Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2421, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165346

RESUMO

Biosynthesis of silver nanoparticles (AgNPs) is emerging as a simple and eco-friendly alternative to conventional chemical synthesis methods. The role of AgNPs is expanding as antimicrobial and anticancer agents, sensors, nanoelectronic devices, and imaging contrast agents. In this study, biogenic AgNPs were synthesized using extracts of different marine algae species, including Ulva rigida (green alga), Cystoseira myrica (brown alga), and Gracilaria foliifera (red alga), as reducing and capping agents. The Physiochemical properties, cytotoxicity, anticancer and antimicrobial activities of the biosynthesized AgNPs were assessed. Surface plasmonic bands of the biosynthesized AgNPs capped with U. rigida, C. myrica, and G. foliifera extracts were visually observed to determine a colour change, and their peaks were observed at 424 nm, 409 nm, and 415 nm, respectively, by UV-Vis spectroscopy; transmission electron microscopy (TEM) indicated an almost spherical shape of AgNPs with nanoscale sizes of 12 nm, 17 nm, and 24 nm, respectively. Fourier transform-infrared (FTIR) spectroscopy analysis suggested that different molecules attached to AgNPs through OH, C=O, and amide groups. The major constituents of the aqueous algal extracts included, terpenoids, polyphenols, sulfonates, polysaccharides, fatty acids, chlorophylls, amide proteins, flavonoids, carotenoids, aliphatic fluoro compounds, volatile compounds, alkalines, pyruvic acid and agar groups. The cytotoxicity and anticancer activities of the biosynthesized AgNPs were assessed using Artemia salina nauplii, normal skin cell lines (HFb-4), and breast cancer cell lines (MCF-7 cell line). The lethality was found to be directly proportional to the AgNP concentration. The IC50 values of C. myrica and G. foliifera AgNPs against A. saline nauplii were 5 and 10 µg ml-1 after 4 h and 16 h, respectively, whereas U. rigida AgNPs did not exhibit cytotoxic effects. Anticancer activity of the biosynthesized AgNPs was dose dependent. The IC50 values of the biosynthesized AgNPs were 13, 13, and 43 µg ml-1 for U. rigida, C. myrica, and G. foliifera, respectively. U. rigida AgNPs particularly exhibited potent anticancer activity (92.62%) against a human breast adenocarcinoma cell line (MCF-7) with high selectivity compared the normal cells (IC50 = 13 µg/ml, SI = 3.2), followed by C. myrica AgNPs (IC50 = 13 µg/ml, SI = 3.07). Furthermore, the biosynthesized AgNPs exhibited strong antifungal activity against dermatophyte pathogenic moulds and mild antibacterial activity against the food borne pathogen bacteria. The highest antimicrobial activity was recorded for the U. rigida AgNPs, followed by those capped with C. myrica and G. foliifera extracts, respectively. AgNPs capped with the U. rigida extract exhibited the highest antimicrobial activity against Trichophyton mantigrophytes (40 mm), followed by Trichosporon cataneum (30 mm) and E. coli (19 mm), with minimal lethal concentration of 32 and 64 µg ml-1 respectively. The study finally revealed that extracts of marine algal species, particularly U. rigida extracts, could be effectively used as reducing agents for the green synthesis of AgNPs. These AgNPs are considered efficient alternative antidermatophytes for skin infections and anticancer agents against the MCF-7 cell line.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Clorófitas/química , Nanopartículas Metálicas/toxicidade , Phaeophyceae/química , Rodófitas/química , Prata/farmacologia , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Artemia , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Biomed Res Int ; 2022: 5562849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047637

RESUMO

The silver nanoparticles (AgNPs) were synthesized via green synthesis approach using Euporbia serpens Kunth aqueous extract. The synthesized AgNPs were characterized by UV-visible spectroscopy and Furrier Transformer Infra-Red spectroscopy to justify the reduction and stabilization of AgNPs from its precursors. AgNPs characteristic absorption peak was observed at 420 nm in the UV-visible spectrum. The SEM and TEM analysis demonstrated the spherical shape of the synthesized nanoparticles with particle sizes ranging from 30 nm to 80 nm. FTIR transmission bands at 2920 cm-1, 1639 cm-1, 1410 cm-1, 3290 cm-1, and 1085 cm-1 were attributed to C-H, C=O, C-C, N-H, and C-N functional groups, respectively. XRD peaks could be attributed to (111), (200), (220), and (311) crystalline plane of the faced-centered cube (FCC) crystalline structure of the metallic silver nanoparticles. The AgNPs showed good antibacterial activity against all the tested bacteria at each concentration. The particles were found to be more active against Escherichia coli (E. coli) with 20 ± 06 mm and Salmonella typhi (S. typhi) with 18 ± 0.5 mm zone of inhibition in reference to standard antibiotic amoxicillin with 23 ± 0.3 mm and 20 ± 0.4 mm zone of inhibition, respectively. Moderate antifungal activities were observed against Candida albicans (C. albicans) and Alternaria alternata (A. alternata) with zone of inhibitions 16.5 mm and 15 mm, respectively, compared to the standard with 23 mm of inhibition. Insignificant antifungal inhibition of 7.5 mm was observed against Fusarium gramium (F. gramium). All the tested concentrations of AgNPs showed comparable % RSA with the standard reference ascorbic acid in the range sixty percent to seventy five percent. The percent motility at 3 hours postincubation showed quick response and most Tetramorium caespitum were found deceased or paralyzed. Similarly, the percent mortality showed a linear response at concentration and time. It was observed that 1 µg/mL to 2 µg/mL concentration of AgNPs displayed a significant cytotoxic activity against Artemia salina with LD50 of 5.37 and 5.82, respectively.


Assuntos
Anti-Infecciosos , Antioxidantes , Citotoxinas , Euphorbia/química , Nanopartículas Metálicas , Extratos Vegetais/química , Prata , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Testes de Sensibilidade Microbiana , Prata/química , Prata/farmacologia
3.
J Med Chem ; 65(3): 2532-2547, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35073076

RESUMO

Currently, cancer patients with microbial infection are a severe challenge in clinical treatment. To address the problem, we synthesized hemiprotonic compounds based on the unique structure of hemiprotonic nucleotide base pairs in a DNA i-motif. These compounds were produced from phenanthroline (ph) dimerization with phenanthroline as a proton receptor and ammonium as a donor. The biological activity shows that the compounds have a selective antitumor effect through inducing cell apoptosis. The molecular mechanism could be related to specific inhibition of transcription factor PLAGL2 of tumor cells, assessed by transcriptomic analysis. Moreover, results show that the hemiprotonic ph-ph+ has broad-spectrum antibacterial and antifungal activities, and drug-resistant bacteria, including methicillin-resistant Staphylococcus aureus, are sensitive to the compound. In animal models of liver cancer with fungal infection, the ph-ph+ retards proliferation of hepatoma cells in tumor-bearing mice and remedies pneumonia and encephalitis caused by Cryptococcus neoformans. The study provides a novel therapeutic candidate for cancer patients accompanied by infection.


Assuntos
Anti-Infecciosos/uso terapêutico , Antineoplásicos/uso terapêutico , Encefalite/tratamento farmacológico , Neoplasias/tratamento farmacológico , Fenantrolinas/uso terapêutico , Pneumonia/tratamento farmacológico , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/toxicidade , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Antifúngicos/síntese química , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antifúngicos/toxicidade , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Encefalite/complicações , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Neoplasias/complicações , Fenantrolinas/síntese química , Fenantrolinas/farmacologia , Fenantrolinas/toxicidade , Pneumonia/complicações , Prótons , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
4.
Chem Biodivers ; 19(1): e202100566, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34793623

RESUMO

Infections caused by microorganisms are a major cause of morbidity and mortality worldwide, and natural products continue to be important sources for the discovery of new antimicrobial agents. Ursolic acid is a triterpene with known antibacterial action, being naturally found in plants, such as Jaracanda oxyphylla and Jacaranda caroba (Bignoniaceae). Ursolic acid derivative esters have revealed potential biological activities, such as antitumor, antiviral, and antibacterial activity. In this study, sixteen esters (1-16) were synthesized from ursolic acid using DIC/DMAP and characterized by infrared (IR), nuclear magnetic resonance (1 H- and 13 C-NMR) and mass spectrometry. All ursolic acid esters were evaluated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and the yeast Candida albicans. Six compounds are herein described for the first time (3, 9, 11, 13, 14 and 16) with yields up to 91.6 %. Compounds 11 (3ß-(3,4-dimethoxybenzoyl)ursolic acid) and 15 (3ß-nicotinoylursolic acid) displayed promising antifungal activity, with inhibition of C. albicans growth of 93.1 and 95.9 %, respectively.


Assuntos
Anti-Infecciosos/síntese química , Ésteres/química , Triterpenos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bignoniaceae/química , Bignoniaceae/metabolismo , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/farmacologia , Ácido Ursólico
5.
Int J Biol Macromol ; 191: 432-444, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34560150

RESUMO

Natural polysaccharides and their designed structures are extremely valuable due to their intrinsic pharmacological properties and are also used as pharmaceutical aids. These naturally occurring polysaccharides (e.g., psyllium and alginate) are gaining popularity for their use in the preparation of interpenetrating polymer network (IPN) materials with improved swelling ability, biodegradability, stability, non-cytotoxic, biocompatibility, and cost-effectiveness. IPN is prepared sequentially or simultaneously by microwave irradiation, casting evaporation, emulsification cross-linking, miniemulsion/inverse miniemulsion technique, and radiation polymerization methods. In addition, the prepared IPNs have has been extensively characterized using various analytical and imaging techniques before sustainable deployment for multiple applications. Regardless of these multi-characteristic attributes, the current literature lacks a detailed overview of the biomedical aspects of psyllium, alginate, and their engineered IPN structures. Herein, we highlight the unique synthesis, structural, and biomedical considerations of psyllium, alginate, and engineered IPN structures. In this review, a wide range of biomedical applications, such as role as a drug carrier for sustain delivery, wound dressing, tissue engineering, and related miscellaneous application of psyllium, alginate, and their IPN structures described with appropriate examples. Further research will be carried out for the development of IPN using psyllium and alginate, which will be a smart and active carrier for drugs used in the treatment of life-threatening diseases due to their inherent pharmacological potential such as hypoglycemic, immunomodulatory, antineoplastic, and antimicrobial.


Assuntos
Alginatos/química , Polímeros/síntese química , Psyllium/química , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/uso terapêutico , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Portadores de Fármacos/síntese química , Portadores de Fármacos/uso terapêutico , Humanos , Polímeros/uso terapêutico
6.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443693

RESUMO

The multi-step synthesis, physico-chemical characterization, and biological activity of novel valine-derived compounds, i.e., N-acyl-α-amino acids, 1,3-oxazol-5(4H)-ones, N-acyl-α-amino ketones, and 1,3-oxazoles derivatives, bearing a 4-[(4-chlorophenyl)sulfonyl]phenyl moiety are reported here. The structures of the newly synthesized compounds were confirmed by spectral (UV-Vis, FT-IR, MS, 1H- and 13C-NMR) data and elemental analysis results, and their purity was determined by RP-HPLC. The new compounds were assessed for their antimicrobial activity and toxicity to aquatic crustacean Daphnia magna. Also, in silico studies regarding their potential mechanism of action and toxicity were performed. The antimicrobial evaluation revealed that the 2-{4-[(4-chlorophenyl)sulfonyl]benzamido}-3-methylbutanoic acid and the corresponding 1,3-oxazol-5(4H)-one exhibited antimicrobial activity against Gram-positive bacterial strains and the new 1,3-oxazole containing a phenyl group at 5-position against the C. albicans strain.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/toxicidade , Ácido Benzoico/síntese química , Ácido Benzoico/toxicidade , Simulação por Computador , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Ácido Benzoico/química , Ácido Benzoico/farmacologia , Biofilmes/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Espectroscopia de Prótons por Ressonância Magnética , Testes de Toxicidade
7.
Eur J Med Chem ; 224: 113659, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237621

RESUMO

Secondary metabolites isolated from bioactive extracts of natural sources iteratively pioneer the research in drug discovery. Modern medicine is often inspired by bioactive natural products or the bio-functional motifs embedded in them. One of such consequential bio-functional motifs is the thiolane unit. Thiolane-based bioactive organic compounds have manifested a plethora of astonishing biological activities such as anti-viral, anti-cancer, anti-platelet, α-glucosidase inhibition, anti-HIV, immunosuppressive and anti-microbial activities which renders them excellent candidates in drug discovery. Hence, to scale up the accessibility of thiolane-based therapeutics its chemical syntheses is essential and in addition; a sneak peek in its biosynthesis would give a perspective for developing biomimetic syntheses. This review highlights the development of important thiolane-based therapeutics such as (i) Nuphar sesquiterpene thioalkaloids (ii) Thiosugar sulphonium salts from Salacia sp. (iii) Albomycins (iv) Thiolane-based therapeutics from Allium sp. (v) 4'-thionucleosides summarizing various synthetic strategies, biosynthesis and biological activity studies, covering literature till 2021. We anticipate that this review will inspire chemists and biochemists to take up the challenges encountered in the synthesis and development of thiolane-based therapeutics.


Assuntos
Compostos de Sulfidrila/química , Alcaloides/síntese química , Alcaloides/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos , Bactérias/efeitos dos fármacos , Produtos Biológicos/síntese química , Produtos Biológicos/química , Sobrevivência Celular/efeitos dos fármacos , Fungos/efeitos dos fármacos , Humanos , Sesquiterpenos/química
8.
Sci Rep ; 11(1): 14566, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267298

RESUMO

Combining traditional medicine with nanotechnology therefore opens the door to innovative strategies for treating skin and soft tissue infections (SSTIs) and also contributes to the fight against the rise of antimicrobial resistance. Acanthospermum australe (Loefl.) Kuntze is a medicinal plant used by indigenous peoples in northeastern Argentina to treat SSTIs. Spherical and stable silver nanoparticles (AgNPs) of 14 ± 2 nm were synthesized from the aqueous extract of A. australe and silver nitrate. The antimicrobial activity against main species causing SSTIs and cytotoxicity on peripheral blood mononuclear cells of AgNP solution and its synthesis components were evaluated. Compared to its synthesis components, AgNP solution showed greater antimicrobial activity and lower cytotoxicity. The antimicrobial activity of AgNPs was due to the silver and not to the metabolites of the aqueous extract present on the surface of the nanoparticles. The plant extract played an important role in the formation of stable AgNPs and acted as a modulator of cytotoxic and immune responses.


Assuntos
Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Prata/química , Dermatopatias Infecciosas/microbiologia , Infecções dos Tecidos Moles/microbiologia , Anti-Infecciosos/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Asteraceae/química , Flavonoides/análise , Química Verde , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Nanopartículas Metálicas/uso terapêutico , Testes de Sensibilidade Microbiana , Fenóis/análise , Extratos Vegetais/química
9.
Biomolecules ; 11(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809976

RESUMO

The current work aimed to synthesize selenium and zinc nanoparticles using the aqueous extract of Ephedra aphylla as a valuable medicinal plant. The prepared nanoparticles were characterized by TEM, zeta potential, and changes in the phytochemical constituents. Hence, the phenolic, flavonoid, and tannin contents were reduced in the case of the prepared samples of nanoparticles than the original values in the aqueous extract. The prepared extract of Ephedra aphylla and its selenium and zinc nanoparticles showed high potency as antioxidant agents as a result of the DPPH• assay. The samples were assessed as anticancer agents against six tumor cells and a normal lung fibroblast (WI-38) cell line. The selenium nanoparticles of Ephedra aphylla extract revealed very strong cytotoxicity against HePG-2 cells (inhibitory concentration (IC50) = 7.56 ± 0.6 µg/mL), HCT-116 cells (IC50 = 10.02 ± 0.9 µg/mL), and HeLa cells (IC50 = 9.23 ± 0.8 µg/mL). The samples were evaluated as antimicrobial agents against bacterial and fungal strains. Thus, selenium nanoparticles showed potent activities against Gram-negative strains (Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli), Gram-positive strains (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus epidermidis), and the fungal strain Candida albicans. In conclusion, the preparation of nanoparticles of either selenium or zinc is crucial for improved biological characteristics.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Ephedra/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Zinco/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Candida albicans/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
10.
Artif Cells Nanomed Biotechnol ; 49(1): 354-366, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33792441

RESUMO

This study reports the synthesis of silver nanoparticles (AgNPs) from silver nitrate by leaf extract of a medicinal plant Ziziphus nummularia. The leaf extract acts as a reducing and stabilizing agent for the formation of nanoparticles. The green synthesized AgNPs were characterized by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FITR) spectroscopy, Thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM) analysis and evaluated their antimicrobial, antioxidant, cytotoxic and genotoxic potential. The UV-Vis spectroscopy showed a characteristic absorption peak at 430 nm due to surface plasma resonance. TEM analysis showed that synthesized AgNPs were spherical and oval with an average size of 25.96 nm. AgNPs showed effective antimicrobial activity (lowest MIC-0.625 µg/mL against Escherichia coli), synergistic antimicrobial activity (lowest ΣFIC 0.09 with chlormaphenicol against Corynebacterium rubrum) and antibiofilm activity. AgNPs showed strong DPPH activity with IC50 - 520 µg/mL and ABTS activity IC50 - 55 µg/mL and reducing capacity assessment. In vitro cytotoxic effect was evaluated by MTT assay against HeLa cells, breast cells and fibroblast cells. Genotoxic effect was evaluated by comet assay. AgNPs displayed dose-dependent cytotoxic and genotoxic effect. Our findings indicated that synthesized AgNPs could be considered as multifunctional and have great potential for use in biomedical applications.HighlightsSilver nanoparticles were synthesized using leaf extract of Ziziphus nummulariaCharacterization was done by various spectral techniquesAntimicrobial efficacy was demonstrated against an array of bacteriaAgNPs exhibited significant cytotoxic effect against HeLa cell lineAgNPs showed cytotoxicity and genotoxicity in a dose-dependent manner.


Assuntos
Nanopartículas Metálicas/química , Extratos Vegetais/química , Folhas de Planta/química , Prata/química , Prata/farmacologia , Ziziphus/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Células HeLa , Humanos , Mutagênicos/síntese química , Mutagênicos/química , Mutagênicos/farmacologia
11.
Artif Cells Nanomed Biotechnol ; 49(1): 292-302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33733973

RESUMO

A novel approach for the utilisation of fruit waste is attempted in the present investigation. Mangifera indica seed aqueous extract was utilised for green synthesis of silver nanoparticles (AgNPs). The phytoconstituents in the seed acted as reducing and stabilising agent for AgNP formation. UV-Vis, Zeta potential, FT-IR, XRD, TEM, SAED, EDX analysis were used to characterise the green synthesised AgNPs. UV-vis spectra showed characteristic spectra at 450 nm; XRD and SAED confirmed the crystalline nature while TEM revealed the shape to be round and average size was 26.85 nm. FT-IR revealed functional groups like alcohol or phenols, carboxylic acids, ketones, amines, aromatic amines, aliphatic amines, alkyl halides and alkynes which were responsible for AgNP formation. The nanoparticles showed more antibacterial activity than antifungal activity and antibacterial activity towards Gram-negative bacteria was more than Gram-positive bacteria. Dose dependent antioxidant activity (DPPH, SO and ABTS) and dose dependent cytotoxic effect against HeLa, MCF-7 and normal fibroblast cell lines was envisaged. The green synthesised AgNPs exhibited three different bioactivities (3-in-1 system) i.e. dose dependent antimicrobial, antioxidant and cytotoxic activity. Fruit waste can be successfully utilised for silver nanoparticles formation which can be therapeutically useful and effective.[Figure: see text]HighlightsSilver nanoparticles were synthesised from M. indica fruit waste i.e. seedCharacterisation by spectroscopic techniques: UV-Vis, Zeta, FTIR, XRD, SAED, EDX and TEM analysis.Silver nanoparticles were 26.85 nm in size and round in shapeAntimicrobial activity against 14 microorganismsAntioxidant activity in terms of DPPH, SO and ABTSCytotoxic activity against HeLa, MCF-7 and Fibroblast normal cell lines.


Assuntos
Mangifera/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Sementes/química , Prata/química , Prata/farmacologia , Água/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Técnicas de Química Sintética , Química Verde , Células HeLa , Humanos , Células MCF-7
12.
Bioprocess Biosyst Eng ; 44(6): 1215-1225, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33595725

RESUMO

In this research, we have offered a green and new synthesizing procedure for selenium nanoparticles (Se-NPs) through the utilization of Na2SeO3, in which starch has a role of stabilizer and capping agent, as the functionality of green reducing mediums is taken by glucose and ascorbic acid. According to the observations, this method has been capable of producing Se-NPs in lab conditions. Additionally, the synthesized Se-NPs can be separated from the aqueous solution of stabilizer and reducing agents by a high-speed. Certain analyzing procedures have been used to characterize the obtained particles including TEM, XRD, UV-VIS, DLS, FESEM, EDX, FTIR, and AFM. In this paper, we have investigated the antimicrobial and photocatalytic functionality of Se-NPs on Mycobacterium tuberculosis and Methylene blue (MB) and according to the results, these particles have shown satisfying activity in both cases. To be stated in exact, about 60% of MB has degraded under UV light after 150 min, which indicates the acceptable position of Se-NPs could be applied for eliminating water pollutions. Moreover, the attained data on colorectal cancer SW480 cell lines in regards to the in vitro cytotoxicity assessments have exhibited non-toxic effects, which had lasted throughout concentrations that had measured up to even 100 µg/mL within MTT assay.


Assuntos
Anti-Infecciosos , Neoplasias Colorretais , Química Verde , Nanopartículas Metálicas , Mycobacterium tuberculosis/crescimento & desenvolvimento , Selênio , Amido/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Catálise , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Selênio/química , Selênio/farmacologia
13.
Sci Rep ; 11(1): 1032, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441811

RESUMO

The present study is to design an eco-friendly mode to rapidly synthesize selenium nanoparticles (SeNPs) through Ceropegia bulbosa tuber's aqueous extracts and confirming SeNPs synthesis by UV-Vis spectroscopy, FT-IR, XRD, FE-SEM-EDS mapping, HR-TEM, DLS and zeta potential analysis. In addition, to assess the anti-cancer efficacy of the SeNPs against the cultured MDA-MB-231, as studies have shown SeNPs biosynthesis downregulates the cancer cells when compared to normal HBL100 cell lines. The study observed the IC50 value of SeNPs against MDA-MB-231 cells was 34 µg/mL for 48 h. Furthermore, the SeNPs promotes growth inhibitory effects of certain clinical pathogens such as Bacillus subtilis and Escherichia coli. Apart, from this the SeNPs has shown larvicidal activity after 24 h exposure in Aedes albopitus mosquito's larvae with a maximum of 250 g/mL mortality concentration. This is confirmed by the histopathology results taken at the 4th larval stage. The histopathological studies revealed intense deterioration in the hindgut, epithelial cells, mid gut and cortex region of the larvae. Finally, tried to investigate the photocatalytic activity of SeNPs against the toxic dye, methylene blue using halogen lamp and obtained 96% degradation results. Withal computational study SeNPs was shown to exhibit consistent stability towards breast cancer protein BRCA2. Overall, our findings suggest SeNPs as a potent disruptive agent for MDA-MB-231 cells, few pathogens, mosquito larvae and boosts the photocatalytic dye degradation.


Assuntos
Anti-Infecciosos/química , Apocynaceae/química , Inseticidas/química , Nanopartículas/química , Selênio/química , Selênio/farmacologia , Aedes/efeitos dos fármacos , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Proteína BRCA2/química , Proteína BRCA2/efeitos dos fármacos , Neoplasias da Mama/química , Neoplasias da Mama/tratamento farmacológico , Catálise , Linhagem Celular Tumoral , Feminino , Química Verde , Humanos , Inseticidas/síntese química , Inseticidas/farmacologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Processos Fotoquímicos , Extratos Vegetais/química , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011449

RESUMO

Silver nanoparticles synthesized using plant extracts as reducing and capping agents showed various biological activities. In the present study, colloidal silver nanoparticle solutions were produced from the aqueous extracts of Picea abies and Pinus nigra bark. The phenolic profile of bark extracts was analyzed by liquid chromatography coupled to mass spectrometry. The synthesis of silver nanoparticles was monitored using UV-Vis spectroscopy by measuring the Surface Plasmon Resonance band. Silver nanoparticles were characterized by attenuated total reflection Fourier transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, scanning electron microscopy, energy dispersive X-ray and transmission electron microscopy analyses. The antimicrobial and cytogenotoxic effects of silver nanoparticles were evaluated by disk diffusion and Allium cepa assays, respectively. Picea abies and Pinus nigra bark extract derived silver nanoparticles were spherical (mean hydrodynamic diameters of 78.48 and 77.66 nm, respectively) and well dispersed, having a narrow particle size distribution (polydispersity index values of 0.334 and 0.224, respectively) and good stability (zeta potential values of -10.8 and -14.6 mV, respectively). Silver nanoparticles showed stronger antibacterial, antifungal, and antimitotic effects than the bark extracts used for their synthesis. Silver nanoparticles obtained in the present study are promising candidates for the development of novel formulations with various therapeutic applications.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Casca de Planta/química , Extratos Vegetais/química , Prata/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Fenômenos Químicos , Técnicas de Química Sintética , Química Verde , Nanopartículas Metálicas/ultraestrutura , Fenóis/química , Análise Espectral
15.
J Sci Food Agric ; 101(4): 1270-1287, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32869290

RESUMO

Nanotechnology is an emerging science with a wide array of applications involving the synthesis and manipulation of materials with dimensions in the range of 1-100 nm. Nanotechnological applications include diverse fields such as pharmaceuticals, medicine, the environment, food processing and agriculture. Regarding the latter, applications are mainly focused on plant growth and crop protection against plagues and diseases. In recent years, the biogenic reduction of elements such as Ag, Au, Cu, Cd, Al, Se, Zn, Ce, Ti and Fe with plant extracts has become one of the most accepted techniques for obtaining nanoparticles (NPs), as it is considered an ecological and cost-effective process without the use of chemical contaminants. The objective of this work was to review NPs synthesized by green chemistry using vegetable extracts, as well as their use as antimicrobial agents against phytopathogenic fungi and bacteria. Given the need for alternatives to control and integrate management of phytopathogens, this review is relevant to agriculture, although this technology is barely exploited in this field. © 2020 Society of Chemical Industry.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/química , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Metais/química , Metais/farmacologia
16.
Med Chem ; 17(9): 1007-1022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32998677

RESUMO

BACKGROUND: Over the years, transition metal complexes have exhibited significant antimicrobial and antitumor activity. It all started with cisplatin discovery, but due to the large number of side effects it shows, there is a growing need to find a new metal-based compound with higher selectivity and activity on more tumors. OBJECTIVES: Two novel trans-palladium(II) complexes with organoselenium compounds as ligands, [Pd(L1)2Cl2] (L1 = 5-(phenylselanylmethyl)-dihydrofuran-2(3H)-one) and [Pd(L2)2Cl2] (L2 = 2- methyl-5-(phenylselanylmethyl)- tetrahydrofuran) were synthesized, in the text referred to as Pd-Se1 and Pd-Se2. Also, a structurally similar trans-palladium(II) complex, [Pd(L3)2Cl2] (L3= 2,2- dimethyl-3-(phenylselanylmethyl)-tetrahydro-2H-pyran) was synthesized according to an already published work and is referred to as Pd-Se3. The interaction of synthesized complexes with DNA and bovine serum albumin was observed. Also, antimicrobial activity and in vitro testing, cell viability, and cytotoxic effects of synthesized ligands and complexes on human epithelial colorectal cancer cell line HCT-116 were studied. Molecular docking simulations were performed to understand better the binding modes of the complexes reported in this paper with DNA and BSA, as well as to comprehend their antimicrobial activity. METHODS: The interactions of the synthesized complexes with DNA and bovine serum albumin were done using UV-Vis and emission spectral studies as well as docking studies. Antimicrobial activity was tested by determining the minimum inhibitory concentrations (MIC) and minimum microbicidal concentration (MMC) using the resazurin microdilution plate method. Cytotoxic activity on cancer cells was studied by MTT test. RESULTS: The Pd(II) complexes showed a significant binding affinity for calf thymus DNA and bovine serum albumin by UV-Vis and emission spectral studies. The intensity of antimicrobial activity varied with the complexes Pd-Se1 and Pd-Se3, showing significantly higher activity than the corresponding ligand. The most significant activity was shown on Pseudomonas aeruginosa. Under standardized laboratory conditions for in vitro testing, cell viability and cytotoxic effects of synthesized ligands and complexes were studied on human epithelial colorectal cancer cell line HCT-116, where Pd-Se2 showed some significant cytotoxic effects. CONCLUSION: The newly synthesized complexes have the potential to be further investigated as metallodrugs.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Paládio/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/química , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/química , DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células HCT116 , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Organosselênicos/síntese química , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Viscosidade
17.
Bioorg Med Chem ; 29: 115895, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271454

RESUMO

Aurones are naturally occurring structural isomerides of flavones that have diverse bioactivities including antiviral, antibacterial, antifungal, anti-inflammatory, antitumor, antimalarial, antioxidant, neuropharmacological activities and so on. They constitute an important class of pharmacologically active scaffolds that exhibit multiple biological activities via diverse mechanisms. This review article provides an update on the recent advances (2013-2020.4) in the synthesis and biological activities of these derivatives. In the cases where sufficient information is available, some important structure-activity relationships (SAR) of their biological activities were presented, and on the strength of our expertise in medicinal chemistry and careful analysis of the recent literature, for the potential of aurones as medicinal drugs is proposed.


Assuntos
Anti-Infecciosos/síntese química , Anti-Inflamatórios/síntese química , Antinematódeos/síntese química , Antineoplásicos/síntese química , Antioxidantes/síntese química , Benzofuranos/síntese química , Hipoglicemiantes/síntese química , Doença de Alzheimer/tratamento farmacológico , Animais , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antinematódeos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Benzofuranos/farmacologia , Catálise , Avaliação Pré-Clínica de Medicamentos , Flavonas/química , Humanos , Hipoglicemiantes/farmacologia , Metais/química , Relação Estrutura-Atividade
18.
Chem Asian J ; 16(3): 237-246, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146945

RESUMO

Silver nanoparticles (AgNPs) are widely sought after for a variety of biomedical and environmental applications due to their antimicrobial and catalytic properties. We present here a green and simple synthesis of AgNPs utilizing traditional Chinese medicinal herbs. The screening of 20 aqueous herb extracts shows that Sheng Di Huang (Rehmannia glutinosa) had the most promising potential in producing AgNPs of 30±6 nm, with narrow size distribution and high crystallinity. The antimicrobial activities of these AgNPs conducted on E. coli cells were found to be superior in comparison to poly(vinylpyrrolidone)-capped AgNPs synthesized using common chemical method. Additionally, the AgNPs obtained possess excellent catalytic performance in the reduction of 4-nitrophenol to 4-aminophenol. We compared the phytochemical and FTIR spectral analyses of the herb extract before and after synthesis, in order to elucidate the phytochemicals responsible for the reduction of Ag+ ions and the capping of the AgNPs produced.


Assuntos
Anti-Infecciosos/síntese química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Rehmannia/química , Prata/química , Aminofenóis/química , Anti-Infecciosos/química , Catálise , Química Verde , Nitrofenóis/química , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Rehmannia/metabolismo
19.
Molecules ; 25(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302377

RESUMO

Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Lactoferrina/química , Lactoferrina/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Animais , Anti-Infecciosos/síntese química , Antiparasitários/síntese química , Antiparasitários/química , Antiparasitários/farmacologia , Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Técnicas de Química Sintética , Fungos/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Peptídeos/síntese química , Proteólise/efeitos dos fármacos , Relação Estrutura-Atividade , Virulência/efeitos dos fármacos , Fatores de Virulência , Vírus/efeitos dos fármacos
20.
Molecules ; 25(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143044

RESUMO

The increasing interest in developing potent non-toxic drugs in medicine is widening the opportunities for studying the usage of nanostructures in the treatment of various diseases. The present work reports a method for a facile and an eco-friendly synthesis of silver nanoparticles (AgNPs) using Terminalia chebula fruit extract (TCE). The obtained AgNPs was characterized by using different spectroscopic and microscopic techniques. The analysis of the results revealed that the as-obtained AgNPs have spherical morphology with an average diameter of 22 nm. Furthermore, the preliminary bioactivity evaluations revealed that the bio-conjugation of AgNPs, using TCE, significantly enhanced the antibacterial and anti-breast cancer potentials of the latter. The antibacterial activity of the as-prepared AgNPs showed that B. subtilis was more sensitive towards the AgNPs, followed by P. aeruginosa; while, E. coli and S. mutans showed comparatively minimal sensitivity toward the AgNPs. The IC50 values of TCE, AgNPs and TCE + AgNPs treatment of MCF-7 were found to be 17.53, 14.25 and 6.484 µg/mL, respectively. Therefore, it can be ascertained that the bio-conjugation may provide a headway with regard to the therapeutic employment of T. chebula, upon mechanistically understanding the basis of observed antibacterial and anticancer activities.


Assuntos
Anti-Infecciosos , Bacillus subtilis/crescimento & desenvolvimento , Neoplasias da Mama/tratamento farmacológico , Citotoxinas , Frutas/química , Nanopartículas Metálicas , Extratos Vegetais/química , Prata , Terminalia/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Feminino , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Prata/química , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA