp. CO2 and coculture between Bacillus sp. COBZ21 and Aspergillus sp. CO2. It was noted that the coculture strategy was the reason for a notable increase in some different activities, such as the antimicrobial activity, which showed potent activity against Escherichia coli ATCC 25,922, Staphylococcus aureus NRRLB-767, and Candida albicans ATCC 10,231. The antibiofilm activity showed significant biofilm inhibitory activity toward Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 10,145, and Staph aureus NRRLB-767, with activity up to 53.66, 71.17, and 47.89%, while it showed low activity against E. coli ATCC 25,922, while the antioxidant activity based on the DPPH assay showed maximum activity (75.25%). GC-MS investigations revealed the presence of variable chemical constituents belonging to different chemical categories, which reflected their chemical diversity. The main components are (+-) cis-Deethylburnamine (2.66%), Bis(3,6,9,12-tetraoxapentaethylene) crowno-N,N,N',N'-tetra methylpphanediamine (2.48%), and 11-phenyl-2,4,6,8-tetra(2-thienyl)-11-aza-5,13-dithiaeteracyclo[7.3.0.1(2,8)0.0(3,7)] trideca-3,6-diene-10,12,13-trione (3.13%), respectively, for Bacillus sp. axenic culture, Aspergillus sp. CO2, Aspergillus sp. CO2, and Bacillus sp. COBZ21 coculture. By studying the ADME-related physicochemical properties of coculture extract, the compound showed log Po/w values above 5 (8.82). The solubility of the substance was moderate. In order to provide a comprehensive definition of medicinal chemistry and leadlikness, it is important to note that the latter did not meet the criteria outlined in the rule of three (RO3). The toxicity prediction of the coculture extract was performed using the ProTox II web server, which showed that the selected compound has no pronounced toxicity.


Assuntos
Anti-Infecciosos , Bacillus , Humanos , Bacillus/metabolismo , Antioxidantes/farmacologia , Dióxido de Carbono/metabolismo , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Anti-Infecciosos/química , Aspergillus/metabolismo , Staphylococcus aureus , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia
20.
J Sci Food Agric ; 104(7): 3982-3991, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252712

RESUMO

BACKGROUND: Many diseases may be caused by pathogens and oxidative stress resulting from carcinogens. Earlier studies have highlighted the antimicrobial and antioxidant effects of plant essential oils (EO). It is crucial to effectively utilize agricultural waste to achieve a sustainable agricultural economy and protect the environment. The present study aimed to evaluate the potential benefits of EO extracted from the discarded peels of Citrus depressa Hayata (CD) and Citrus microcarpa Bunge (CM), synonyms of Citrus deliciosa Ten and Citrus japonica Thunb, respectively. RESULTS: Gas chromatography-mass spectrometry analysis revealed that the main compounds in CD-EO were (R)-(+)-limonene (38.97%), γ-terpinene (24.39%) and linalool (6.22%), whereas, in CM-EO, the main compounds were (R)-(+)-limonene (48.00%), ß-pinene (13.60%) and γ-terpinene (12.07%). CD-EO exhibited inhibitory effects on the growth of common microorganisms, including Candida albicans, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. However, CM-EO showed only inhibitory effects on E. coli. Furthermore, CD-EO exhibited superior antioxidant potential, as demonstrated by its ability to eliminate 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate free radicals. Furthermore, CD-EO at a concentration of 100 µg mL-1 significantly inhibited 12-O-tetradecanoylphorbol-13-acetate-induced cancer transformation in mouse epidermal JB6 P+ cells (P < 0.05), possibly by up-regulating protein expression of nuclear factor erythroid 2-related factor 2 and its downstream antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1 and UGT1A. CONCLUSION: These findings suggest that CD-EO exhibits inhibitory effects on pathogenic microorganisms, possesses antioxidant properties and has cancer chemopreventive potential. © 2024 Society of Chemical Industry.


Assuntos
Anti-Infecciosos , Citrus , Monoterpenos Cicloexânicos , Neoplasias , Óleos Voláteis , Animais , Camundongos , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/química , Limoneno/farmacologia , Citrus/química , Escherichia coli , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA