Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 36(11): e23176, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35968984

RESUMO

The current study was set out to investigate the mechanism by which silenced long noncoding RNA (lncRNA) colon cancer-associated transcript 2 (CCAT2) modulates the cell growth, migration, invasion, and drug sensitivity of breast cancer (BC) cells to 5-fluorouracil (5-Fu) with the involvement of miR-145 and p53. First, high CCAT2 expression was presented in BC cells and tissues. Subsequently, the links between CCAT2 expression and BC clinicopathological features were analyzed. Highly-expressed CCAT2 was linked to lymph node metastasis, positive progesterone receptor, estrogen receptor, and Ki-67 of BC cells. Then, the gain- and loss-of-function approaches were performed to measure the regulatory role of CCAT2 in the biological processes of BC cells. Silencing of CCAT2 suppressed in vitro cell growth, proliferation, invasion, migration abilities, and epithelial-mesenchymal transformation, increased cell apoptosis, and enhanced drug sensitivity of BC cells. Silencing of CCAT2 upregulated miR-145, which was poorly expressed in drug-resistant BC cells. p53 can bind to the miR-145 promoter region and increase miR-145 expression. Upregulation of miR-145 induced by silencing of CCAT2 can be invalidated by p53-siRNA. To conclude, p53-induced activation of miR-145 could be inhibited by CCAT2, while overexpression of CCAT2 could improve the drug resistance of BC cells to 5-Fu.


Assuntos
Antimetabólitos Antineoplásicos , Neoplasias da Mama , Resistência a Medicamentos , Fluoruracila , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/genética , Resistência a Medicamentos/genética , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Antimetabólitos Antineoplásicos/farmacologia
2.
Adv Sci (Weinh) ; 9(22): e2105077, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717675

RESUMO

Chemoresistance is one of the leading causes of therapeutic failure in gastric cancer (GC) treatment. Recent studies have shown lncRNAs play pivotal roles in regulating GC chemoresistance. Nanocarriers delivery of small interfering RNAs (siRNAs) to silence cancer-related genes has become a novel approach to cancer treatment research. However, finding target genes and developing nanosystems capable of selectively delivering siRNAs for disease treatment remains a challenge. In this study, a novel lncRNA TMEM44-AS1 that is related to 5-FU resistance is identified. TMEM44-AS1 has the ability to bind to and sponge miR-2355-5p, resulting in the upregulated PPP1R13L expression and P53 pathway inhibition. Next, a new nanocarrier called chitosan-gelatin-EGCG (CGE) is developed, which has a higher gene silencing efficiency than lipo2000, to aid in the delivery of a si-TMEM44-AS1 can efficiently silence TMEM44-AS1 expression to synergistically reverse 5-FU resistance in GC, leading to a markedly enhanced 5-FU therapeutic effect in a xenograft mouse model of GC. These findings indicate that TMEM44-AS1 may estimate 5-FU therapy outcome among GC cases, and that systemic si-TMEM44-AS1 delivery combined with 5-FU therapy is significant in the treatment of patients with recurrent GC.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Inativação Gênica , Nanopartículas , RNA , Neoplasias Gástricas , Animais , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Linhagem Celular Tumoral , Quitosana/farmacologia , Quitosana/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Gelatina/farmacologia , Gelatina/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Inativação Gênica/efeitos dos fármacos , Inativação Gênica/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/genética , Nanopartículas/uso terapêutico , RNA/genética , RNA/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Anticancer Res ; 42(2): 837-844, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35093881

RESUMO

BACKGROUND/AIM: Chemotherapy is used for recurrent and metastatic colorectal cancer, but the response rate of 5-fluorouracil (5-FU), the standard treatment for colorectal cancer, is low. We hypothesized that thymidine phosphorylase (TYMP) expression, a rate-limiting activating enzyme of 5-FU, is regulated by methylation of the gene promoter region, and demethylation of TYMP would increase sensitivity to 5-FU. MATERIALS AND METHODS: HCT116 colon cancer cells were treated with 5-aza-2'-deoxycytidine, a demethylating agent, and changes in TYMP transcription and sensitivity to 5-FU were evaluated. RESULTS: TYMP expression increased over 54-fold in HCT116 transfected with TYMP. The cytotoxicity of 5-FU increased up to 5.5-fold. In comparison, in HCT116 treated with 5-aza-2'-deoxycytidine, TYMP expression increased 5.8-fold. However, the cytotoxicity of 5-FU remained unchanged. CONCLUSION: Demethylating agent alone did not promote the cytotoxicity of 5-FU against colorectal cancer. To further increase the sensitivity to 5-FU, combination with adjuvant therapy focusing on metabolic pathways other than the TYMP pathway appear necessary.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/farmacologia , Timidina Fosforilase/metabolismo , Antimetabólitos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Decitabina/farmacologia , Desmetilação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/uso terapêutico , Humanos , Timidina Fosforilase/genética , Transcrição Gênica
4.
Leukemia ; 36(2): 348-360, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341479

RESUMO

Despite progress in the treatment of acute lymphoblastic leukemia (ALL), T-cell ALL (T-ALL) has limited treatment options, particularly in the setting of relapsed/refractory disease. Using an unbiased genome-scale CRISPR-Cas9 screen we sought to identify pathway dependencies for T-ALL which could be harnessed for therapy development. Disruption of the one-carbon folate, purine and pyrimidine pathways scored as the top metabolic pathways required for T-ALL proliferation. We used a recently developed inhibitor of SHMT1 and SHMT2, RZ-2994, to characterize the effect of inhibiting these enzymes of the one-carbon folate pathway in T-ALL and found that T-ALL cell lines were differentially sensitive to RZ-2994, with the drug inducing a S/G2 cell cycle arrest. The effects of SHMT1/2 inhibition were rescued by formate supplementation. Loss of both SHMT1 and SHMT2 was necessary for impaired growth and cell cycle arrest, with suppression of both SHMT1 and SHMT2 inhibiting leukemia progression in vivo. RZ-2994 also decreased leukemia burden in vivo and remained effective in the setting of methotrexate resistance in vitro. This study highlights the significance of the one-carbon folate pathway in T-ALL and supports further development of SHMT inhibitors for treatment of T-ALL and other cancers.


Assuntos
Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ácido Fólico/metabolismo , Glicina Hidroximetiltransferase/antagonistas & inibidores , Metotrexato/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Ciclo Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biomed Pharmacother ; 143: 112248, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649364

RESUMO

Moringa oleifera, Tropaeolum tuberosum and Annona cherimola are medicinal plants traditionally used in Ecuador. However, their therapeutic properties are not completely known. We analyzed chromatographically ethanolic extracts of the seeds of M. oleifera, A. cherimola and the tubers of T. tuberosum; all presented a high content of polyphenols. The extract of A. cherimola showed the highest antioxidant activity and M. oleifera had the highest capacity to enhance the activity of detoxifying enzymes such as glutathione S-transferase and quinone oxidoreductase. The antitumor effect of these extracts was evaluated in vitro with colorectal cancer (CRC) cell lines T84, HCT-15, SW480 and HT-29, as well as with cancer stem cells (CSCs). A. cherimola and M. oleifera extracts presented the lowest IC50 in T-84 and HCT-15 (resistant) cells, respectively, as well as the highest level of inhibition of proliferation in multicellular tumor spheroids of HCT-15 cells. The inhibitory effect on CSCs is noteworthy because in vivo, these cells are often responsible for cancer recurrences and resistance to chemotherapy. Moreover, all extracts showed a synergistic activity with 5-Fu. The antiproliferative mechanism of the extracts was related to overexpression of caspases 9, 8 and 3 and increased production of reactive oxygen species. In addition, we observed cell death by autophagy in M. oleifera and T. tuberosum extracts. Therefore, these ethanolic extracts are excellent candidates for future molecular analysis of the presence of bioactive compounds and in vivo studies which could improve colon cancer therapy.


Assuntos
Annona , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Moringa oleifera , Extratos Vegetais/farmacologia , Tropaeolum , Annona/química , Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antioxidantes/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sinergismo Farmacológico , Etanol/química , Fluoruracila/farmacologia , Células HT29 , Humanos , Moringa oleifera/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Solventes/química , Tropaeolum/química
6.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502219

RESUMO

Colorectal cancer (CRC) is the second deadliest cancer worldwide despite significant advances in both diagnosis and therapy. The high incidence of CRC and its poor prognosis, partially attributed to multi-drug resistance and antiapoptotic activity of cancer cells, arouse strong interest in the identification and development of new treatments. S-Adenosylmethionine (AdoMet), a natural compound and a nutritional supplement, is well known for its antiproliferative and proapoptotic effects as well as for its potential in overcoming drug resistance in many kinds of human tumors. Here, we report that AdoMet enhanced the antitumor activity of 5-Fluorouracil (5-FU) in HCT 116p53+/+ and in LoVo CRC cells through the inhibition of autophagy, induced by 5-FU as a cell defense mechanism to escape the drug cytotoxicity. Multiple drug resistance is mainly due to the overexpression of drug efflux pumps, such as P-glycoprotein (P-gp). We demonstrate here that AdoMet was able to revert the 5-FU-induced upregulation of P-gp expression and to decrease levels of acetylated NF-κB, the activated form of NF-κB, the major antiapoptotic factor involved in P-gp-related chemoresistance. Overall, our data show that AdoMet, was able to overcome 5-FU chemoresistance in CRC cells by targeting multiple pathways such as autophagy, P-gp expression, and NF-κB signaling activation and provided important implications for the development of new adjuvant therapies to improve CRC treatment and patient outcomes.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , S-Adenosilmetionina/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , NF-kappa B/genética , Células Tumorais Cultivadas
7.
Phytomedicine ; 91: 153711, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34450377

RESUMO

BACKGROUND: Gemcitabine (GCB) is a first-line chemotherapeutic drug for pancreatic cancer (PCa). However, the resistance begins developing within weeks of chemotherapy. SPINK1 overexpression enhances resistance to chemotherapy. In a recent study, our laboratory established that the oleanolic acid (OA) derivative, K73-03, had a strong inhibitory effect on a SPINK1 overexpressed PCa cells. PURPOSE: In our current study, we studied the enhancement of GCB inhibitory effect by K73-03, a new novel OA derivative, alone or in combination with GCB on the GCB-resistant PCa cells by mitochondrial damage through regulation of the miR-421/SPINK1. METHODS: We detected the binding between miR-421 and SPINK1-3'-UTR in GCB-resistant PCa cells using Luciferase reporter assays. Cells viability, apoptosis, migration, and mitochondrial damage were investigated. RESULTS: The results demonstrated that the combination of K73-03 and GCB suppressed the growth of AsPC-1 and MIA PaCa-2 cells synergistically, with or without GCB resistance. Mechanistic findings showed that a combination of K73-03 and GCB silences SPINK1 epigenetically by miR-421 up-regulating, which leads to mitochondrial damage and inducing apoptosis in GCB-resistant PCa cells. CONCLUSION: We found an interesting finding that the 73-03 in combination with GCB can improve GCB efficacy and decrease PCa resistance, which induced apoptosis and mitochondrial damage through epigenetic inhibition of SPINK1 transcription by miR-421 up-regulation. This was the first study that used OA derivatives on GCB-resistant PCa cells, so this combined strategy warrants further investigation.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , MicroRNAs , Ácido Oleanólico/farmacologia , Neoplasias Pancreáticas , Inibidor da Tripsina Pancreática de Kazal , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , MicroRNAs/genética , Ácido Oleanólico/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Inibidor da Tripsina Pancreática de Kazal/genética , Gencitabina
8.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445183

RESUMO

Colorectal cancer (CRC) is characterized by genetic heterogeneity and is often diagnosed at an advanced stage. Therefore, there is a need to identify novel predictive markers. Yin Yang 1 (YY1) is a transcription factor playing a dual role in cancer. The present study aimed to investigate whether YY1 expression levels influence CRC cell response to therapy and to identify the transcriptional targets involved. The diagnostic and prognostic values of YY1 and the identified factor(s) in CRC patients were also explored. Silencing of YY1 increased the resistance to 5-Fluorouracil-induced cytotoxicity in two out of four CRC cells with different genotypes. BCL2L15/Bfk pro-apoptotic factor was found selectively expressed in the responder CRC cells and downregulated upon YY1 knockdown. CRC dataset analyses corroborated a tumor-suppressive role for both YY1 and BCL2L15 whose expressions were inversely correlated with aggressiveness. CRC single-cell sequencing dataset analyses demonstrated higher co-expression levels of both YY1 and BCL2L15 within defined tumor cell clusters. Finally, elevated levels of YY1 and BCL2L15 in CRC patients were associated with larger relapse-free survival. Given their observed anti-cancer role, we propose YY1 and BCL2L15 as candidate diagnostic and prognostic CRC biomarkers.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fator de Transcrição YY1/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos
9.
BMC Cancer ; 21(1): 756, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34187428

RESUMO

BACKGROUND: Chemotherapy regimens that include the utilization of gemcitabine are the standard of care in pancreatic cancer patients. However, most patients with advanced pancreatic cancer die within the first 2 years after diagnosis, even when treated with standard of care chemotherapy. This study aims to explore combination therapies that could boost the efficacy of standard of care regimens in pancreatic cancer patients. METHODS: In this study, we used PV-10, a 10% solution of rose bengal, to induce the death of human pancreatic tumor cells in vitro. Murine in vivo studies were carried out to examine the effectiveness of the direct injection of PV-10 into syngeneic pancreatic tumors in causing lesion-specific ablation. Intralesional PV-10 treatment was combined with systemic gemcitabine treatment in tumor-bearing mice to investigate the control of growth among treated tumors and distal uninjected tumors. The involvement of the immune-mediated clearance of tumors was examined in immunogenic tumor models that express ovalbumin (OVA). RESULTS: In this study, we demonstrate that the injection of PV-10 into mouse pancreatic tumors caused lesion-specific ablation. We show that the combination of intralesional PV-10 with the systemic administration of gemcitabine caused lesion-specific ablation and delayed the growth of distal uninjected tumors. We observed that this treatment strategy was markedly more successful in immunogenic tumors that express the neoantigen OVA, suggesting that the combination therapy enhanced the immune clearance of tumors. Moreover, the regression of tumors in mice that received PV-10 in combination with gemcitabine was associated with the depletion of splenic CD11b+Gr-1+ cells and increases in damage associated molecular patterns HMGB1, S100A8, and IL-1α. CONCLUSIONS: These results demonstrate that intralesional therapy with PV-10 in combination with gemcitabine can enhance anti-tumor activity against pancreatic tumors and raises the potential for this strategy to be used for the treatment of patients with pancreatic cancer.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Rosa Bengala/uso terapêutico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Rosa Bengala/farmacologia , Gencitabina , Neoplasias Pancreáticas
10.
Macromol Biosci ; 21(6): e2100039, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33818918

RESUMO

Despite the encouraging clinical responses of several human cancers to immunotherapy, the efficacy of this treatment remains limited by variable objective response rates and severe systemic immune-related adverse events. To overcome these issues, injectable hydrogels have been developed as local depots that permit the sustained release of single or multiple immunotherapy agents, including traditional immunomodulatory factors, immune checkpoint blocking antibodies, and exogenous immune cells. The antitumor efficacy of immunotherapy can also be enhanced by its combination with other therapeutic approaches, including chemotherapy, radiotherapy, and phototherapy. Despite local treatment strategies, potent systemic antitumor immune responses with low systemic toxicity can be obtained, leading to significant local and abscopal tumor-killing, reduced tumor metastasis, and the prevention of tumor recurrence. This review highlights recent progress in injectable hydrogel-based local depots for tumor immunotherapy and immune-based combination therapy. Moreover, the proposed mechanisms responsible for these antitumor effects are discussed.


Assuntos
Terapia Combinada/métodos , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/administração & dosagem , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias/terapia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Citocinas/farmacologia , Modelos Animais de Doenças , Humanos , Hidrogéis/química , Inibidores de Checkpoint Imunológico/farmacologia , Fatores Imunológicos/farmacologia , Imunoterapia/métodos , Quimioterapia de Indução/métodos , Terapia de Alvo Molecular/métodos , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Fototerapia/métodos
11.
Carcinogenesis ; 42(6): 814-825, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33822896

RESUMO

Colorectal cancer (CRC) ranks as the third leading cause of cancer-related deaths in the USA. 5-Fluorouracil (5FU)-based chemotherapeutic drug remains a mainstay of CRC treatment. Unfortunately, ~50-60% of patients eventually develop resistance to 5FU, leading to poor survival outcomes. Our previous work revealed that andrographis enhanced 5FU-induced anti-cancer activity, but the underlying mechanistic understanding largely remains unclear. In this study, we first established 5FU-resistant (5FUR) CRC cells and observed that combined treatment with andrographis-5FU in 5FUR cells exhibited superior effect on cell viability, proliferation, and colony formation capacity compared with individual treatments (P < 0.001). To identify key genes and pathways responsible for 5FU resistance, we analyzed genome-wide transcriptomic profiling data from CRC patients who either responded or did not respond to 5FU. Among a panel of differentially expressed genes, Dickkopf-1 (DKK1) overexpression was a critical event for 5FU resistance. Moreover, andrographis significantly downregulated 5FU-induced DKK1 overexpression, accompanied with enhanced anti-tumor effects by abrogating downstream Akt-phosphorylation. In line with in vitro findings, andrographis enhanced 5FU-induced anti-cancer activity in mice xenografts and patient-derived tumoroids (P < 0.01). In conclusion, our data provide novel evidence for andrographis-mediated reversal of 5FU resistance, highlighting its potential role as an adjunct to conventional chemotherapy in CRC.


Assuntos
Andrographis/química , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/química , Extratos Vegetais/farmacologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Nus , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Angew Chem Int Ed Engl ; 60(25): 14013-14021, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33768682

RESUMO

The presence of bacteria in the tumor can cause cancer resistance to chemotherapeutics. To fight against bacterium-induced drug resistance, herein we design self-traceable nanoreservoirs that are simultaneously loaded with gemcitabine (an anticancer drug) and ciprofloxacin (an antibiotic) and are decorated with hyaluronic acid for active tumor targeting. The nanoreservoirs have a pH-sensitive gate and an enzyme-responsive gate that can be opened in the acidic and hyaluronidase-abundant tumor microenvironment to control drug release rates. Moreover, the nanoreservoirs can specifically target the tumor regions without eliciting evident toxicity to normal tissues, kill the intratumoral bacteria, and inhibit the tumor growth even in the presence of the bacteria. Unexpectedly, the nanoreservoirs can activate T cell-mediated immune responses through promoting antigen-presenting dendritic cell maturation and depleting immunosuppressive myeloid-derived suppressor cells in bacterium-infected tumors.


Assuntos
Antibacterianos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Ciprofloxacina/farmacologia , Neoplasias do Colo/terapia , Desoxicitidina/análogos & derivados , Escherichia coli/efeitos dos fármacos , Animais , Antibacterianos/química , Antimetabólitos Antineoplásicos/química , Linhagem Celular , Ciprofloxacina/química , Neoplasias do Colo/microbiologia , Desoxicitidina/química , Desoxicitidina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Camundongos , Gencitabina
13.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760105

RESUMO

The present study aimed to determine the anticancer effect of the herbal mixture extract C5E in the pancreatic cancer cell line, PANC­1, in the absence or presence of gemcitabine treatment, a chemotherapeutic drug used for the treatment of pancreatic cancer. The anticancer effects of C5E, gemcitabine and C5E plus gemcitabine in PANC­1 cells following 72 h of treatment were investigated. The effect of each treatment on cell cycle arrest, apoptosis and the proportion of side population (SP) cells was determined using flow cytometric analysis following propidium iodide (PI), Annexin V­FITC/PI double staining and Hoechst 33342 staining, respectively. SP cells share similar characteristics to cancer stem­like cells, and a reduction in the SP is considered to be indicative of an anticancer effect. The percentage of SP cells and the cell viability of general PANC­1 cells were significantly decreased in response to all treatments. The percentage of SP cells was reduced from 8.2% (control) to 3.9, 7.2 and 5.1% following the treatment with C5E, gemcitabine and the co­treatment, respectively. All three treatments were discovered to inhibit cell viability by arresting the cell cycle at the S phase and promoted cell death by inducing early apoptosis, with the levels of apoptosis being increased from 1.9% (control) to 7.3, 2.5 and 12.0% following the treatment with C5E, gemcitabine and the co­treatment, respectively. The mRNA expression levels of sonic hedgehog, which is implicated in the development of certain types of cancer, were downregulated to a greater extent following the co­treatment with C5E and gemcitabine compared with the treatment with either C5E or gemcitabine alone. As the co­treatment with gemcitabine and C5E was more effective than each individual treatment, the present study suggested that the combined treatment may exhibit synergistic effects in PANC­1 cells.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Anexina A5/genética , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Fluoresceína-5-Isotiocianato/análogos & derivados , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Medicina Herbária , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Extratos Vegetais/química , Gencitabina
14.
Mol Cell Biochem ; 476(3): 1517-1527, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33392922

RESUMO

Latest strategies for cancer treatment primarily focus on the use of chemosensitizers to enhance therapeutic outcome. N-3 PUFAs have emerged as the strongest candidate for the prevention of colorectal cancer (CRC). Our previous studies have demonstrated that fish oil (FO) rich in n-3 PUFAs not only increased therapeutic potential of 5-Fluorouracil(5-FU) in colon cancer but also ameliorated its toxicity. Henceforth, the present study is designed to elucidate mechanistic insights of FO as a chemosensitizer to circumvent drug resistance in experimental colon carcinoma. The colon cancer was induced by 1,2-dimethylhydrazine(DMH)/dextran sulfate sodium(DSS) in male Balb/c mice and these animals were treated with 5-FU(12.5 mg/kg b.w.), FO(0.2 ml), or 5-FU + FO(12.5 mg/kg b.w + 0.2 ml) orally for 14 days. The molecular mechanism of overcoming 5-FU resistance using FO in colon cancer was delineated by estimating expression of cancer stem cell markers using flowcytometric method and drug transporters by immunohistochemistry and immunoblotting. Additionally, distribution profile of 5-FU and its cytotoxic metabolite, 5-FdUMP at target(colon), and non-target sites (serum, kidney, liver, spleen) was assessed using high-performance liquid chromatography(HPLC) method. The observations revealed that expression of CSCs markers was remarkably reduced after using fish oil along with 5-FU in carcinogen-treated animals. Interestingly, the use of FO alongwith 5-FU also significantly declined the expression of drug transporters (ABCB1,ABCC5) and consequently resulted in an increased cellular uptake of 5-FU and its metabolite, 5-FdUMP at target site (colon). It could be possibly associated with change in permeability of cell membrane owing to the alteration in membrane fluidity. The present study revealed the mechanistic insights of FO as a MDR revertant which successfully restored 5-FU-mediated chemoresistance in experimental colon carcinoma.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/química , Óleos de Peixe/uso terapêutico , Fluoruracila/farmacologia , 1,2-Dimetilidrazina , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Membrana Celular/metabolismo , Colo/citologia , Colo/efeitos dos fármacos , Neoplasias do Colo/induzido quimicamente , Sulfato de Dextrana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Células-Tronco Neoplásicas/citologia , Permeabilidade
15.
AAPS PharmSciTech ; 22(1): 36, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404935

RESUMO

It has been shown that long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) could act synergistically with 5-fluorouracil (5-FU) to kill cancer cells. To facilitate their simultaneous transport in the bloodstream, we synthesized, for the first time, liposomes (LIPUFU) containing 5-FU in the aqueous core and docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) at a ratio of 1:2 in the lipid bilayer. LIPUFU werestable with uniform size of 154 ± 4 nm, PDI of 0.19 ± 0.03 and zeta potential of -41 ± 2 mV. They contained 557 ± 210 µmol/l DHA, 1467 ± 362 µmol/l EPA, and 9.8 ± 1.1 µmol/l 5-FU. Control liposomes without (LIP) or with only 5-FU (LIFU) or n-3 PUFAs (LIPU) were produced in a similar way. The effects of these different liposomal formulations on the cell cycle, growth, and apoptosis were evaluated in two human colorectal cancer (CRC) cell lines differing in sensitivity to 5-FU, using fluorescence-activated cell sorting analyses. LIPUFU were more cytotoxic than LIP, LIFU, and LIPU in both LS174T (p53+/+, bax-/-) and HT-29 (p53-/0, bax+/+) cell lines. Similar to LIFU, LIPUFU increased the percentage of cells in S phase, apoptosis, and/or necrosis. The cytotoxic potential of LIPUFU was confirmed in vivo by tumor growth inhibition in the chicken chorioallantoic membrane model. These results suggest that LIPUFU could be considered to facilitate the simultaneous transport of 5-FU and n-3 PUFAs to the tumor site, in particular in case of CRC liver metastases.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Ácidos Graxos Ômega-3/análise , Fluoruracila/farmacologia , Lipossomos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Neoplasias Colorretais/metabolismo , Humanos
16.
Sci Rep ; 11(1): 1693, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462372

RESUMO

Cancer-associated fibroblasts (CAFs) have an important role in the tumor microenvironment. CAFs have the multifunctionality which strongly support cancer progression and the acquisition of therapeutic resistance by cancer cells. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that uses a highly selective monoclonal antibody (mAb)-photosensitizer conjugate. We developed fibroblast activation protein (FAP)-targeted NIR-PIT, in which IR700 was conjugated to a FAP-specific antibody to target CAFs (CAFs-targeted NIR-PIT: CAFs-PIT). Thus, we hypothesized that the control of CAFs could overcome the resistance to conventional chemotherapy in esophageal cancer (EC). In this study, we evaluated whether EC cell acquisition of stronger malignant characteristics and refractoriness to chemoradiotherapy are mediated by CAFs. Next, we assessed whether the resistance could be rescued by eliminating CAF stimulation by CAFs-PIT in vitro and in vivo. Cancer cells acquired chemoradiotherapy resistance via CAF stimulation in vitro and 5-fluorouracil (FU) resistance in CAF-coinoculated tumor models in vivo. CAF stimulation promoted the migration/invasion of cancer cells and a stem-like phenotype in vitro, which were rescued by elimination of CAF stimulation. CAFs-PIT had a highly selective effect on CAFs in vitro. Finally, CAF elimination by CAFs-PIT in vivo demonstrated that the combination of 5-FU and NIR-PIT succeeded in producing 70.9% tumor reduction, while 5-FU alone achieved only 13.3% reduction, suggesting the recovery of 5-FU sensitivity in CAF-rich tumors. In conclusion, CAFs-PIT could overcome therapeutic resistance via CAF elimination. The combined use of novel targeted CAFs-PIT with conventional anticancer treatments can be expected to provide a more effective and sensible treatment strategy.


Assuntos
Fibroblastos Associados a Câncer/imunologia , Neoplasias Esofágicas/terapia , Imunoterapia/métodos , Proteínas de Membrana/antagonistas & inibidores , Fototerapia/métodos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Endopeptidases/imunologia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Fluoruracila/farmacologia , Humanos , Imunoconjugados/farmacologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fármacos Fotossensibilizantes/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Cycle ; 19(23): 3249-3259, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33164645

RESUMO

Matrine is one of the major alkaloids extracted from Sophora flavescens Ait of the traditional Chinese medicine, was the main chemical ingredient of compounds of Kushen injection. The Matrine is considered as a promising therapeutic agent for curing nonsmall cell lung cancer (NSCLC), used either alone or combined with chemotherapeutic agents. In the present study, we focused on the possible roles of Matrine exerted on the self-renewal ability of stem-like cells of the NSCLC group, as well as the cytotoxicity of chemotherapeutic agents, in vitro and in vivo. Here we reported that Matrine inhibits cancer stem-like cell (CSC) properties through upregulation of Let-7b and suppression of the Wnt pathway. Overexpression of Let-7b suppressed the ability of tumorsphere formation, decreased Wnt pathway activation through inhibiting its transcriptional activity in lung CSCs. Further studies revealed that Let-7b directly targeted CCND1 and decreased its expression, whereas Matrine increased Let-7b levels and followed by inactivation of the CCND1/Wnt signaling pathway and inhibition of EMT, which was characterized by loss of epithelial markers and acquisition of a mesenchymal phenotype in lung CSCs. What is more, we found that Matrine increased Let-7b level in an endoribonuclease DICER1-dependent manner. And xenografts in nude mice evidenced that Matrine increased the sensitivity of lung CSCs to 5-FU and inhibited the accumulation of CCND1 in tumor tissues induced by 5-FU. Taken together, these data illustrate the role of Let-7b in regulating lung CSCs traits and DICER1/let-7/CCND1 axis in Matrine or in combination with 5-FU intervention of lung CSCs' expansion, helping to fulfill the anti-cancer action of Matrine.


Assuntos
Alcaloides/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclina D1/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Quinolizinas/farmacologia , Células A549 , Alcaloides/uso terapêutico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fluoruracila/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Quinolizinas/uso terapêutico , Matrinas
18.
Int J Biol Macromol ; 164: 4499-4515, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898537

RESUMO

Herein, thermo- and pH-sensitive pectin-graft-poly(dimethylaminoethyl methacrylate) copolymer-coated magnetic nanoparticles were synthesized via a green and rapid synthetic approach based on microwave irradiation. Firstly, a novel thermo- and pH-sensitive pectin-graft-poly(dimethylaminoethyl methacrylate) copolymer (Pec-g-PolyDMAEMA) was synthesized and then, Pec-g-PolyDMAEMA based magnetic nanoparticles (Pec-g-PolyDMAEMA@Fe3O4) were produced via microwave-assisted co-precipitation method. The thermo/pH/magnetic field multi-sensitive hybrid nanoparticle was characterized by techniques like TEM, VSM, FT-IR, and TGA/DSC. In vitro release studies of 5-Fluorouracil (FL) were carried out by altering the temperature (37 and 44°C), pH (5.5 and 7.4) and presence of an AMF. The FL release of Pec-g-PolyDMAEMA@Fe3O4@FL exhibited pH-sensitive behavior. They showed thermo/pH-sensitive FL release features with the greatest release of FL at 37°C (56%) than at 44°C (40%) and at pH of 7.4 (63%) than at pH of 5.5 (45%) within 48h. The FL release was also significantly increased (100%) with the presence of a 50 mT magnetic field. These results indicate that the developed Pec-g-PolyDMAEMA@Fe3O4 nanoparticles are promising in the application of multi-stimuli-sensitive delivery of drugs.


Assuntos
Materiais Revestidos Biocompatíveis , Portadores de Fármacos , Nanopartículas de Magnetita , Metacrilatos/química , Pectinas/química , Ácidos Polimetacrílicos/química , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/toxicidade , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/toxicidade , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Fluoruracila/toxicidade , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Campos Magnéticos , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/toxicidade , Camundongos , Transição de Fase , Ácidos Polimetacrílicos/síntese química , Ácidos Polimetacrílicos/farmacologia , Ácidos Polimetacrílicos/toxicidade , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
19.
Int J Biol Macromol ; 164: 4566-4574, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941901

RESUMO

Injectable hydrogels with self-healing ability present great potential for drug delivery. They could be facilely implanted in vivo and maintained structural and functional integrity till the hydrogel arriving at target sites. Herein, a series of injectable and self-healing composite hydrogel were developed as delivery vehicles for anti-cancer drug. The hydrogels were obtained with varying ratios of oxidized pectin/chitosan to nano γ-Fe2O3, which present excellent injectable, self-healing, magnetic, high biocompatible, and anti-cancer properties. The nano γ-Fe2O3 with particle size of about 0.25 µm loaded on the surface of hydrogel. Magnetic hysteresis loops of the hydrogel presented S-shape over the applied magnetics and the MS value was 4.86 emu/g. When pH dropped from 7.4 to 6.5 or temperature increased form 36 °C to 37 °C, the percentage increase in the swelling rate of OP4-400 reached to 35.89% and 25.13%, respectively. The composite hydrogels could continuously release water-soluble 5-FU for more than 12 h. In addition, the drug delivery systems indicated acceptable anti-cancer property though trace amounts of 5-FU were added in the hydrogel systems. The addition of γ-Fe2O3 could not only be beneficial to the targeting but also collectively enhance the anti-cancer property.


Assuntos
Quitosana/farmacologia , Compostos Férricos/farmacologia , Hidrogéis/farmacologia , Pectinas/farmacologia , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos , Quitosana/administração & dosagem , Portadores de Fármacos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/administração & dosagem , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Injeções , Células MCF-7 , Teste de Materiais , Nanopartículas Metálicas/administração & dosagem , Oxirredução , Pectinas/administração & dosagem , Solubilidade , Eletricidade Estática , Temperatura , Água
20.
Carcinogenesis ; 41(10): 1385-1394, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835374

RESUMO

Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality in the USA. As much as 50-60% of CRC patients develop resistance to 5-fluorouracil (5FU)-based chemotherapeutic regimens, attributing the increased overall morbidity and mortality. In view of the growing evidence that active principles in various naturally occurring botanicals can facilitate chemosensitization in cancer cells, herein, we undertook a comprehensive effort in interrogating the activity of one such botanical-andrographis-by analyzing its activity in CRC cell lines [both sensitive and 5FU resistant (5FUR)], a xenograft animal model and patient-derived tumor organoids. We observed that combined treatment with andrographis was synergistic and resulted in a significant and dose-dependent increase in the efficacy of 5FU in HCT116 and SW480 5FUR cells (P < 0.05), reduced clonogenic formation (P < 0.01) and increased rates of caspase-9-mediated apoptosis (P < 0.05). The genomewide expression analysis in cell lines led us to uncover that activation of ferroptosis and suppression of ß-catenin/Wnt-signaling pathways were the key mediators for the anti-cancer and chemosensitizing effects of andrographis. Subsequently, we validated our findings in a xenograft animal model, as well as two independent CRC patient-derived organoids-which confirmed that combined treatment with andrographis was significantly more effective than 5FU and andrographis alone and that these effects were in part orchestrated through dysregulated expression of key genes (including HMOX1, GCLC, GCLM and TCF7L2) within the ferroptosis and Wnt-signaling pathways. Collectively, our data highlight that andrographis might offer a safe and inexpensive adjunctive therapeutic option in the management of CRC patients.


Assuntos
Andrographis/química , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Camundongos , Extratos Vegetais/uso terapêutico , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA