Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.283
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Neurochem Int ; 176: 105725, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561151

RESUMO

Epilepsy constitutes a global health concern, affecting millions of individuals and approximately one-third of patients exhibit drug resistance. Recent investigations have revealed alterations in cerebral iron content in both epilepsy patients and animal models. However, the extant literature lacks a comprehensive exploration into the ramifications of modulating iron homeostasis as an intervention in epilepsy. This study investigated the impact of deferasirox, a iron ion chelator, on epilepsy. This study unequivocally substantiated the antiepileptic efficacy of deferasirox in a kainic acid-induced epilepsy model. Furthermore, deferasirox administration mitigated seizure susceptibility in a pentylenetetrazol-induced kindling model. Conversely, the augmentation of iron levels through supplementation has emerged as a potential exacerbating factor in the precipitating onset of epilepsy. Intriguingly, our investigation revealed a hitherto unreported discovery: ITPRIP was identified as a pivotal modulator of excitatory synaptic transmission, regulating seizures in response to deferasirox treatment. In summary, our findings indicate that deferasirox exerts its antiepileptic effects through the precise targeting of ITPRIP and amelioration of cerebral iron homeostasis, suggesting that deferasirox is a promising and novel therapeutic avenue for interventions in epilepsy.


Assuntos
Anticonvulsivantes , Encéfalo , Deferasirox , Epilepsia , Homeostase , Quelantes de Ferro , Ferro , Deferasirox/farmacologia , Ferro/metabolismo , Animais , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Camundongos , Excitação Neurológica/efeitos dos fármacos , Pentilenotetrazol/toxicidade , Ratos Sprague-Dawley
2.
Molecules ; 29(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542951

RESUMO

The fruits of Solanum torvum Swartz, a wild relative of eggplant, are consumed as a wild vegetable in tropical regions of Africa, Asia, and South America. In traditional Chinese medicine, it is believed to have anti-inflammatory and sedative effects. In the Philippines, water decoction is used to treat hyperactivity disorder. Twenty-two steroidal saponins were isolated and purified from the fruits grown in Yunnan, China, including six new compounds: torvosides U-Z (1-6). During drying and cooking, the saponins may undergo transformation, resulting in small amounts of sapogenins. These transformations can include dehydration of hydroxyl groups at position C22, formation of double bonds at position 20, 22 or 22, 23, and even formation of peroxide products. Saponin compounds torvoside X (4), torvoside Y (5), torvoside A (7), and (25S)-3-oxo-5α-spirostan-6α-yl-O-ß-d-xylopyranoside (20), which are glycosylated at C-6, showed certain anti-epileptic activity in a pentylenetetrazole-induced zebrafish seizure model. No antiproliferative activity was detected when tested on the cancer cell line HepG2, and no hepatotoxic effect was noted on normal liver cell line LO2.


Assuntos
Saponinas , Solanum melongena , Solanum , Animais , Solanum/química , Frutas/química , Peixe-Zebra , Pentilenotetrazol , China , Saponinas/química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/análise , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
3.
Biomed Pharmacother ; 173: 116352, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417289

RESUMO

Salvia amarissima Ortega is a plant used in traditional medicine to treat CNS's affections. Despite its depressant properties in anxiety and fibromyalgia, there is no scientific evidence about its capability to control seizure activity. This study aimed to investigate the effects of the S. amarissima aqueous extract (SAAE) and its metabolite amarisolide A (AMA) on the electrocorticographic (ECoG) activity. The ECoG profiles were previously and concurrently analyzed to the pentylenetetrazole (85 mg/kg, i.p.)-induced seizure behavior after thirty min of the administration of several doses of the SAAE (1, 10, 30, and 100 mg/kg, i.p.) and two doses of AMA (0.5 and 1 mg/kg, i.p.). A dosage of AMA (1 mg/kg,i.p.) was selected to explore a possible mechanism of action by using antagonists of inhibitory receptors such as GABAA (picrotoxin, 1 mg/kg, i.p.) or 5-HT1A of serotonin (WAY100635, 1 mg/kg, i.p.). Significant changes in the frequency bands and the spectral power were observed after the treatment alone. Additionally, SAAE and AMA produced significant and dose-dependent anticonvulsant effects by reducing the incidence and severity of seizures and increasing latency or survival. Both antagonists prevented the effects of AMA in the severity score of seizures and survival during the tonic-clonic seizures. In conclusion, our preclinical data support that S. amarissima possesses anticonvulsant properties, in part due to the presence of amarisolide A, mediated by different inhibitory mechanisms of action. Our scientific evidence suggests that this Salvia species and amarisolide A are potential neuroprotective alternatives to control seizures in epilepsy therapy.


Assuntos
Anticonvulsivantes , Salvia , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Pentilenotetrazol , Picrotoxina/efeitos adversos , Água , Relação Dose-Resposta a Droga , Extratos Vegetais/efeitos adversos
4.
J Ethnopharmacol ; 327: 117982, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38423411

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cynanchum otophyllum C.K.Schneid.PI.Wilson, commonly referred as ''Qingyangshen'' (QYS), is a traditional folk medicine from Yunnan, renowned for its efficacy in neurological and psychiatric disorders. Glycosides isolated from QYS have shown promise in alleviating epilepsy, however, mechanisms of action and specific molecular targets remain to be elucidated. AIM OF THE STUDY: The study aimed to evaluate the anticonvulsant effects of Qingyangshen glycosides M1 (M1), a C21 steroidal glycoside from QYS, on pentylenetetrazol (PTZ)-induced convulsions in zebrafish (Danio rerio), and its neuroprotective effect on Glutamate (Glu)-induced damage to PC12 cells, and importantly to identify its potential molecular targets. MATERIALS AND METHODS: To evaluate anticonvulsant activity of M1, 7 days-post-fertilization (7-dpf) animals were pretreated (by immersion) and then exposed to PTZ (10 mM) solution. Furthermore, Glu-induced PC12 cell damage was employed to investigate the neuroprotective and anti-apoptotic capacity. Cells were pretreated with various concentrations of M1 (0-10 µM) for 12 h and then co-treated with Glu (15 mM) for an additional 24 h. The cell viability, apoptosis rate and apoptosis-related proteins (p-PI3K, PI3K, Akt, p-Akt, CREB, p-CREB, BDNF, Bax and Bcl-2) were measured using CCK-8, annexin V/PI and Western blot assays. To model the expected interaction between M1 and candidate cannabinoid receptor type 1 (CB1R), ERK phosphorylation, molecular docking, and drug affinity responsive target stability (DARTS) techniques were employed. Finally, CB1R antagonist Rimonabant (Rim) was validated by co-administration in both zebrafish and cells to confirm the requirement of CB1R for M1 efficacy. RESULTS: At a concentration of 400 µM, M1 dramatically reversed PTZ-induced convulsive-like behaviors in zebrafish, as evidenced by a significant reduction in locomotor activity. In the context of Glu-induced cytotoxicity, M1 (10 µM) demonstrated a notable increase in cell viability and suppressed apoptosis through modulation of the Bax/Bcl-2 ratio and activation of the PI3K/Akt/CREB/BDNF signaling axis. These effects were facilitated through CB1R activation. In contrast, Rim dampened the beneficial activities of M1 as a cannabinoid agonist. CONCLUSIONS: These results demonstrated that M1 as a potential CB1R activator, exhibiting anticonvulsive effects in a PTZ-induced zebrafish model and neuroprotective properties via the PI3K/Akt/CREB/BDNF signaling axis in a Glu-induced PC12 cell injury model. Notably, the observed seizure relief attenuated by CB1R chemical antagonism.


Assuntos
Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Humanos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Glicosídeos/química , Peixe-Zebra , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteína X Associada a bcl-2 , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Simulação de Acoplamento Molecular , China , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Proteínas Reguladoras de Apoptose , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Pentilenotetrazol/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
5.
ACS Chem Neurosci ; 15(3): 617-628, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270158

RESUMO

Plants used in traditional medicine in the management of epilepsy could potentially yield novel drug compounds with antiepileptic properties. The medicinal plant Securidaca longepedunculata is widely used in traditional medicine in the African continent, and epilepsy is among several indications. Limited knowledge is available on its toxicity and medicinal effects, such as anticonvulsant activities. This study explores the potential in vivo inhibition of seizure-like paroxysms and toxicity effects of dichloromethane (DCM) and ethanol (EtOH) extracts, as well as isolated xanthones and benzoates of S. longepedunculata. Ten phenolic compounds were isolated from the DCM extract. All of the substances were identified by nuclear magnetic resonance spectroscopy. Assays for toxicity and inhibition of pentylenetetrazole (PTZ)-induced seizure-like paroxysms were performed in zebrafish larvae. Among the compounds assessed in the assay for maximum tolerated concentration (MTC), benzyl-2-hydroxy-6-methoxy-benzoate (MTC 12.5 µM), 4,8-dihydroxy-1,2,3,5,6-pentamethoxyxanthone (MTC 25 µM), and 1,7-dihydroxy-4-methoxyxanthone (MTC 6.25 µM) were the most toxic. The DCM extract, 1,7-dihydroxy-4-methoxyxanthone and 2-hydroxy-1,7-dimethoxyxanthone displayed the most significant inhibition of paroxysms by altering the locomotor behavior in GABAA receptor antagonist, PTZ, which induced seizures in larval zebrafish. The EtOH extract, benzyl benzoate, and benzyl-2-hydroxy-6-methoxy-benzoate unexpectedly increased locomotor activity in treated larval zebrafish and decreased locomotor activity in nontreated larval zebrafish, seemingly due to paradoxical excitation. The results reveal promising medicinal activities of this plant, contributing to our understanding of its use as an antiepileptic drug. It also shows us the presence of potentially new lead compounds for future drug development.


Assuntos
Epilepsia , Securidaca , Animais , Peixe-Zebra , Securidaca/química , Convulsões/tratamento farmacológico , Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Extratos Vegetais/química , Pentilenotetrazol , Benzoatos/efeitos adversos
6.
Psychopharmacology (Berl) ; 241(2): 327-340, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37966492

RESUMO

OBJECTIVE: Both animal and human studies, though limited, showed that multi-strain probiotic supplementation may reduce the number of seizures and/or seizure severity. Here, we evaluated the effect of a single strain probiotic supplementation on seizure susceptibility, antiseizure efficacy of sodium valproate, and several behavioral parameters in mice. METHODS: Lactobacillus helveticus R0052 was given orally for 28 days. Its influence on seizure thresholds was evaluated in the ivPTZ- and electrically-induced seizure tests. The effect on the antiseizure potency of valproate was assessed in the scPTZ test. We also investigated the effects of probiotic supplementation on anxiety-related behavior (in the elevated plus maze and light/dark box tests), motor coordination (in the accelerating rotarod test), neuromuscular strength (in the grip-strength test), and spontaneous locomotor activity. Serum and brain concentrations of valproate as well as cecal contents of SCFAs and lactate were determined using HPLC method. RESULTS: L. helveticus R0052 significantly increased the threshold for the 6 Hz-induced psychomotor seizure. There was also a slight increase in the threshold for myoclonic and clonic seizure in the ivPTZ test. L. helveticus R0052 did not affect the threshold for tonic seizures both in the maximal electroshock- and ivPTZ-induced seizure tests. No changes in the antiseizure potency of valproate against the PTZ-induced seizures were reported. Interestingly, L. helveticus R0052 increased valproate concentration in serum, but not in the brain. Moreover, L. helveticus R0052 did not produce any significant effects on anxiety-related behavior, motor coordination, neuromuscular strength, and locomotor activity. L. helveticus R0052 supplementation resulted in increased concentrations of total SCFAs, acetate, and butyrate. CONCLUSIONS: Altogether, this study shows that a single-strain probiotic - L. helveticus R0052 may decrease seizure susceptibility and this effect can be mediated, at least in part, by increased production of SCFAs. In addition, L. helveticus R0052 may affect bioavailability of valproate, which warrants further investigations.


Assuntos
Lactobacillus helveticus , Ácido Valproico , Humanos , Camundongos , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Convulsões/tratamento farmacológico , Encéfalo , Suplementos Nutricionais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Eletrochoque
7.
Ceska Slov Farm ; 72(4): 172-183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37805263

RESUMO

Neuroinflammation plays an important role in the pathogenesis of epilepsy, so it is necessary to clarify the influence of standard antiepileptic drugs as well as adjuvant agents (e.g., cardiac glycoside digoxin, which previously showed a clear anticonvulsant potential) on cyclooxygenase pathway and neuron-specific enolase under the conditions of chronic epileptogenesis. The aim of the article is to determine the effect of digoxin, sodium valproate, and celecoxib per se, as well as the combination of digoxin with sodium valproate on the content of cyclooxygenase 1 and 2 types, prostaglandins E2, F2α, I2, thromboxane B2, 8-isoprostane and neuron-specific enolase in the brain of mice in the pentylenetetrazole-induced kindling model. It was found that only the combination of sodium valproate with digoxin provides a complete protective effect (absence of seizures) and shows the clearest influence on neuroinflammation markers and neuronal damage than monotherapy with each of these drugs and celecoxib, which appeared to be an ineffective anticonvulsant. The obtained results indicate that digoxin is a promising adjuvant drug to classical antiepileptic drugs (mostly sodium valproate) in epilepsy treatment.c.


Assuntos
Epilepsia , Ácido Valproico , Ratos , Camundongos , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Pentilenotetrazol/farmacologia , Pentilenotetrazol/uso terapêutico , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Prostaglandina-Endoperóxido Sintases/uso terapêutico , Digoxina/uso terapêutico , Doenças Neuroinflamatórias , Ratos Wistar , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Fosfopiruvato Hidratase/uso terapêutico
8.
Pharmacol Rep ; 75(6): 1533-1543, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821793

RESUMO

BACKGROUND: Overwhelming evidence indicates that some naturally occurring coumarins and terpenes are widely used in folk medicine due to their various therapeutic effects affecting the brain. Antiseizure medications (ASMs) are the principal treatment option for epilepsy patients, although some novel strategies based on naturally occurring substances are intensively investigated. This study was aimed at determining the influence of isopimpinellin (ISOP-a coumarin) when administered either separately or in combination with borneol (BOR-a monoterpenoid), on the antiseizure potencies of four classic ASMs (carbamazepine (CBZ), phenytoin (PHT), phenobarbital (PB), and valproate (VPA)) in the mouse model of maximal electroshock-induced (MES) tonic-clonic seizures. MATERIALS: Tonic-clonic seizures were evoked experimentally in mice after systemic (ip) administration of the respective doses of ISOP, BOR, and classic ASMs. Interactions for two-drug (ISOP + a classic ASM) and three-drug (ISOP + BOR + a classic ASM) mixtures were assessed isobolographically in the mouse MES model. RESULTS: ISOP (administered alone) had no impact on the anticonvulsant potencies of four classic ASMs. Due to the isobolographic transformation of data, the combination of ISOP + VPA exerted an antagonistic interaction, whereas the two-drug mixtures of ISOP + CBZ, ISOP + PHT, and ISOP + PB produced additive interactions in the mouse MES model. The three-drug combinations of ISOP + BOR with CBZ and PHT produced additive interactions, while the three-drug combinations of ISOP + BOR with PB and VPA exerted synergistic interactions in the mouse MES model. CONCLUSIONS: The most intriguing interaction was that for ISOP + VPA, for which the addition of BOR evoked a transition from antagonism to synergy in the mouse MES model.


Assuntos
Anticonvulsivantes , Convulsões , Humanos , Animais , Camundongos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Interações Medicamentosas , Convulsões/tratamento farmacológico , Carbamazepina/farmacologia , Fenobarbital/farmacologia , Fenobarbital/uso terapêutico , Fenitoína , Eletrochoque , Combinação de Medicamentos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga
9.
BMC Complement Med Ther ; 23(1): 343, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759286

RESUMO

BACKGROUND: Status epilepticus (SE) is a type of epileptic activity characterized by a failure of the inhibitory mechanisms that limit seizures, which are mainly regulated by the GABAergic system. This imbalance increases glutamatergic neurotransmission and consequently produces epileptic activity. It is also associated with oxidative stress due to an imbalance between reactive oxygen species (ROS) and antioxidant defences. Unfortunately, long-term treatment with anti-epileptic drugs (AEDs) may produce hepatotoxicity, nephrotoxicity, and haematological alterations. In this way, some secondary metabolites of plants have been used to ameliorate the deterioration of nervous system disorders through their antioxidant properties, in addition to their anticonvulsant effects. An example is Centella asiatica, a plant noted to have a reputed neuroprotective effect related to its antioxidant activity. However, similar to conventional drugs, natural molecules may produce side effects when consumed in high doses, which could occur with Centella asiatica. Therefore, we aimed to evaluate the effect of a standardized extract of Centella asiatica L. Urb with tested anticonvulsant activity on biochemical and haematological parameters in rats subjected to lithium/pilocarpine-induced seizures. METHODS: Twenty-eight adult male Wistar rats were randomly divided into four groups (n = 7 each): vehicle (purified water), Centella asiatica (200 and 400 mg/kg), and carbamazepine (CBZ) (300 mg/kg) as a pharmacological control of anticonvulsant activity. Treatments were administered orally every 24 h for 35 consecutive days. On Day 36, SE was induced using the lithium/pilocarpine model (3 mEq/kg, i.p. and 30 mg/kg s.c., respectively), and the behavioural and biochemical effects were evaluated. RESULTS: Centella asiatica 400 mg/kg increased the latency to the first generalized seizure and SE onset and significantly reduced the time to the first generalized seizure compared to values in the vehicle group. Biochemical parameters, i.e., haematic cytometry, blood chemistry, and liver function tests, showed no significant differences among the different treatments. CONCLUSION: The dose of Centella asiatica that produces anticonvulsant activity in the lithium/pilocarpine model devoid of hepatotoxicity, nephrotoxicity, and alterations in haematological parameters suggests that the standardized extract of this plant could be of utility in the development of new safe therapies for the treatment of convulsions associated with epilepsy.


Assuntos
Centella , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Ratos Wistar , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Antioxidantes/uso terapêutico , Lítio/uso terapêutico , Pilocarpina/uso terapêutico , Convulsivantes/uso terapêutico , Centella/química , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
10.
Pharmazie ; 78(6): 77-81, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37537774

RESUMO

Physiologic changes due to aging, pregnancy, nutritional status, drug interactions, and can affect pharmacokinetics and pharmacodynamics of antiepileptic drugs. In this review article, the interactions between phenytoin and herbs recorded in the literature were summarized according to the Medline database (via PubMed). Our results revealed that, changes in phenytoin's bioavailability were reported for co-administration of herbs or herbal extracts. An increase in phenytoin blood levels was established with Piper nigrum, Mentat, and Lipidum sativum in in vitro and/or in vivo studies. In contrast, herbphenytoin interactions led to sub-therapeutic levels of phenytoin in other cases with herbs such as Cannabis, Ginkgo biloba, Morinda citrifolia, Nigella sativa, and Trigonella foenum graceum. In addition, the findings of other pharmcodynamic experiments showed that various herbs, including Zizyphus jujube, Terminalia chebula, Curcuma longa L, and Centella asiatica, improved the pharmacological impact of phenytoin. To reduce the patients' health risks, health professionals involved in their treatment are expected to be thoroughly educated about the interactions between phenytoin and medicinal plants.


Assuntos
Plantas Medicinais , Humanos , Fenitoína/farmacocinética , Anticonvulsivantes/farmacologia , Interações Medicamentosas
11.
J Ethnopharmacol ; 317: 116740, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315641

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Epilepsy is one of the most prevalent neurological human diseases, affecting 1% of the population in all age groups. Despite the availability of over 25 anti-seizure medications (ASMs), which are approved in most industrialized countries, approximately 30% of epilepsy patients still experience seizures that are resistant to these drugs. Since ASMs target only limited number of neurochemical mechanisms, drug-resistant epilepsy (DRE) is not only an unmet medical need, but also a formidable challenge in drug discovery. AIM: In this review, we examine recently approved epilepsy drugs based on natural product (NP) such as cannabidiol (CBD) and rapamycin, as well as NP-based epilepsy drug candidates still in clinical development, such as huperzine A. We also critically evaluate the therapeutic potential of botanical drugs as polytherapy or adjunct therapy specifically for DRE. METHODS: Articles related to ethnopharmacological anti-epileptic medicines and NPs in treating all forms of epilepsy were collected from PubMed and Scopus using keywords related to epilepsy, DRE, herbal medicines, and NPs. The database clinicaltrials.gov was used to find ongoing, terminated and planned clinical trials using herbal medicines or NPs in epilepsy treatment. RESULTS: A comprehensive review on anti-epileptic herbal drugs and natural products from the ethnomedical literature is provided. We discuss the ethnomedical context of recently approved drugs and drug candidates derived from NPs, including CBD, rapamycin, and huperzine A. Recently published studies on natural products with preclinical efficacy in animal models of DRE are summarized. Moreover, we highlight that natural products capable of pharmacologically activating the vagus nerve (VN), such as CBD, may be therapeutically useful to treat DRE. CONCLUSIONS: The review highlights that herbal drugs utilized in traditional medicine offer a valuable source of potential anti-epileptic drug candidates with novel mechanisms of action, and with clinical promise for the treatment of drug-resistant epilepsy (DRE). Moreover, recently developed NP-based anti-seizure medications (ASMs) indicate the translational potential of metabolites of plant, microbial, fungal and animal origin.


Assuntos
Produtos Biológicos , Canabidiol , Epilepsia Resistente a Medicamentos , Epilepsia , Plantas Medicinais , Animais , Humanos , Etnofarmacologia , Produtos Biológicos/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Anticonvulsivantes/farmacologia , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Medicina Baseada em Evidências
12.
J Ethnopharmacol ; 314: 116467, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37187361

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gastrodia elata Bl. (GE) is one of the rare Chinese medicinal materials with a long history of medicine and cooking. It consists of a variety of chemical components, including aromatic compounds, organic acids and esters, steroids, saccharides and their glycosides, etc., which has medicinal and edible value, and is widely used in various diseases, such as infantile convulsions, epilepsy, tetanus, headache, dizziness, limb numbness, rheumatism and arthralgia. It is also commonly used in health care products and cosmetics. Thus, its chemical composition and pharmacological activity have attracted more and more attention from the scientific community. AIM: In this review, the processing methods, phytochemistry and pharmacological activities of GE were comprehensively and systematically summarized, which provides a valuable reference for researchers the rational of GE. MATERIALS AND METHODS: A comprehensive search of published literature and classic books from 1958 to 2023 was conducted using online bibliographic databases PubMed, Google Scholar, ACS, Science Direct Database, CNKI and others to identify original research related to GE, its processing methods, active ingredients and pharmacological activities. RESULTS: GE is traditionally used to treat infantile convulsion, epilepsy, tetanus, headache, dizziness, limb numbness, rheumatism and arthralgia. To date, more than 435 chemical constituents were identified from GE including 276 chemical constituents, 72 volatile components and 87 synthetic compounds, which are the primary bioactive compounds. In addition, there are other biological components, such as organic acids and esters, steroids and adenosines. These extracts have nervous system and cardiovascular and cerebrovascular system activities such as sedative-hypnotic, anticonvulsant, antiepileptic, neuron protection and regeneration, analgesia, antidepressant, antihypertensive, antidiabetic, antiplatelet aggregation, anti-inflammatory, etc. CONCLUSION: This review summarizes the processing methods, chemical composition, pharmacological activities, and molecular mechanism of GE over the last 66 years, which provides a valuable reference for researchers to understand its research status and applications.


Assuntos
Epilepsia , Gastrodia , Tétano , Humanos , Etnofarmacologia , Fitoterapia , Gastrodia/química , Tontura/tratamento farmacológico , Hipestesia/tratamento farmacológico , Tétano/tratamento farmacológico , Epilepsia/tratamento farmacológico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Cefaleia/tratamento farmacológico , Artralgia/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia
13.
J Evid Based Integr Med ; 28: 2515690X231160191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866635

RESUMO

Imperata cylindrica is a globally distributed plant known for its antiepileptic attributes, but there is a scarcity of robust evidence for its efficacy. The study investigated neuroprotective attributes of Imperata cylindrica root extract on neuropathological features of epilepsy in a Drosophila melanogaster mutant model of epilepsy. It was conducted on 10-day-old (at the initiation of study) male post-eclosion bang-senseless paralytic Drosophila (parabss1) involved acute (1-3 h) and chronic (6-18 days) experiments; n = 50 flies per group (convulsions tests); n = 100 flies per group (learning/memory tests and histological examination). Administrations were done in 1 g standard fly food, per os. The mutant flies of study (parabss1) showed marked age-dependent progressive brain neurodegeneration and axonal degeneration, significant (P < 0.05) bang sensitivity and convulsions, and cognitive deficits due to up-regulation of the paralytic gene in our mutants. The neuropathological findings were significantly (P < 0.05) alleviated in dose and duration-dependent fashions to near normal/normal after acute and chronic treatment with extract similar to sodium valproate. Therefore, para is expressed in neurons of brain tissues in our mutant flies to bring about epilepsy phenotypes and behaviors of the current juvenile and old-adult mutant D. melanogaster models of epilepsy. The herb exerts neuroprotection by anticonvulsant and antiepileptogenic mechanisms in mutant D. melanogaster due to plant flavonoids, polyphenols, and chromones (1 and 2) which exert antioxidative and receptor or voltage-gated sodium ion channels' inhibitory properties, and thus causing reduced inflammation and apoptosis, increased tissue repair, and improved cell biology in the brain of mutant flies. The methanol root extract provides anticonvulsant and antiepileptogenic medicinal values which protect epileptic D. melanogaster. Therefore, the herb should be advanced for more experimental and clinical studies to confirm its efficacy in treating epilepsy.


Assuntos
Drosophila melanogaster , Epilepsia , Animais , Poaceae , Anticonvulsivantes/farmacologia , Encéfalo , Convulsões/tratamento farmacológico , Convulsões/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Drosophila , Cognição , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
14.
Mol Biol Rep ; 50(4): 3389-3399, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739316

RESUMO

BACKGROUND: The Chinese herbal formula Chaihujia Longgu Muli Decoction (CD) has a good antiepileptic effect, but its mechanisms remain unclear. Therefore, in this study we explored the molecular mechanisms of CD against epilepsy. METHODS: Twelve-day-old SD rats were randomly divided into a normal group, model group, valproic acid group, and CD high, medium, and low groups. Except for the normal group, the other groups were given an intraperitoneal injection of pentylenetetrazol (PTZ) to establish epilepsy models, and the Racine score was applied for model judgment. After 14 consecutive days of dosing, the Morris water maze test was performed. Then, hippocampal Nissl staining and immunofluorescence staining were performed, and synaptic ultrastructure was observed by transmission electron microscopy (TEM). RhoA/ROCK signaling pathway proteins were detected. RESULTS: In PTZ model rats, the passing times were reduced, and the escape latency was prolonged in the Morris water maze test. Nissl staining showed that some hippocampal neurons swelled and ruptured, Nissl bodies in the cytoplasm were significantly reduced, and neurons were lost. Immunofluorescence detection revealed that the expression of PSD95 and SYP was significantly reduced. Electron microscopy results revealed that the number of synapses in hippocampal neurons was significantly reduced and the postsynaptic membrane length was significantly reduced. Western blot analysis showed that the RhoA/ROCK signaling pathway was activated, while SYP, SPD95, and PTEN expression was significantly decreased. After treatment with CD, neurobehavioral abnormalities and neuronal damage caused by epileptic seizures were improved. CONCLUSION: CD exerted an antiepileptic effect by inhibiting the activation of the RhoA/ROCK signaling pathway.


Assuntos
Anticonvulsivantes , Epilepsia , Animais , Ratos , Anticonvulsivantes/farmacologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Pentilenotetrazol/farmacologia , Ratos Sprague-Dawley , Convulsões , Transdução de Sinais , Quinases Associadas a rho/metabolismo
15.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835631

RESUMO

Epilepsy is a neurological disorder characterized by hypersynchronous recurrent neuronal activities and seizures, as well as loss of muscular control and sometimes awareness. Clinically, seizures have been reported to display daily variations. Conversely, circadian misalignment and circadian clock gene variants contribute to epileptic pathogenesis. Elucidation of the genetic bases of epilepsy is of great importance because the genetic variability of the patients affects the efficacies of antiepileptic drugs (AEDs). For this narrative review, we compiled 661 epilepsy-related genes from the PHGKB and OMIM databases and classified them into 3 groups: driver genes, passenger genes, and undetermined genes. We discuss the potential roles of some epilepsy driver genes based on GO and KEGG analyses, the circadian rhythmicity of human and animal epilepsies, and the mutual effects between epilepsy and sleep. We review the advantages and challenges of rodents and zebrafish as animal models for epileptic studies. Finally, we posit chronomodulated strategy-based chronotherapy for rhythmic epilepsies, integrating several lines of investigation for unraveling circadian mechanisms underpinning epileptogenesis, chronopharmacokinetic and chronopharmacodynamic examinations of AEDs, as well as mathematical/computational modeling to help develop time-of-day-specific AED dosing schedules for rhythmic epilepsy patients.


Assuntos
Epilepsia , Peixe-Zebra , Animais , Humanos , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Anticonvulsivantes/farmacologia , Ritmo Circadiano/genética
16.
PLoS One ; 18(1): e0280842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36701411

RESUMO

A purified preparation of cannabidiol (CBD), a cannabis constituent, has been approved for the treatment of intractable childhood epilepsies such as Dravet syndrome. Extensive pharmacological characterization of CBD shows activity at numerous molecular targets but its anticonvulsant mechanism(s) of action is yet to be delineated. Many suggest that the anticonvulsant action of CBD is the result of G protein-coupled receptor 55 (GPR55) inhibition. Here we assessed whether Gpr55 contributes to the strain-dependent seizure phenotypes of the Scn1a+/- mouse model of Dravet syndrome. The Scn1a+/- mice on a 129S6/SvEvTac (129) genetic background have no overt phenotype, while those on a [129 x C57BL/6J] F1 background exhibit a severe phenotype that includes hyperthermia-induced seizures, spontaneous seizures and reduced survival. We observed greater Gpr55 transcript expression in the cortex and hippocampus of mice on the seizure-susceptible F1 background compared to those on the seizure-resistant 129 genetic background, suggesting that Gpr55 might be a genetic modifier of Scn1a+/- mice. We examined the effect of heterozygous genetic deletion of Gpr55 and pharmacological inhibition of GPR55 on the seizure phenotypes of F1.Scn1a+/- mice. Heterozygous Gpr55 deletion and inhibition of GPR55 with CID2921524 did not affect the temperature threshold of a thermally-induced seizure in F1.Scn1a+/- mice. Neither was there an effect of heterozygous Gpr55 deletion observed on spontaneous seizure frequency or survival of F1.Scn1a+/- mice. Our results suggest that GPR55 antagonism may not be a suitable anticonvulsant target for Dravet syndrome drug development programs, although future research is needed to provide more definitive conclusions.


Assuntos
Canabidiol , Epilepsias Mioclônicas , Hipertermia Induzida , Convulsões Febris , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Camundongos Endogâmicos C57BL , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Convulsões/tratamento farmacológico , Convulsões/genética , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Convulsões Febris/tratamento farmacológico , Convulsões Febris/genética , Receptores de Canabinoides/metabolismo
17.
Planta Med ; 89(5): 539-550, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36720229

RESUMO

This study evaluates the pharmacological potential of cis-jasmone (CJ) in adult zebrafish (Danio rerio; aZF). Initially, aZF (n = 6/group) were pretreated (20 µL; p. o.) with CJ (0.1 or 0.3 or 1.0 mg/mL) or vehicle (0.5% Tween 80). The animals were submitted to acute toxicity and locomotion tests, pentylenetetrazole-induced seizure, carrageenan-induced abdominal edema, and cinnamaldehyde-, capsaicin-, menthol-, glutamate-, and acid saline-induced orofacial nociception. The possible mechanisms of anticonvulsant, anxiolytic, and antinociceptive action were evaluated. The involvement of central afferent fibers sensitive to cinnamaldehyde and capsaicin and the effect of CJ on the relative gene expression of TRPA1 and TRPV1 in the brain of aZF were also analyzed, in addition to the study of molecular docking between CJ and TRPA1, TRPV1 channels, and GABAA receptors. CJ did not alter the locomotor behavior and showed pharmacological potential in all tested models with no toxicity. The anticonvulsant effect of CJ was prevented by flumazenil (GABAergic antagonist). The anxiolytic-like effect of CJ was prevented by flumazenil and serotonergic antagonists. The antinociceptive effect was prevented by TRPA1 and TRPV1 antagonists. Chemical ablation with capsaicin and cinnamaldehyde prevented the orofacial antinociceptive effect of CJ. Molecular docking studies indicate that CJ interacted with TRPA1, TRPV1, and GABAA receptors. CJ inhibited the relative gene expression of TRPA1 and TRPV1. CJ has pharmacological potential for the treatment of seizures, anxiety, inflammation, and acute orofacial nociception. These effects are obtained by modulating the GABAergic and serotonergic systems, as well as the TRPs and ASIC channels.


Assuntos
Analgésicos , Ansiolíticos , Animais , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Peixe-Zebra/metabolismo , Capsaicina/farmacologia , Simulação de Acoplamento Molecular , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Flumazenil , Ácido gama-Aminobutírico , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
18.
J Ethnopharmacol ; 304: 116073, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36543277

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In Ethiopia, the whole plant juice of Pterolobium stellatum is used to treat seizures and epilepsy. AIM OF THE STUDY: To investigate the antiseizure activity of hydromethanolic crude extract and fractions collected from leaves of P. stellatum using both in vitro, and in vivo seizure models in mice. MATERIALS AND METHODS: Fresh leaves of P. stellatum were collected from Awash Melka, Addis Ababa, Ethiopia. An 80% crude methanol extract was further fractionated to produce petroleum ether, chloroform, butanol, and aqueous fractions. Anti-seizure activity of the crude extract and fractions (petroleum ether, chloroform, butanol, and water) were assessed at a concentration of 0.7 mg/ml using the in vitro 0 Mg2+ model of seizures in mouse brain slices prepared from 14- to 21-day-old C57BL/6 mice. The maximal electroshock seizure (MES) model and the pentylenetetrazol (PTZ) seizure model for seizures were performed on male BALB/c mice using 400 mg/kg and 800 mg/kg of crude 80% methanol extract, as well as the four fractions described above. Diazepam and phenytoin were used as positive controls for PTZ and MES test respectively. RESULTS: Addition of 0.7 mg/ml of crude 80% methanol extract of P. stellatum prevented the onset of SLEs in most brain slices in the 0 Mg2+in vitro model of seizures, with similar efficacy to diazepam (3 µM). The same extract at 400 and 800 mg/kg was efficacious in reducing the hindlimb extension time in the MES model and delaying the onset of myoclonic convulsions in the PTZ model, although not to the same extent as phenytoin (10 mg/kg) or diazepam (5 mg/kg). The chloroform and water fractions of the crude extract also showed significant anti-seizure activity across all three models whilst the non-polar petroleum ether and butanol fractions did not. The UPLC-MS analysis indicated the presence of gallic acid, ellagic acid, kaempferol, myricitrin, isoquercitrin and quercitirin in the crude extract. Gallic acid and ellagic acid were observed in chloroform fraction and in the water fraction ellagic acid, kaempferol, myricitrin and isoquercitrin were detected. CONCLUSION: The crude hydromethanolic extract of P. stellatum has significant anti-seizure activity. The chloroform and aqueous fractions have antiseizure activity. The extracts have previously identified compounds with anticonvulsant activity which indicates the antiseizure potential of the plant.


Assuntos
Quempferóis , Metanol , Camundongos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fenitoína , Clorofórmio , Cromatografia Líquida , Ácido Elágico , Camundongos Endogâmicos C57BL , Etiópia , Espectrometria de Massas em Tandem , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Diazepam/farmacologia , Solventes , Pentilenotetrazol , Água , Butanóis
19.
Neuromolecular Med ; 25(2): 163-178, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35951285

RESUMO

Quercetin is a polyphenolic bioactive compound highly enriched in dietary fruits, vegetables, nuts, and berries. Quercetin and its derivatives like rutin and hyperoside are known for their beneficial effects in various neurological conditions including epilepsy. The clinical studies of quercetin and its derivatives in relation to epilepsy are limited. This review provides the evidence of most recent knowledge of anticonvulsant properties of quercetin and its derivatives on preclinical studies. Additionally, the studies demonstrating antiseizure potential of various plants extracts enriched with quercetin and its derivatives has been included in this review. Herein, we have also discussed neuroprotective effect of these bioactive compound and presented underlying mechanisms responsible for anticonvulsant properties in brief. Finally, limitations of quercetin and its derivatives as antiseizure compounds as well as possible strategies to enhance efficacy have also been discussed.


Assuntos
Epilepsia , Quercetina , Quercetina/farmacologia , Quercetina/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Frutas
20.
Pharmacol Rep ; 75(1): 128-165, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401763

RESUMO

BACKGROUND: Epilepsy frequently coexists with neuropathic pain. Our approach is based on the search for active compounds with multitarget profiles beneficial in terms of potential side effects and on the implementation of screening for potential multidirectional central activity. METHODS: Compounds were synthesized by means of chemical synthesis. After antiseizure and neurotoxicity screening in vivo, KM-408 and its enantiomers were chosen for analgesic activity evaluations. Further safety studies included acute toxicity in mice, the effect on normal electrocardiogram and on blood pressure in rats, whole body plethysmography in rats, and in vitro and biochemical assays. Pharmacokinetics has been studied in rats after iv and po administration. Metabolism has been studied in vivo in rat serum and urine. Radioligand binding studies were performed as part of the mechanism of action investigation. RESULTS: Selected results for KM-408: Ki sigma = 7.2*10-8; Ki 5-HT1A = 8.0*10-7; ED50 MES (mice, ip) = 13.3 mg/kg; formalin test (I phase, mice, ip)-active at 30 mg/kg; SNL (rats, ip)-active at 6 mg/kg; STZ-induced pain (mice, ip)-active at 1 mg/kg (von Frey) and 10 mg/kg (hot plate); hot plate test (mice, ip)-active at 30 mg/kg; ED50 capsaicin test (mice, ip) = 18.99 mg/kg; tail immersion test (mice)-active at 0.5%; corneal anesthesia (guinea pigs)-active at 0.125%; infiltration anesthesia (guinea pigs)-active at 0.125%. CONCLUSIONS: Within the presented study a novel compound, R,S-2-((2-(2-chloro-6-methylphenoxy)ethyl)amino)butan-1-ol hydrochloride (KM-408) with dual antiseizure and analgesic activity has been developed for potential use in neuropathic pain treatment.


Assuntos
Epilepsia , Neuralgia , Ratos , Camundongos , Animais , Cobaias , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Neuralgia/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Epilepsia/tratamento farmacológico , Capsaicina , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA