Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 903
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Nature ; 618(7965): 590-597, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258672

RESUMO

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Assuntos
Anticorpos Antivirais , Especificidade de Anticorpos , Vírus da Influenza A , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana , Mimetismo Molecular , Neuraminidase , Animais , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Especificidade de Anticorpos/imunologia , Arginina/química , Domínio Catalítico , Hemaglutininas Virais/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/enzimologia , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/enzimologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/antagonistas & inibidores , Neuraminidase/química , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Estações do Ano , Ácidos Siálicos/química
2.
Sci Rep ; 12(1): 2521, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169269

RESUMO

Novel Immunological and Mass Spectrometry Methods for Comprehensive Analysis of Recalcitrant Oligosaccharides in AFEX Pretreated Corn Stover. Lignocellulosic biomass is a sustainable alternative to fossil fuel and is extensively used for developing bio-based technologies to produce products such as food, feed, fuel, and chemicals. The key to these technologies is to develop cost competitive processes to convert complex carbohydrates present in plant cell wall to simple sugars such as glucose, xylose, and arabinose. Since lignocellulosic biomass is highly recalcitrant, it must undergo a combination of thermochemical treatment such as Ammonia Fiber Expansion (AFEX), dilute acid (DA), Ionic Liquid (IL) and biological treatment such as enzyme hydrolysis and microbial fermentation to produce desired products. However, when using commercial fungal enzymes during hydrolysis, only 75-85% of the soluble sugars generated are monomeric sugars, while the remaining 15-25% are soluble recalcitrant oligosaccharides that cannot be easily utilized by microorganisms. Previously, we successfully separated and purified the soluble recalcitrant oligosaccharides using a combination of charcoal and celite-based separation followed by size exclusion chromatography and studies their inhibitory properties on enzymes. We discovered that the oligosaccharides with higher degree of polymerization (DP) containing methylated uronic acid substitutions were more recalcitrant towards commercial enzyme mixtures than lower DP and neutral oligosaccharides. Here, we report the use of several complementary techniques that include glycome profiling using plant biomass glycan specific monoclonal antibodies (mAbs) to characterize sugar linkages in plant cell walls and enzymatic hydrolysate, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) using structurally-informative diagnostic peaks offered by negative ion post-secondary decay spectra, gas chromatography followed by mass spectrometry (GC-MS) to characterize oligosaccharide sugar linkages with and without derivatization. Since oligosaccharides (DP 4-20) are small, it is challenging to mobilize these molecules for mAbs binding and characterization. To overcome this problem, we have applied a new biotin-coupling based oligosaccharide immobilization method that successfully tagged most of the low DP soluble oligosaccharides on to a micro-plate surface followed by specific linkage analysis using mAbs in a high-throughput system. This new approach will help develop more advanced versions of future high throughput glycome profiling methods that can be used to separate and characterize oligosaccharides present in biomarkers for diagnostic applications.


Assuntos
Anticorpos Monoclonais/imunologia , Biotina/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Oligossacarídeos/química , Oligossacarídeos/imunologia , Extratos Vegetais/química , Extratos Vegetais/imunologia , Folhas de Planta/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Zea mays/química , Biomassa , Configuração de Carboidratos , Parede Celular/química , Cromatografia em Gel/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Hidrólise , Lignina/química , Açúcares/química
3.
MAbs ; 14(1): 1993522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34923896

RESUMO

A major impediment to successful use of therapeutic protein drugs is their ability to induce anti-drug antibodies (ADA) that can alter treatment efficacy and safety in a significant number of patients. To this aim, in silico, in vitro, and in vivo tools have been developed to assess sequence and other liabilities contributing to ADA development at different stages of the immune response. However, variability exists between similar assays developed by different investigators due to the complexity of assays, a degree of uncertainty about the underlying science, and their intended use. The impact of protocol variations on the outcome of the assays, i.e., on the immunogenicity risk assigned to a given drug candidate, cannot always be precisely assessed. Here, the Non-Clinical Immunogenicity Risk Assessment working group of the European Immunogenicity Platform (EIP) reviews currently used assays and protocols and discusses feasibility and next steps toward harmonization and standardization.


Assuntos
Anticorpos Monoclonais , Imunoconjugados , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Medição de Risco
4.
Biochemistry ; 60(32): 2463-2470, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34319067

RESUMO

The role of glutamate in excitatory neurotransmission depends on its transport into synaptic vesicles by the vesicular glutamate transporters (VGLUTs). The three VGLUT isoforms exhibit a complementary distribution in the nervous system, and the knockout of each produces severe, pleiotropic neurological effects. However, the available pharmacology lacks sensitivity and specificity, limiting the analysis of both transport mechanism and physiological role. To develop new molecular probes for the VGLUTs, we raised six mouse monoclonal antibodies to VGLUT2. All six bind to a structured region of VGLUT2, five to the luminal face, and one to the cytosolic. Two are specific to VGLUT2, whereas the other four bind to both VGLUT1 and 2; none detect VGLUT3. Antibody 8E11 recognizes an epitope spanning the three extracellular loops in the C-domain that explains the recognition of both VGLUT1 and 2 but not VGLUT3. 8E11 also inhibits both glutamate transport and the VGLUT-associated chloride conductance. Since the antibody binds outside the substrate recognition site, it acts allosterically to inhibit function, presumably by restricting conformational changes. The isoform specificity also shows that allosteric inhibition provides a mechanism to distinguish between closely related transporters.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas Vesiculares de Transporte de Glutamato/imunologia , Regulação Alostérica/imunologia , Animais , Cloretos/metabolismo , Epitopos/química , Epitopos/imunologia , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Isoformas de Proteínas/imunologia , Proteína Vesicular 1 de Transporte de Glutamato/química , Proteína Vesicular 1 de Transporte de Glutamato/imunologia , Proteína Vesicular 2 de Transporte de Glutamato/química , Proteína Vesicular 2 de Transporte de Glutamato/imunologia , Proteínas Vesiculares de Transporte de Glutamato/química , Xenopus laevis
5.
Infect Immun ; 89(10): e0016221, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310884

RESUMO

Extremely drug-resistant (XDR) Acinetobacter baumannii is a notorious and frequently encountered pathogen demanding novel therapeutic interventions. An initial monoclonal antibody (MAb), C8, raised against A. baumannii capsule, proved a highly effective treatment against a minority of clinical isolates. To overcome this limitation, we broadened coverage by developing a second antibody for use in a combination regimen. We sought to develop an additional anti-A. baumannii MAb through hybridoma technology by immunizing mice with sublethal inocula of virulent, XDR clinical isolates not bound by MAb C8. We identified a new antibacterial MAb, 65, which bound to strains in a pattern distinct from and complementary to that of MAb C8. MAb 65 enhanced macrophage opsonophagocytosis of targeted strains and markedly improved survival in lethal bacteremic sepsis and aspiration pneumonia murine models of A. baumannii infection. MAb 65 was also synergistic with colistin, substantially enhancing protection compared to monotherapy. Treatment with MAb 65 significantly reduced blood bacterial density, ameliorated cytokine production (interleukin-1ß [IL-1ß], IL-6, IL-10, and tumor necrosis factor), and sepsis biomarkers. We describe a novel MAb targeting A. baumannii that broadens immunotherapeutic strain coverage, is highly potent and effective, and synergistically improves outcomes in combination with antibiotics.


Assuntos
Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Anticorpos Monoclonais/imunologia , Infecções por Acinetobacter/sangue , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/imunologia , Anticorpos Antibacterianos/imunologia , Biomarcadores/sangue , Colistina/imunologia , Citocinas/sangue , Citocinas/imunologia , Farmacorresistência Bacteriana Múltipla/imunologia , Camundongos , Testes de Sensibilidade Microbiana/métodos , Sepse/sangue , Sepse/imunologia , Sepse/microbiologia
6.
Biochem Biophys Res Commun ; 566: 45-52, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34116356

RESUMO

A newly-emergent beta-coronavirus, SARS-CoV-2, rapidly has become a pandemic since 2020. It is a serious respiratory disease and caused more than 100 million of deaths in the world. WHO named it COVIA-19 and there is no effective targeted drug for it. The main treatment strategies include chemical medicine, traditional Chinese medicine (TCM) and biologics. Due to SARS-CoV-2 uses the spike proteins (S proteins) on its envelope to infect human cells, monoclonal antibodies that neutralize the S protein have become one of the hot research areas in the current research and treatment of SARS-CoV-2. In this study, we reviewed the antibodies that have been reported to have neutralizing activity against the SARS-CoV-2 infection. According to their different binding epitope regions in RBD or NTD, they are classified, and the mechanism of the representative antibodies in each category is discussed in depth, which provides potential foundation for future antibody and vaccine therapy and the development of antibody cocktails against SARS-CoV-2 mutants.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , Vacinas contra COVID-19/imunologia , Epitopos/imunologia , Humanos , Modelos Moleculares , Testes de Neutralização , Pandemias , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , SARS-CoV-2/genética , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
7.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547238

RESUMO

In 2015, monoclonal antibodies (mAbs) that selectively recognize the 1-pHis or 3-pHis isoforms of phosphohistidine were developed by immunizing rabbits with degenerate Ala/Gly peptides containing the nonhydrolyzable phosphohistidine (pHis) analog- phosphotriazolylalanine (pTza). Here, we report structures of five rabbit mAbs bound to cognate pTza peptides: SC1-1 and SC50-3 that recognize 1-pHis, and their 3-pHis-specific counterparts, SC39-4, SC44-8, and SC56-2. These cocrystal structures provide insights into the binding modes of the pTza phosphate group that are distinct for the 1- and 3-pHis mAbs with the selectivity arising from specific contacts with the phosphate group and triazolyl ring. The mode of phosphate recognition in the 3-pHis mAbs recapitulates the Walker A motif, as present in kinases. The complementarity-determining regions (CDRs) of four of the Fabs interact with the peptide backbone rather than peptide side chains, thus conferring sequence independence, whereas SC44-8 shows a proclivity for binding a GpHAGA motif mediated by a sterically complementary CDRL3 loop. Specific hydrogen bonding with the triazolyl ring precludes recognition of pTyr and other phosphoamino acids by these mAbs. Kinetic binding experiments reveal that the affinity of pHis mAbs for pHis and pTza peptides is submicromolar. Bound pHis mAbs also shield the pHis peptides from rapid dephosphorylation. The epitope-paratope interactions illustrate how these anti-pHis antibodies are useful for a wide range of research techniques and this structural information can be utilized to improve the specificity and affinity of these antibodies toward a variety of pHis substrates to understand the role of histidine phosphorylation in healthy and diseased states.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Histidina/análogos & derivados , Peptídeos/química , Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Reações Cruzadas/imunologia , Histidina/química , Histidina/imunologia , Fragmentos Fab das Imunoglobulinas/química , Isomerismo , Cinética , Fosfatos/metabolismo , Coelhos , Relação Estrutura-Atividade
8.
Plant Cell Rep ; 40(4): 723-733, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33582859

RESUMO

KEY MESSAGE: Plant expression platform is the new source of immunoglobulin G (IgG) toward small low-molecular-weight targets. The plant-made monoclonal antibody-based immunoassay exhibits comparable analytical performance with hybridoma antibody. Immunoassays for small molecules are efficiently applied for monitoring of serum therapeutic drug concentration, food toxins, environmental contamination, etc. Immunoglobulin G (IgG) is usually produced using hybridoma cells, which requires complicated procedures and expensive equipment. Plants can act as alternative and economic hosts for IgG production. However, the production of free hapten (low-molecular-weight target)-recognizing IgG from plants has not been successfully developed yet. The current study aimed at creating a plant platform as an affordable source of IgG for use in immunoassays and diagnostic tools. The functional IgG was expressed in Nicotiana benthamiana leaves infiltrated with Agrobacterium tumefaciens strain GV3101 with recombinant geminiviral vectors (pBY3R) occupying chimeric anti-miroestrol IgG genes. The appropriate assembly between heavy and light chains was achieved, and the yield of expression was 0.57 µg/g fresh N. benthamiana leaves. The binding characteristics of the IgG to miroestrol and binding specificity to related compounds, such as isomiroestrol and deoxymiroestrol, were similar to those of hybridoma-produced IgG (monoclonal antibody, mAb). The plant-based mAbs exhibited high sensitivity for miroestrol (IC50, 23.2 ± 2.1 ng/mL), precision (relative standard deviation ≤ 5.01%), and accuracy (97.8-103% recovery), as determined using quantitative enzyme-linked immunosorbent assay. The validated enzyme-linked immunosorbent assay was applicable to determine miroestrol in plant samples. Overall, the plant-produced functional IgG conserved the binding activity and specificity of the parent IgG derived from mammalian cells. Therefore, the plant expression system may be an efficient and affordable platform for the production of antibodies against low-molecular-weight targets in immunoassays.


Assuntos
Imunoensaio/métodos , Imunoglobulina G/genética , Nicotiana/genética , Engenharia de Proteínas/métodos , Esteroides/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/imunologia , Extratos Vegetais/análise , Plantas Geneticamente Modificadas , Pueraria/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Esteroides/análise
9.
Sci Rep ; 11(1): 1864, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479388

RESUMO

The ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre-clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret-reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets. Here, we describe the screening and development of ferret-reactive BCL6, CXCR5 and PD-1 monoclonal antibodies. We found two commercial anti-BCL6 antibodies (clone K112-91 and clone IG191E/A8) had cross-reactivity with lymph node cells from influenza-infected ferrets. We next developed two murine monoclonal antibodies against ferret CXCR5 (clone feX5-C05) and PD-1 (clone fePD-CL1) using a single B cell PCR-based method. We were able to clearly identify Tfh cells in lymph nodes from influenza infected ferrets using these antibodies. The development of ferret Tfh marker antibodies and the identification of ferret Tfh cells will assist the evaluation of vaccine-induced Tfh responses in the ferret model and the design of novel vaccines against the infection of influenza and other viruses, including SARS-CoV2.


Assuntos
Anticorpos Monoclonais/imunologia , Furões/imunologia , Ensaios de Triagem em Larga Escala/métodos , Células T Auxiliares Foliculares/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Vacinas contra COVID-19/imunologia , Reações Cruzadas/imunologia , Humanos , Vacinas contra Influenza/imunologia , Linfonodos/imunologia , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Receptores CXCR5/imunologia , Vacinas Virais/imunologia
10.
AAPS J ; 23(1): 16, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404777

RESUMO

There is an urgent demand to develop new technologies to characterize immunogenicity to biotherapeutics. Here, we developed an immunocapture LC-MS assay to isotype and semi-quantify monkey anti-drug antibodies (ADAs) to fully human monoclonal antibody (mAb) drugs. ADAs were isolated from serum samples using an immunocapture step with the Fab of the full-length mAb cross-linked to magnetic beads to minimize matrix interference. A positive monoclonal antibody control against the human immunoglobulin kappa light chain was used as a calibration standard for ADA quantitation. The final LC-MS method contains 17 multiple reaction monitoring (MRM) transitions and an optimized 15-min LC method. The results suggested that IgG1 was the most abundant isotype in ADA-positive samples. IgG2 and IgG4 were identified at lower levels, whereas IgG3 and IgA levels were only observed at very minor levels. In addition, levels of total ADA measured by the LC-MS assay were comparable to results obtained using a traditional ligand binding assay (LBA). The LC-MS ADA assay enabled rapid immunogenicity assessment with additional isotype information that LBAs cannot provide.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Produtos Biológicos/imunologia , Imunoglobulina G/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Anticorpos Neutralizantes/imunologia , Produtos Biológicos/administração & dosagem , Produtos Biológicos/efeitos adversos , Produtos Biológicos/farmacocinética , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaio de Imunoadsorção Enzimática , Meia-Vida , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Injeções Intravenosas , Macaca fascicularis
11.
Drug Test Anal ; 13(4): 762-769, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33217196

RESUMO

Higenamine (HM), an alkaloid found in various plant species, is obtained when norcoclaurine synthase selectively condenses dopamine and 4-hydroxyphenylacetaldehyde to give (S)-higenamine ((S)-HM). The World Anti-doping Agency has listed HM as a prohibited agent in athletics. As a result, many commercial, academic, and regulatory bodies across the globe are invested in finding a rapid method for (S)-HM detection. In the current study, a lateral flow immunoassay (LFA) was developed in which the relevant biosensor was generated as a conjugate of the monoclonal antibody against (S)-HM (namely, MAb E8) and colloidal gold nanoparticles. The HM-γ-globulin conjugates and rabbit anti-mouse IgG antibodies were placed in the test and control zones, respectively. The free (S)-HM molecules in the samples and the immobilized HM-γ-globulin conjugates competitively reacted with the developed biosensor in the LFA. An inverse relationship existed between the biosensors' visible response, which was noted by the variation in the intensity of a pinkish spot in the test zone, and the content of the free (S)-HM. The limit of detection of the developed LFA was 156 ng/mL. Various validation methods confirmed that the LFA exhibited sufficient sensitivity, selectivity, repeatability, and reliability, making it ideal for (S)-HM detection in plant samples and plant-containing products. The developed system required only a small sample volume (20 µL) and a concise sample preparation time compared with conventional LFAs. Thus, the LFA reported in this study could serve as a rapid response kit for the detection of (S)-HM in plant samples.


Assuntos
Alcaloides/análise , Dopagem Esportivo/prevenção & controle , Imunoensaio/métodos , Tetra-Hidroisoquinolinas/análise , Alcaloides/imunologia , Anticorpos Monoclonais/imunologia , Técnicas Biossensoriais , Coloide de Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Preparações de Plantas/análise , Preparações de Plantas/química , Reprodutibilidade dos Testes , Tetra-Hidroisoquinolinas/imunologia
12.
Front Immunol ; 11: 584959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312174

RESUMO

PD-1/PD-L1 pathway plays a role in inhibiting immune response. Therapeutic antibodies aimed at blocking the PD-1/PD-L1 interaction have entered clinical development and have been approved for a variety of cancers. However, the clinical benefits are reduced to a group of patients. The research in combined therapies, which allow for a greater response, is strongly encouraging. We previously characterized a polyphenol-rich extract from Caesalpinia spinosa (P2Et) with antitumor activity in both melanoma and breast carcinoma, as well as immunomodulatory activity. We hypothesize that the combined treatment with P2Et and anti-PD-L1 can improve the antitumor response through an additive antitumor effect. We investigated the antitumor and immunomodulatory activity of P2Et and anti-PD-L1 combined therapy in B16-F10 melanoma and 4T1 breast carcinoma. We analyzed tumor growth, hematologic parameters, T cell counts, cytokine expression, and T cell cytotoxicity. In the melanoma model, combined P2Et and anti-PD-L1 therapy has the following effects: decrease in tumor size; increase in the number of activated CD4+ and CD8+ T cells; decrease in the number of suppressor myeloid cells; increase in PD-L1 expression; decrease in the frequency of CD8+ T cell expressing PD-1; improvement in the cytotoxic activity of T cells; and increase in the IFN γ secretion. In the breast cancer model, P2Et and PD-L1 alone or in combination show antitumor effect with no clear additive effect. This study shows that combined therapy of P2Et and anti-PD-L1 can improve antitumor response in a melanoma model by activating the immune response and neutralizing immunosuppressive mechanisms.


Assuntos
Anticorpos Monoclonais/imunologia , Antígeno B7-H1/imunologia , Caesalpinia/imunologia , Taninos Hidrolisáveis/imunologia , Fatores Imunológicos/imunologia , Melanoma Experimental/imunologia , Extratos Vegetais/imunologia , Animais , Antineoplásicos/imunologia , Neoplasias da Mama/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Humanos , Imunidade/imunologia , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polifenóis/imunologia
13.
Front Immunol ; 11: 587825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262768

RESUMO

Widow spiders are among the few spider species worldwide that can cause serious envenoming in humans. The clinical syndrome resulting from Latrodectus spp. envenoming is called latrodectism and characterized by pain (local or regional) associated with diaphoresis and nonspecific systemic effects. The syndrome is caused by α-latrotoxin, a ~130 kDa neurotoxin that induces massive neurotransmitter release. Due to this function, α-latrotoxin has played a fundamental role as a tool in the study of neuroexocytosis. Nevertheless, some questions concerning its mode of action remain unresolved today. The diagnosis of latrodectism is purely clinical, combined with the patient's history of spider bite, as no analytical assays exist to detect widow spider venom. By utilizing antibody phage display technology, we here report the discovery of the first recombinant human monoclonal immunoglobulin G antibody (TPL0020_02_G9) that binds α-latrotoxin from the Mediterranean black widow spider (Latrodectus tredecimguttatus) and show neutralization efficacy ex vivo. Such antibody can be used as an affinity reagent for research and diagnostic purposes, providing researchers with a novel tool for more sophisticated experimentation and analysis. Moreover, it may also find therapeutic application in future.


Assuntos
Anticorpos Monoclonais , Viúva Negra/imunologia , Imunoglobulina G , Venenos de Aranha , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Masculino , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos Wistar , Venenos de Aranha/imunologia , Venenos de Aranha/toxicidade
14.
AAPS J ; 23(1): 4, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33210183

RESUMO

Tovetumab (MEDI-575) is a fully human IgG2κ monoclonal antibody that specifically binds to human platelet-derived growth factor receptor alpha (PDGFRα) and blocks receptor signal transduction by PDGF ligands. The affinity of tovetumab determined using surface plasmon resonance technology and flow cytometry demonstrated comparable binding affinity for human and monkey PDGFRα. In single and repeat-dose monkey pharmacokinetic-pharmacodynamic (PK-PD) studies, tovetumab administration resulted in dose-dependent elevation of circulating levels of PDGF-AA, a member of the PDGF ligand family, due to displacement of PDGF-AA from PDGFRα by tovetumab and subsequent blockade of PDGFRα-mediated PDGF-AA degradation. As such, PDGF-AA accumulation is an indirect measurement of receptor occupancy and is a novel PD biomarker for tovetumab. The nonlinear PK of tovetumab and dose-dependent increase in circulating PDGF-AA profiles were well described by a novel mechanistic model, in which tovetumab and PDGF-AA compete for the binding to PDGFRα. To facilitate translational simulation, the internalization half-lives of PDGF-AA and tovetumab upon binding to PDGFRα were determined using confocal imaging to be 14 ± 4 min and 30 ± 8 min, respectively. By incorporating PDGFRα internalization kinetics, the model not only predicted the target receptor occupancy by tovetumab, but also the biologically active agonistic ligand-receptor complex. This work described a novel PD biomarker approach applicable for anti-receptor therapeutics and the first mechanistic model to delineate the in vivo tri-molecular system of a drug, its target receptor, and a competing endogenous ligand, which collectively have been used for optimal dose recommendation supporting clinical development of tovetumab.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Neoplasias/tratamento farmacológico , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/isolamento & purificação , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Biomarcadores Farmacológicos/análise , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Macaca fascicularis , Camundongos , Modelos Biológicos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
15.
Mol Immunol ; 128: 10-21, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045539

RESUMO

The production of specific antibodies able to recognize allergens from different sources or block interactions between allergens and antibodies mediating allergic reactions is crucial for developing successful tools for diagnostics and therapeutics. Panallergens are highly conserved proteins present in widely different species, implicated in relevant cross-reactions. The panallergen latex profilin (Hev b 8) has been associated with the latex-food-pollen syndrome. We generated five monoclonal IgGs and one IgE from murine hybridomas against recombinant Hev b 8 and evaluated their interaction with this allergen using ELISA and biolayer interferometry (BLI). Affinity purified mAbs exhibited high binding affinities towards rHev b 8, with KD1 values ranging from 10-10 M to 10-11 M. Some of these antibodies also recognized the recombinant profilins from maize and tomato (Zea m 12 and Sola l 1), and the ash tree pollen (Fra e 2). Competition ELISA demonstrated that some mAb pairs could bind simultaneously to rHev b 8. Using BLI, we detected competitive, non-competitive, and partial-competition interactions between pairs of mAbs with rHev b 8, suggesting the existence of at least two non-overlapping epitopes on the surface of this allergen. Three-dimensional models of the Fv of 1B4 and 2D10 IgGs and docking simulations of these Fvs with rHev b 8 revealed these epitopes. Furthermore, these two mAbs inhibited the interaction of polyclonal IgE and IgG4 antibodies from profilin-allergic patients with rHev b 8, indicating that the mAbs and the antibodies present in sera from allergic patients bind to overlapping epitopes on the allergen. These mAbs can be useful tools for immune-localization studies, immunoassay development, or standardization of allergenic products.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Plantas/imunologia , Reações Cruzadas/imunologia , Epitopos/imunologia , Látex/imunologia , Profilinas/imunologia , Alérgenos/imunologia , Sequência de Aminoácidos , Animais , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Hipersensibilidade ao Látex/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Plantas/imunologia , Pólen/imunologia
16.
Front Immunol ; 11: 1986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983137

RESUMO

Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.


Assuntos
Anticorpos Monoclonais , Técnicas de Visualização da Superfície Celular , Desenvolvimento de Medicamentos/métodos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Especificidade de Anticorpos/genética , Especificidade de Anticorpos/imunologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Engenharia Genética , Ensaios de Triagem em Larga Escala , Humanos , Terapia de Alvo Molecular , Pesquisa Translacional Biomédica , Resultado do Tratamento
17.
Acc Chem Res ; 53(10): 2044-2054, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32877161

RESUMO

Immunotherapy has attracted significant interest because of its tremendous potential in cancer therapy. The recent advances in the identification of cancer-associated neoantigens, chimeric antigen receptor (CAR) T-cell and immune checkpoint blockade (ICB), have revolutionized the field of cancer immunotherapy. Cancer immunotherapeutic agents typically exhibit strong immune activation or inhibition activity, thereby inducing robust biological effect even when administered at a small dosage. However, in most cases, cancer immunotherapeutic targets are not cancer specific. Some of them are also expressed in nonmalignant normal tissues and the undesired release of the cancer immunotherapeutic agents into these normal tissues may lead to severe side effects. Thus, the on-demand release of the cancer immunotherapeutic agents into the target site is critical to achieving efficient antitumor immune responses while minimizing the side effects.In this Account, we introduce the recent progress of our group and others on the development of stimuli-responsive platforms for cancer immunotherapy. Stimuli-responsive platforms have been constructed for on-demand release of payloads in a temporally and spatially controllable manner. First, we give a brief introduction to the endogenous and exogenous stimuli that are employed to trigger the release of cancer immunotherapeutic agents. The chemical design strategies to construct the specific stimuli-responsive delivery systems are highlighted. Moreover, the recently developed representative stimuli-responsive platforms for the delivery of immune checkpoint inhibitors, indoleamine 2,3-dioxygenase (IDO) inhibitors, stimulator of interferon genes (STING) agonists, and near-infrared photoimmunotherapy (NIR-PIT) agents are discussed in detail. Meanwhile, we summarize the general chemical design for constructing stimuli-responsive delivery platforms targeting immune targets at distinct locations. Lastly, the probable issues on the clinical translation of these stimuli-responsive platforms for cancer immunotherapy are outlined. Since we are still on the way of exploring the immune system and optimizing the chemical design of biomaterials, we hope the information in this account can provide some valuable references for the development of optimal cancer immunotherapeutics.


Assuntos
Imunoterapia , Neoplasias/terapia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Morte Celular Imunogênica , Imunoterapia Adotiva , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia , Espécies Reativas de Oxigênio/metabolismo
18.
Chem Biol Interact ; 331: 109270, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991862

RESUMO

Hyperuricosuria is associated with kidney stone disease, especially uric acid (UA) and calcium oxalate (CaOx) types. Nevertheless, detailed mechanisms of hyperuricosuria-induced kidney stone formation remained unclear. This study examined changes in cellular proteome and function of renal tubular cells after treatment with high-dose UA for 48-h. Quantitative proteomics using 2-DE followed by nanoLC-ESI-ETD MS/MS tandem mass spectrometry revealed significant changes in levels of 22 proteins in the UA-treated cells. These proteomic data could be confirmed by Western blotting. Functional assays revealed an increase in intracellular ATP level and enhancement of tissue repairing capability in the UA-treated cells. Interestingly, levels of HSP70 and HSP90 (the known receptors for CaOx crystals) were increased in apical membranes of the UA-treated cells. CaOx crystal-cell adhesion assay revealed significant increase in CaOx-binding capability of the UA-treated cells, whereas neutralization of the surface HSP70 and/or HSP90 using their specific monoclonal antibodies caused significant reduction in such binding capability. These findings highlighted changes in renal tubular cells in response to high-dose UA that may, at least in part, explain the pathogenic mechanisms of hyperuricosuria-induced mixed kidney stone disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Oxalato de Cálcio/metabolismo , Proteoma/efeitos dos fármacos , Ácido Úrico/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Oxalato de Cálcio/química , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cristalização , Cães , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP70/metabolismo , Cálculos Renais/etiologia , Cálculos Renais/patologia , Células Madin Darby de Rim Canino/citologia , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/metabolismo , Mapas de Interação de Proteínas , Proteoma/análise , Espectrometria de Massas em Tandem , Ácido Úrico/urina
19.
FASEB J ; 34(10): 13918-13934, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860273

RESUMO

Interphotoreceptor retinoid-binding protein (IRBP) is a highly expressed protein secreted by rod and cone photoreceptors that has major roles in photoreceptor homeostasis as well as retinoid and polyunsaturated fatty acid transport between the neural retina and retinal pigment epithelium. Despite two crystal structures reported on fragments of IRBP and decades of research, the overall structure of IRBP and function within the visual cycle remain unsolved. Here, we studied the structure of native bovine IRBP in complex with a monoclonal antibody (mAb5) by cryo-electron microscopy, revealing the tertiary and quaternary structure at sufficient resolution to clearly identify the complex components. Complementary mass spectrometry experiments revealed the structure and locations of N-linked carbohydrate post-translational modifications. This work provides insight into the structure of IRBP, displaying an elongated, flexible three-dimensional architecture not seen among other retinoid-binding proteins. This work is the first step in elucidation of the function of this enigmatic protein.


Assuntos
Proteínas do Olho/química , Proteínas de Ligação ao Retinol/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo/química , Bovinos , Microscopia Crioeletrônica , Proteínas do Olho/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação ao Retinol/imunologia , Imagem Individual de Molécula
20.
EBioMedicine ; 59: 102867, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32651162

RESUMO

BACKGROUND: Chronic and recurrent bacterial diseases are recalcitrant to treatment due to the ability of the causative agents to establish biofilms, thus development of means to prevent or resolve these structures are greatly needed. Our approach targets the DNABII family of bacterial DNA-binding proteins, which serve as critical structural components within the extracellular DNA scaffold of biofilms formed by all bacterial species tested to date. DNABII-directed antibodies rapidly disrupt biofilms and release the resident bacteria which promote their subsequent clearance by either host immune effectors or antibiotics that are now effective at a notably reduced concentration. METHODS: First, as a therapeutic approach, we used intact IgG or Fab fragments against a chimeric peptide immunogen designed to target protective epitopes within the DNA-binding tip domains of integration host factor to disrupt established biofilms in vitro and to mediate resolution of existing disease in vivo. Second, we performed preventative active immunisation with the chimeric peptide to induce the formation of antibody that blocks biofilm formation and disease development in a model of viral-bacterial superinfection. Further, toward the path for clinical use, we humanised a monoclonal antibody against the chimeric peptide immunogen, then characterised and validated that it maintained therapeutic efficacy. FINDINGS: We demonstrated efficacy of each approach in two well-established pre-clinical models of otitis media induced by the prevalent respiratory tract pathogen nontypeable Haemophilus influenzae, a common biofilm disease. INTERPRETATION: Collectively, our data revealed two approaches with substantive efficacy and potential for broad application to combat diseases with a biofilm component. FUNDING: Supported by R01 DC011818 to LOB and SDG.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Biofilmes/efeitos dos fármacos , DnaB Helicases/antagonistas & inibidores , Peptídeos/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Proteínas de Bactérias/imunologia , DnaB Helicases/imunologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Peptídeos/química , Peptídeos/imunologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA